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Abstract-Therapists often perform evaluations of gait during 

exercise therapies with people with multiple sclerosis. However, 
the level of experience, available time and characteristics of the 
clinical environment during the assessment makes the consistent, 
objective evaluation of gait challenging. Existing automated 
methods of gait analysis typically involve expensive equipment 
and can only function in specific, instrumented locations. We 
present the preliminary steps toward the development of an 
inexpensive, portable, automated gait assessment system. 
Specifically, we present a method of synthesizing gait data 
captured using two depth imaging sensors without knowledge of 
the location of the sensors relative to each other.  

Index Terms—Automated assessment, human gait, multiple 
sensors, depth sensors, point cloud. 

I. INTRODUCTION 

The evaluation of human gait is an important and common 
clinical practice [1, 2], particularly with respect to the 
treatment and rehabilitation of neurological diseases [3, 4], 
including multiple sclerosis [5]. Historically, the clinical 
evaluation of gait has been performed by human clinicians 
using both objective and subjective criteria. Objective 
evaluations, typically obtained using standardized tests (e.g., 
Timed Up and Go test), show good reliability and repeatability 
[6], but their sensitivity, or ability to detect clinically relevant 
changes in MS, has recently come under question [7]. On the 
other hand, subjective evaluations performed by skilled 
clinicians provide a rich understanding of the impact of 
interventions through gait observation but are not generally 
repeatable and require significant training and experience. 
Accordingly, researchers and clinicians have begun to 
investigate the use of more sophisticated automated techniques 
of gait analysis to provide more objective, sensitive and 
repeatable evaluations. 

The gold-standard approach to automated motion analysis 
are three-dimensional, marker-based systems [e.g., 8, 9]. For 
these systems, the subject wears a specially designed tracking 
garment providing accurate, high-speed identification of a 
substantial amount of tracking points. However, these systems 
also require specialized, expensive equipment, require 
significant time to set up, and are limited to specific 
environments or spaces interfering with the evaluation of 
natural motions. Recently, marker-less approaches of human 

motion tracking have begun to emerge to overcome some of 
these limitations experienced by marker-based methodologies. 
Marker-less approaches, in contrast to marker-based 
approaches, allow actors or participants to wear their natural 
clothing but introduce uncertainty in measurement. These 
developmental approaches [e.g., 1, 10, 11], which employ 
RGB-D (depth) sensors, present good preliminary results, but 
performance of these marker-less systems has been shown to 
underperform when compared to the performance of marker-
based systems in clinical application [12].  

One of the most significant factors affecting the efficacy 
these marker-less approaches is the reliance on tracking data 
from a single depth sensor. Typical limitations of single-sensor 
systems are self-occlusion [12], environmental occlusion [10], 
single viewing angle [1], and limited sensor range [10]. Studies 
have employed a fronto-parallel perspective (side view) [e.g., 
11], frontal perspective [13], or unique viewing angle [1, 10] to 
attempt to overcome the limitations of a single perspective but 
potentially exacerbate one limitation while addressing another. 

The synthesis of data captured using multiple sensors is a 
promising method of overcoming these limitations. Multiple 
sensors may allow data that may otherwise be occluded or out 
of view of one (or more) sensor(s) to be captured by another 
sensor. Furthermore, multiple sensors can allow the system’s 
field of view to be extended beyond that of a single sensor. To 
be consistent, the data from multiple sensors must first be 
translated into a common global coordinate space. This is 
accomplished through an extrinsic camera calibration 
procedure. This procedure requires the use of a calibration 
target of known proportions (generally a checkerboard cube) 
and the spatial location relative to the sensors is also required if 
the ground plane is to be calibrated. The target is used to 
develop transformation matrices that will allow the data from 
each sensor to be rotated and shifted to the global reference 
frame.  Additionally, for the calibration to be successful, each 
sensor must be able to see a common surface on the calibration 
target to provide spatial locality. Once calibrated, the sensors 
can reliably transform their data to the global reference frame, 
allowing synthesis of the data. This procedure is not practical 
in clinical applications because clinicians generally do not have 
the skill, resources or interest to perform such technical tasks. 



