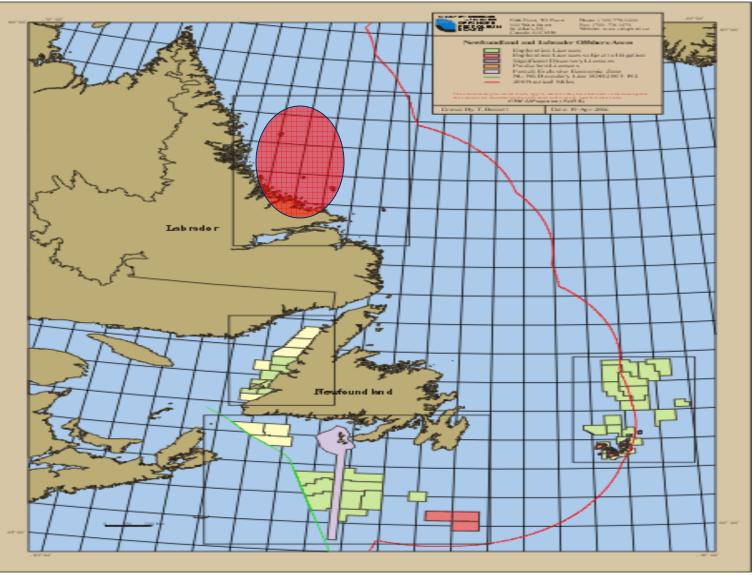


Concrete Gravity Based Structure *Coastal Labrador Natural Gas Extraction*

Midterm Report

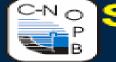
PROJECT SCOPE

Develop a Design Basis Memorandum, preliminary conceptual design, and cost estimate for an offshore Gravity Based Structure (GBS) for the extraction of Natural Gas from the Coast of Labrador

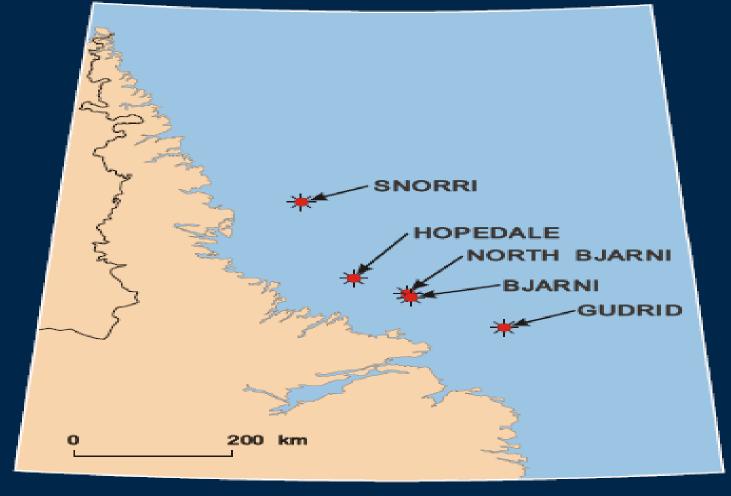


PRINCIPLE OBJECTIVES

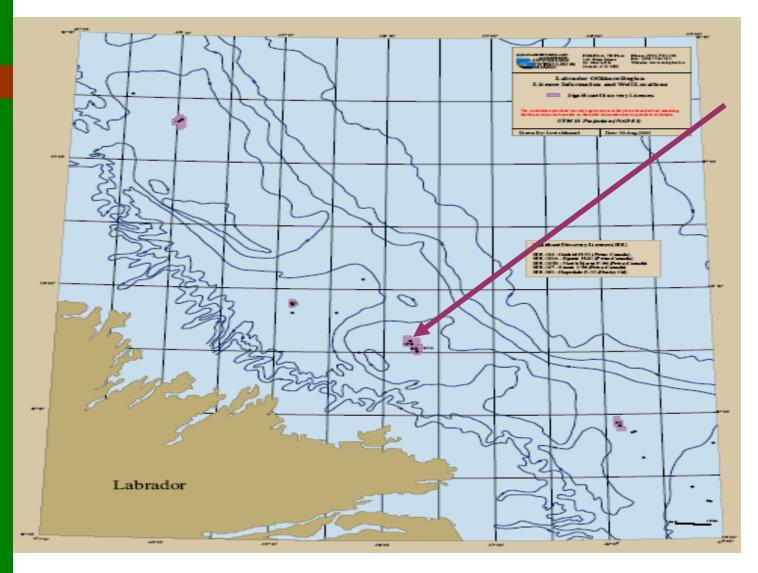
- Design Basis Memorandum
 - Geotechnical Parameters
 - Environmental Design Criteria
- GBS Design Options
 - Advantages/Disadvantages
 - Preliminary Quantities
- Preferred Option Report
 - Quantities/Cost Estimates



