Term 8 Civil Engineering Project Memorial University Department of Transportation & City of St. John's

Health Sciences Centre Clinch Crescent Access Study

Requirement for ENGR 8700 MVP&O Group

Problem Definition

Scope

- Traffic Study
- Route Selection
- Geometric Design
- Environmental Impact
- Cost Estimate

Recommendation and Conclusion

Introduction to a Problem

- Prince Phillip Drive
- University Campus
- Largest Acute Care Facility in NL
- Opened in 1978.
- Significant Expansion
 - Janeway June 21, 2001
 - Cancer Centre
 - Hostels
 - University Campus Expansions
 - Increased patient turn-over
 - Nursing/Pharmacy/Medical School Enrollments
- No Increase in access (Clinch East/West, Arctic ave.)
- Little increase in parking

Group Inc.

MVP&O Group to the Rescue

The Goal

- Increase Capacity
- Reduce Traffic Congestion entering and exiting the HSC Facility and surrounding roads (PPDr)
- Who turns left at Clinch East?!?

Existing Access

Clinch Crescent East

- Mornings...Short Signal
- Hospital/University Traffic
- Pedestrians
- Arctic Avenue Traffic

Clinch Crescent West

- Longest Left Turn Signal in City
- Recent Upgrade of bridge and road
- Possibility of future expansions

Traffic Study

Synchro Model

- Existing Traffic Situation
- Data Supplied by City
- Traffic Counts for Remainder
- Evaluates Traffic Volumes/LOS
- Traffic Light Sequences

SIM Traffic

- Animates traffic flows
- Provides visual representation of traffic network.
- Evaluates average delays at intersections.

Levels of Service (A=Good F=Bad)

	1	Ť	۲	L.	ŧ	J.	,	1	4	f	*	t
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		1	1	1	11	17	1	++	1	1	† \$	
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Satd. Flow (prot)	1750	1842	1794	1652	3500	2756	1652	3618	1794	1652	3539	0
Flt Permitted	0.950			0.387			0.129			0.285		
Satd. Flow (perm)	1748	1842	1766	672	3500	2758	224	3618	1766	495	3539	0
Satd. Flow (RTOR)			249						151			
Volume (vph)	197	452	225	19	688	860	421	733	134	217	825	3
Lane Group Flow (vph)	235	538	268	22	782	977	473	824	151	238	910	0
Turn Type	Prot		Perm	Perm		pt+ov	pm+pt		Perm	pm+pt		
Protected Phases	7	4			8	85	5	2		1	6	
Permitted Phases			4	8			2		2	6		
Total Split (s)	20.0	49.0	49.0	29.0	29.0	59.0	30.0	45.0	45.0	16.0	31.0	0.0
Act Effct Green (s)	17.0	46.0	46.0	26.0	26.0	56.0	58.0	42.0	42.0	41.0	28.0	
Actuated g/C Ratio	0.15	0.42	0.42	0.24	0.24	0.51	0.53	0.38	0.38	0.37	0.25	
v/c Ratio	0.87	0.70	0.30	0.14	0.95	0.70	1.01	0.60	0.20	0.74	1.01	
Control Delay	76.1	32.2	4.3	35.9	62.4	23.9	61.9	21.5	4.8	33.0	73.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	76.1	32.2	4.3	35.9	62.4	23.9	61.9	21.5	4.8	33.0	73.8	-
LOS	E	С	A	D	E	С	E	С	A	С	E	
Approach Delay		34.9			40.9			33.0	-		65.3	12
Approach LOS		С			D			С			E	
Intersection Summary												
Cycle Length: 110	110											
Offect: 72 (85%) Refer	- nood	to ohes	a 2.NE	TI and	8-SW/T		of Gree	-				
Control Type: Actuated	Coord	linated	C 2.14L	r c ano	0.000	E, Otai	t of one	=11				
Control Type. Accorded	11	mareo										
MENTION IN CHATLO!												
Intersection Signal Del	av: 42	0			ntersea	tion I O	S D					

Splits and Phases: 6: Allandale Road & Crosstown Arterial

f pl	≠ #2	1 p4				
18 s	45 s	43 s				
¢ µ5	¥ øs	An #7 #8				
30 a	31 a	20.8 29.6				

Possible Solutions

Larkhall Link

Schools

- Advantages
 - Extra option other than Parkway
- Disadvantages
 - Primary/Elementary Schools
 - Cut through Traffic
 - Outspoken Neighborhood
 Committee

Link

Mosdell F

WarnersiRd

Clinch Crescent West (Double Left)

- Advantages
 - Increases left hand turn capacity
 - Reduces Congestion on Parkway
 - Already in place, but not commissioned
- Disadvantages
 - Cost

8

Pippy Park Link (1&2) – West/Center Clinch

- Advantages
 - Avoids issues with Autism Center
 - Quick Access to Outer Ring
 - Easy Access to PPDr West
 - Direct Access to Parking Lots
- Disadvantages
 - Pippy Park Green Space
 - Walking Trails
 - West Lose Parking
 - Center Interfere Helipad
 - University Traffic Cuts Across Hospital Traffic
 - Center May need Traffic Signal

Group Inc.

Possible Solutions cont...

Pippy Park Link (3) – East Clinch

- Advantages
 - Quick Access to Outer Ring Road
 - Convenient for Student Traffic
 - Less road/Less Cost
- Disadvantages
 - Pippy Park Green Space
 - Walking Trails
 - Autism Center
 - Wetlands

Tunnel from Outer Ring Road

• 16 Million Dollars +/- 25%

ENGI 8700 – Mid Term Presentation – Clinch Crescent Access Study

QRSII Simulation

What is it?

- State of the Art Planning Package
- Regional Forecasting, site impact analysis

How it works?

- Input our current data
- Add Pippy Park Link
- Run Simulation
- Develop Factors to
 Redistribute Traffic Volumes

Select Alternatives

- New AM/PM Traffic Models
- New LOS tables
- Outline where existing roadways and intersections may need upgrading.

Possible Upgrades

Allandale/Outer Ring Road On-Ramps

• Double Right

Allandale/Ridge Road/Mt Scio Road

 Add LHT Lanes/ Increase RHT Capacity to and from Mt Scio

Prince Phillip Drive/Clinch Crescent West

- Double Left
- Addition of Exterior Lane

Morissey Drive

• LHT to Engineering Building

Geometric Design

TAC Manual & Design Standards

- Horizontal Curves/Vertical Curves for New Roadway
- Design Speeds, etc.
- Intersection and Interchange Design Standards

Selecting a Route

Possible Routes through the Park

- Clinch Crescent East vs. Center vs. West Access Point
- Mt. Scio Remains Major / Add intersection for New Link
- Mt. Scio becomes a minor roadway / New Link becomes Major Roadway

Environment/Park/Trails

Environmental Study for link though Pippy Park

- Considerations during construction
- Consideration in design for after construction
- Particular attention to crossing of Pippy Park trail system

<u>Cost Estimate</u>

Cost estimation for all route design and intersection upgrades calculated using unit prices.

- Clearing & Grubbing
- Excavation (Roads, Ditches, Cut/Fill)
- Borrow (Gravel Class A,B)
- Hot Mix Asphalt Concrete
- Guide Rails
- Utilities
- Culverts
- Indirect Costs

Deliverables

Deliverables for the client will include:

- Project report including methods and recommendations
- Traffic model of each alternative and results
- Design and CAD drawing of all roadway and intersection changes
- Cost estimation of all designed changes
- Environment consideration of all designed changes

Any Questions?

