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Abstract—Computer vision, especially object classification, has
been significantly enhanced by the advancement of machine
learning [1]. Sophisticated artificial neural networks, such as
LeNet [2], AlexNet [3] and YOLO [4], archive at least 80% accu-
racy [3], [5], [6] in general classification. However, existing deep
learning algorithms have only been evaluated on RGB images.
Commonly, approaches for deep learning networks process RGB
images to extract features from the entire image [7]. During
the process, the networks generally first detect low-level features
(e.g., edges, corners) and move to high-level features (e.g., scale
variations), ignoring other information, such as 3D object details.
Depth images include 3-D details of the objects and offer more
information to the classifier than intensity edges. We introduce
a novel classification approach which uses depth images, instead
of RGB images, to train deep learning algorithms. We conducted
four preliminary experiments using 6,387 frames of common
household objects, a Memorial University of Newfoundland’s
multi-cameras dataset, and a in-house human dataset. We
observed mixed results on accuracy from a traditional CNN
(three convolution layers) by training this network with depth
images and colour images. Further, the sizes of training data
are reduced by two-thirds due to the smaller size of the depth
images, and our approach is more robust against adversarial
attacks. Our approach significantly reduced the dataset size and
training time, while showing acceptable results in certain in-
door scenarios, when depth images are easy to capture with
commercially available, inexpensive IR sensors, such as Microsoft
Kinect.

Index Terms—Depth images, RGB-D, image classification,
depth image processing, security, machine learning.

I. INTRODUCTION

Computer vision, especially object classification, has been
significantly enhanced by the advancement of machine learn-
ing [1]. Sophisticated artificial neural networks, such as LeNet
[2], AlexNet [3] and YOLO [4] archive at least 80% accuracy
in general classification [3], [4], [6]. These approaches feature
on processing RGB images to automatically extract features
from the original image without pre-processing [7]. During
the process, the networks generally first detect low-level
features (e.g. edges, corners) and move to high-level features
(e.g., scale variations) [8]. However, the information utilised
by these approaches include only 2D features, since RGB
images contain no 3D information. In addition, the traditional
approaches are vulnerable to adversarial attacks. Furthermore,
the attacks are relative easily to be carried out since the
attacker only needs to apply special patterns or features to
objects.

In contrast, depth images include 3D details of the objects
and offer more information to the classifier than only intensity
edges. We believe that artificial neural networks trained with

depth images have the advantages of better performance,
smaller data size, and are more robust against traditional
adversarial attacks.

II. LITERATURE REVIEW

Existing works on image classification with artificial neural
networks are mainly focus on RGB images for both supervised
[4], [3], [2] and unsupervised learning [9]. Recent work [10],
[11] in supervised training for RGB image classification tasks
significantly improved the performance accuracy [12], [13].
However, these approaches ignore (or at least, fail to exploit)
3D details of the object due to the limitation of RGB images,
and most of them are weak to adversarial attacks [14], [15],
[16], [17], [18].

Depth images reveal 3D details of objects. Special equip-
ment, including LiDAR [19], [20] and active infrared cam-
eras, are capable of generating depth images. With the com-
mercialisation of inexpensive IR cameras (e.g., Microsoft
Kinect [21]), depth images are now widely accessible [22].
However, existing research on applying depth images to object
classification tasks are limited [23], [24]. We focus on using
depth images as the only source to train a neural network for
object classification tasks.

III. METHODOLOGY
A. Dataset

We perform our experiments on four datasets:

1) Dataset 1: a sub-dataset from University of Washing-
ton’s RGB-D Object Dataset [25]. This dataset is pre-
segmented and includes common household objects. We
resized/normalised the images in this dataset to 256x256
for both colour and depth images in order to train our
network. Our dataset included 10 household objects’.
The size of the dataset is 4.67GB for colour images and
1.55GB for depth images, in the format of npy”. This
dataset includes 6,387 frames of images. Sample images
are shown in fig.1

2) Dataset 2: a sub-dataset from Memorial University of
Newfoundland’s multi-camera dataset [26]. This dataset
is not segmented and includes four different human
participants. The size of each image is 1080x1920, 3-
channels for colour images and 320x288, 16-bit for
depth images. We include data from three participants

I'The following objects are used in this research: apple_I, banana_l,
bell_pepper_1, calculator_1, coffee_mug_1, dry_battery_1, hand_towel_1,
potato_1, shampoo_1, water_bottle_1