AREA OF OPERATION



PROBABLE GBS SITES



Significant Discoveries Labrador Shelf

GBS SITE CHOSEN

WHAT THEY THINK IS THERE

Petroleum Reserves¹ and Resources² - Newfoundland Offshore Area

Field		Oil		Gas		NGLs ³
	$10^6 m^3$	million bbls	$10^{9} m^{3}$	billion cu. ft.	$10^{6} m^{3}$	million bbls
Grand Banks						
Hibernia	197.8	1244	50.6	1794	32.2	202
Terra Nova	56.3	354	1.3	45	0.5	3
Hebron	92.4	581	-	-	-	-
White Rose	45.0	283	76.7	2722	15.3	96
West Ben Nevis	5.7	36	-	-	-	-
Mara	3.6	23	-	-	-	-
Ben Nevis	18.1	114	12.1	429	4.7	30
North Ben Nevis	2.9	18	3.3	116	0.7	4
Springdale	2.2	14	6.7	238	-	-
Nautilus	2.1	13	-	-	-	-
King's Cove	1.6	10	-	-	-	-
South Tempest	1.3	3	-	-	-	-
East Rankin	1.1	7	-	-	-	-
Fortune	0.9	6	-	-	-	-
South Mara	0.6	4	4.1	144	1.2	8
West Bonne Bay	5.7	36	-	-	-	-
North Dana	-	-	13.3	472	1.8	11
Trave	-	-	0.8	30	0.2	1
Sub-Total	437.3	2751	168.9	5990	56.6	355
Labrador Shelf						
North Bjarni	-		63.3	2247	13.1	82
Gudrid	-		26.0	924	1.0	6
Bjarni	-	_	24.3	863	5.0	31
Hopedale	-	-	3.0	105	0.4	2
Snorri	-	-	3.0	105	0.4	2
Sub-Total	0.0	0	119.6	4244	19.9	123
Fotal	197.9	2751	288.5	19234	-76.5	476
Produced ⁴	98.9	622	0.0	0	0.0	0
Remaining	338.4	2129	288.5	10234	76.5	478

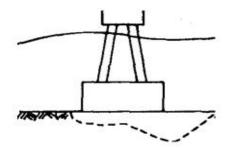
"Reserves" are volumes of hydrocarbons proven by drilling, testing and interpretation of geological, geophysical and engineering data, that are considered to be recoverable using current technology and under present and anticipated economic conditions. Hibernia, Terra Nova, and White Rose are classified as reserves.

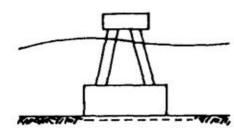
² "Resources" are volumes of hydrocarbons, expressed at 50% probability of occurrence, assessed to be technically recoverable that have not been delineated and have unknown economic viability.

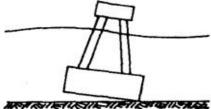
³ Natural Gas Liquids

⁴ Produced oil reserves also include a small quantity of natural gas liquids. Produced volumes as of December 31, 2005

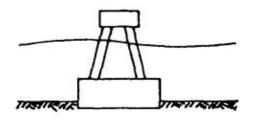
- 2.2 Trillion Cubic Feet of natural gas
- Located 100km off the Labrador coast at a water depth of 150m
- 10-40m layer of sediment on the ocean floor

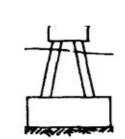

- Large design loads necessitate large foundations
- Lateral load is a substantial fraction of the vertical load, therefore the overturning moment is very large
- There is a major cyclic component of loads
- Large settlement due to soft seabed deposits near sea floor


GEOTECHNICAL


Foundation Failure

Modes of Foundation Failure




BEARING CAPACITY

OVERTURNING

DIFFERENTIAL SETTLEMENT

1. -11 -11

ILSUSTA

EXCESSIVE SETTLEMENT

LIQUEFACTION

• WAVE LOAD DATA

- 100 yr Wave Height
- Associated Wave Period

16-19 secs

30m

 Wave is classified as an intermediate wave (Linear Wave Theory)

- WIND SPEEDS (100 yr Return)
 - 1-Hour Mean Wind Speed 44m/s
 - 3-second gust

61m/s

• PACK ICE DATA

- Measured Depths of up to 8m
- Multi-year floes
- Flexural Strength measures up to 0.7MPa
- Local Strength Parameters 10.0MPa
- Global Strength Parameters 2.4MPa
- Crushing Failure

• DESIGN ICEBERG

- Petro-Canada Bjarni/North Bjarni "Production Perspectives Study" (1983)
- 20,000,000 Metric Tonnes
- Tabular Shape, 55m deep, 636m wide
- ~2700MN Force on Impact with structure
 - Hibernia 1300MN
- ~335GN·m Overturning Moment
 - Hibernia 84GN-m

GBS DESIGNS MULTIPLE LEGGED STRUCTURES

- Ability to withstand moderate ice conditions
- Inability to withstand the load of an iceberg
- Slender legged shapes provide little to no storage
- Predominant in North Sea