This paper outlines a novel approach that allows multiple 
arbitrarily placed sensors viewing the same scene from 
multiple perspectives to perform an extrinsic calibration 
without the use of a designated calibration target. The outcome 
of the method enables the data captured from the sensors to be 
synthesized into a single data stream in the global reference 
frame. This synthesis includes the knowledge of the three-
dimensional rotation and offset of each sensor relative to an 
arbitrarily selected reference sensor, as well as knowledge of 
the ground plane for each sensor. The system is quasi-
uninitialized, only requiring a small number of empty frames 
(i.e., the background scene) to be captured by each sensor.  
 

II. METHODS 

To perform the extrinsic calibration, the trajectories of the 
centre of mass (CoM) of all objects moving in the foreground 
scene are used as an initial calibration target. The raw depth 
data captured by each sensor is first converted to a 3D point 
cloud using the Point Cloud Library [14]. Since the data from 
each sensor is captured from a different perspective, the centre 
of mass of each visible object in the foreground may be 
slightly different. Accordingly, following the initial alignment 
using the CoMs a final transformation to a synchronized global 
reference frame is performed on the raw point clouds from 
each sensor. 

A. Experimental setup 
We use a set of Microsoft Kinect RGB-D sensors connected 

to a single PC. The number of sensors is limited by the number 
of independent USB buses on the PC, where only one Kinect 
sensor is permitted per bus to avoid exceeding USB bandwidth. 
Kinect sensors were arbitrarily placed around the lab, at any 
elevation and perspective, ensuring that each sensor shared at 
least some part of the scene. An area within the lab of 5 meters 
by 3 meters was designated as the test scene for video capture. 
Video streams were captured from the Kinect sensors using the 
OpenNI 2.0 API [15]. 

Pre-trial setup: Following the placement of the sensors, a 
small set of 50 frames of depth data were captured 
simultaneously from each sensor. A background image was 
created for each sensor by averaging the non-zero pixels in the 
empty frames for each pixel pavg(i,j) according to the following 
equation: 
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where i and j represent the row and column of the pixel in the 
image similar to our previous work [16]. Only the non-zero 
pixels were included to remove pixels identified as invalid by 
the sensor (value of zero (0) is invalid). 

Subjects: Subjects were instructed to randomly walk around 
the scene along to a self-directed path. The field of view of the 
sensors did not cover the test scene and the participants were 
encouraged to move outside the field of view of the sensors 

periodically if desired. Furthermore, the participants were not 
instructed to walk at any prescribed pace. Only one human was 
visible in the scene at any time. 

B. Extrinsic calibration routine 
Extrinsic calibration was performed in five main steps: 1) 

Foreground extraction; 2) Point cloud conversion; 3) 
Trajectory mapping using Centre of Mass; 4) Initial alignment; 
and 5) Final alignment; 

Foreground extraction: The raw depth data captured by the 
depth sensors was first processed to remove the background. 
To accomplish this, depth thresholding was used, where any 
pixel closer to the sensor than the associated background pixel 
was considered part of the foreground. A threshold distance of 
2cm from the background scene for each meter of distance 
from the sensor was used. The threshold was scaled with the 
distance from the sensor to account for the proportional 
increase in random error associated with the depth readings 
with increasing distance [17]. 

Point cloud conversion: The foreground image from each 
sensor was converted to a point cloud using the open-source 
Point Cloud Library[14].  To accomplish this, each point from 
the depth sensors was first converted from projective space to 
real-world coordinates using the intrinsic parameters (field of 
view and resolution) of the depth sensors. The resultant point 
clouds lie in the local reference frame of each sensor, without 
knowledge of the global reference frame or ground plane.  

Trajectory mapping using of centre of mass: Procedurally, 
point clouds in space are generally aligned by first identifying 
a set of keypoints in the point cloud, then defining a set of 
features, and finally by aligning the keypoints and features [14]. 
The standard feature for a point cloud is the surface normal, 
largely because alignments are generally performed between 
two point clouds that are spatially separated by a minimal 
rotation and translation. The result is that the point clouds will 
share several common features and keypoints, allowing for 
effective initial alignment. We propose using the centre of 
mass of the objects moving in the foreground as a feature. This 
new feature is more suitable to our application because the 
sensors can be arbitrarily placed around the scene and 
accordingly may share little in terms of spatial structures. 
Without common spatial structures the initial alignment will 
likely fail to converge on a consistent basis. 