2Standard binary file format in NumPy



in our current project. The size of the dataset is 8.22GB
for colour images and 124MB for depth images in the
format of npy. This dataset includes 355 frames of

images. A sample image is shown in fig.2

3) Dataset 3: a in-house collected dataset with three partici-
pants. This dataset is background removed and includes
only depth images. Data are collected with Microsoft
Kinect 2 [21]. All data in the dataset are included in
this research. The size of each image is 424x512 with
16-bit depth channel. The dataset includes 2,996 images.
A sample image is shown in fig.3

4) Dataset 4: similar to dataset 3, this dataset includes 1,642
frames full depth images (without background removal)
for the same participants. A sample image is shown in

fig.4

e w

(a) Apple

Fig. 1: Sample images from dataset 1

(b) Calculator

(c) Dry battery

Fig. 2: Sample image from dataset 2

Fig. 3: Sample image from dataset 3

Fig. 4: Sample image from dataset 4

TABLE I: CNN layers summary

Layer type Filter | Kernel size Units
Reshape - -
Conv2D 32 3x3
MaxPooling2D - -
Conv2D 64 3x3
MaxPooling2D - -
Conv2D 64 3x3
MaxPooling2D - -
Flatten - - -
Dense - - 64
Dense - - # classes

B. CNN architecture

In this paper, we present a comparison of the performances
of a simple CNN trained by colour images and depth images.
The network architecture is illustrated in fig.5. We repeat the
feature extraction, three times, and our network includes 10
layers, where three convolutional layers have an activation
function of ReLU [27], [28]. The parameters of the convo-
lutional layers are listed in tab.l.
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Fig. 5: CNN architecture[29]

IV. EXPERIMENT AND RESULTS

We run standard k-fold with £k = 3 to cross-validate the
network performance in dataset 1, 2, 3 and 4. Validation
accuracies are listed in tab.II and tab.III.

Although the performance of the CNN trained with depth
images (tab.IIl) is worse than the CNN trained with RGB im-
ages (tab.Il) on dataset 1 and 2, the accuracy for classification



TABLE II: k-fold accuracies for CNN trained with RGB image

Iterations | Dataset 1 | Dataset 2
1 1.000 0.588
2 0.999 0.567
3 0.991 0.508
Average 0.997 0.555

TABLE III: k-fold accuracies for CNN trained with depth
image

Iterations | Dataset 1 | Dataset 2 | Dataset 3 | Dataset 4
1 0.769 0.521 0.994 0.897
2 0.752 0.457 1.000 0.917
3 0.345 0.508 0.997 0.890
Average 0.622 0.495 0.997 0.901

tasks (dataset 3 and 4) is high, averaging 0.997 and 0.901
respectively. In dataset 1, the overall performance of the CNN
trained by depth images is significant lower (by 38%) than the
network trained by RGB images. In dataset 2, the performance
discrepancy is reduced to 6%. However, in dataset 3 and
dataset 4, the network achieves high classification accuracies,
at 99.7% and 90.1%, respectively.

Depth and colour images in dataset 2 have different resolu-
tions. In order to compare the ratio of sizes of colour images
and depth images, we estimate the size of dataset 2 based on
size per pixel.

Assume Sy; and Syo represents the size of depth images in
dataset 1 and dataset 2, respectively; S and S.o represents the
size of colour images in dataset 1 and dataset 2, respectively.

The ratio between the size of colour image and depth images
in dataset 2 is

S.o/(1080 x 1920) x (320 x 288)

Ry = 1
2 S 6]
~3 2)
The ratio of dataset 1 can be directly computed with
Scl
R = 3
=5 3)
~3 4

It is obvious that the size of depth dataset is 2/3 times
smaller than the size of RGB dataset.

V. CONCLUSION AND FUTURE WORKS

Our research shows that training a simple CNN with depth
images has mixed performance compared to training a CNN
network with the exact same parameters with RGB images.
The performance could be significantly different depending on
the input dataset. The overall performance for a CNN trained
by depth images is still acceptable for classification tasks.
Furthermore, the approach we proposed in this paper shows
the advantage of smaller dataset size, faster training time and
the potential of higher robustness against adversarial attacks.

As a preliminary research project, our findings reveal
questions about the huge performance discrepancies between
dataset 1, 2 and dataset 3, 4 unresolved. Future work should

include investigating the performance discrepancies, evaluat-
ing performance on other public datasets and extending the
research to other more sophisticated artificial neural networks.
Theoretical research on the behavioural differences between
depth images and RGB images in convolution operations may
reveal the fundamental reason for the performance discrepan-
cies observed.
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