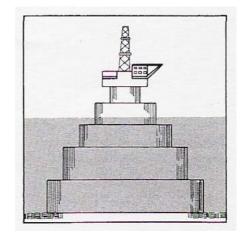
MULTIPLE LEGGED STRUCTURES

TROLL A

- Location: North Sea
- Structure Height: 472 m
- Ocean Depth: 303 m
- Structure Weight: 656,000 Te

STEPPED CASSION STRUCTURES

- Good stability against overturning
- Geometry causes failure of ice features and energy dissipation at controlled rate
- Concurrent construction of major parts possible
- Constructability issues due to geometry



STEPPED CASSION STRUCTURES

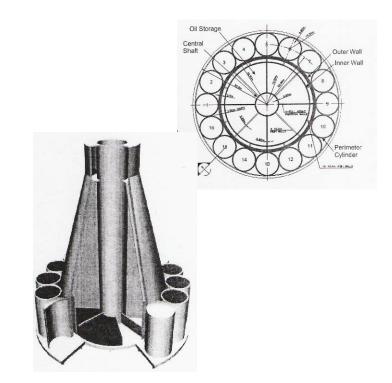
STEPPED STRUCTURE

Conceptual Design

- Location: Beaufort Sea, Labrador Sea
- Ocean Depth: 50-200 m

CONICAL STRUCTURES

- Wide base provides stability
- Offers reduced area at water surface
- Inclined edge reduces ice loads
- Curved walls allows distribution of environmental loads
- Geometry reduces maximum storage



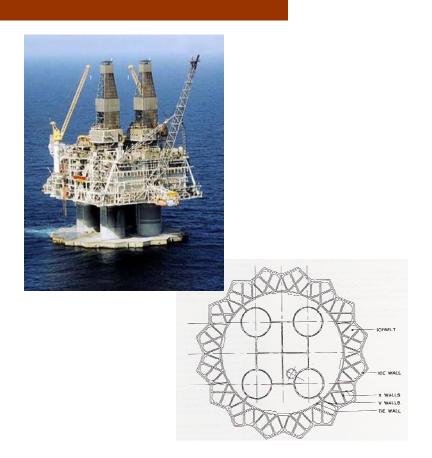
CONICAL STRUCTURES

GRAND BANKS GBS

Conceptual Design

- Location: Atlantic Ocean
- Ocean Depth: 80 to 120 m
- Silo shaped cylinders provide flotation and ballast

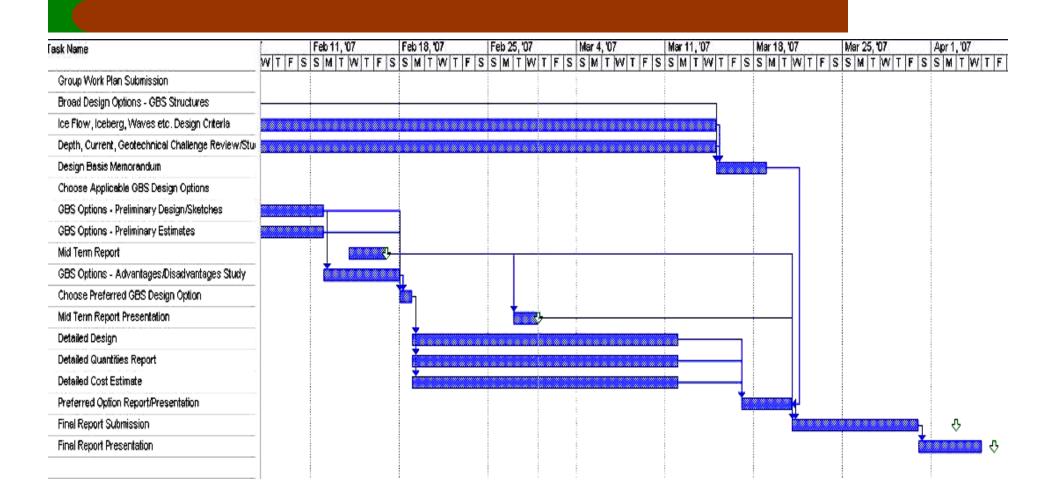
CYLINDRICAL STRUCTURES


- Provide greater stability during construction and tow out
- Attract higher wave and iceberg loads
- Greater mass resists larger ice features
- Large flat roof causes design and constructability issues

CYLINDRICAL STRUCTURES

HIBERNIA

- Structure Height: 224m
- Ocean Depth: 111 m
- Structure Weight: ≈ 1.1 million Te
- Unique wedge shaped outer wall



- GBS Design Possibilities
- Design Basis Memorandum
 - Methodology
 - Conclusions
- Conceptual Design Options (Site Specific)
 - Advantages/Disadvantages
- Preferred Option Report
 - Quantities/Cost Estimates

PROJECT SCHEDULE

Outstanding Items

Thank You!

Questions/Comments

End of Show

CELEBRITIES IN ENGINEERING

An Updated Version

STAY TUNED!

Control the pet population, have your pet spayed or neutered!