In each new frame captured by each sensor, points were 
associated with a particular point cloud object if the Euclidian 
distance from its nearest neighbours was less than a learned 
threshold of 0.25cm. Point cloud objects within each frame 
were considered distinct if the Euclidean distance between 
itself and the nearest points of another object were greater than 
0.25 meters. In each frame of data, the CoM was calculated for 
each object, and then the trajectories of the CoM of all objects 
were plotted over time for each sensor. A new CoM point was 
added to the trajectories if the object contained more the 7,500 
points in its point cloud for the frame. This threshold helped 
ensure that spuriously detected objects (e.g., from sensor read 



errors) or objects almost entirely out of the scene would not 
skew the true CoM of the underlying object. 

Initial alignment using CoM trajectories: The trajectories 
were used to identify an initial transformation matrix (rotation 
and translation) in three-dimensional space. First, a RANdom 
SAmple Consensus (RANSAC) method was used to fit a plane 
to the trajectories of each object for each sensor. This plane, in 
each sensor, represented a plane parallel to the ground plane 
the participants were walking on. Initial alignment was 
attempted after fifty (50) trajectory points were available from 
each sensor. The initial alignment was performed on the 
trajectories using the Sample Consensus Initial Alignment 
(SAC-IA) approach of [18], based on Fast Point Feature 
Histograms. The resulting transformation matrix was used to 
align (rotate and translate) the point clouds of each sensor to 
the ground plane of an arbitrarily-selected sensor, creating a 
global reference frame. The initial alignment was reattempted 
after ten additional trajectory points were found if the method 
failed to converge.  

Final alignment: The initial alignment provided rough 
consistency between the point clouds in the global reference 
frame. However, the CoM’s were not necessarily the actual 
centre of mass of the objects due to the fact that any one sensor 
cannot detect the full, three-dimensional profile of objects in 
the scene. Accordingly, some residual error, in terms of 
rotation and translation, was still present between the point 
clouds from the different sensors. A final alignment was 
performed using a brute-force Iterative Closest Point (ICP) 
method [14] on the full point clouds following the initial 
alignment. 

III. RESULTS 

Data were captured on a laptop running 64-bit Ubuntu 14.04 
LTS, with an Intel i7-350M 4-core processor. One Kinect 
sensor was mounted approximately parallel to the ground and 
approximately perpendicular to one of the walls of the lab 
environment. The sensor was placed at a distance of 2.5 meters 
from the wall to ensure the field of view was somewhat 
restricted (i.e., participants would periodically leave the field 
of view). A second Kinect sensor was mounted on top of a 
cabinet approximately 1.75 meters above the ground with a 
viewing angle approximately 60 degrees offset from the first 
sensor (around the normal of the ground plane), and with an 
approximate tilt of 20 degrees to the ground plane. The second 
sensor was mounted approximately 3.5 meters from the centre 
of the room to provide a larger field of view of the walking 
area and to ensure that participants periodically walked beyond 
the sensing range of the sensor. 

Four participants contributed 1752 frames of video data, 
with each walking trial taking an average of 15 seconds. A 
total of 1455 images were included in the analyses after empty 
frames were removed from the beginning and end of the trials. 
Empty frames that were captured during the walking sequence 
(i.e., when the participant temporarily left the scene) were 
included in the analyses. A sample frame showing the scene 

perspective from each RGB sensor for two trial walks can be 
seen in Fig. 1. Images were buffered at 30 frames per second 
and processed after the trials were completed. 

A. Initial alignment using CoM trajectories 
A plane parallel to the ground plane for each sensor was 

found by implementing a RANSAC method with a minimum 
sample distance of 0.01 meters. The Sample Consensus Initial 
Alignment model was initialized with a minimum sample 
distance of 0.01 meters, a maximum correspondence distance 
of 0.10 meters, and a maximum of 1000 iterations for 
convergence. Across the four walking trials, the SAC-IA 
model converged on a solution after an average of 155 
iterations. 

B. Final alignment 
The maximum number of iterations used for the brute-force 

Iterative Closest Point algorithm was set to 1000. The average 
convergence score over the four walking trials for the ICP 
alignment was 0.0144, suggesting a good fit between the 
sensor point clouds (Table 1). Furthermore, the ICP algorithm 
converged after an average of 602 iterations, taking an average 
of 20.23 seconds. The raw and aligned trajectories, as well as 
the point clouds after initial and final alignment can be seen in 
Fig. 2. 
 

IV. DISCUSSION AND CONCLUSIONS 

The identification and coordination of a global reference 
frame for the synthesis of data from multiple vision sensors 
requires an extrinsic calibration using a calibration target. 
Extrinsic calibration is generally performed by a technical 

TABLE I 
ITERATIVE CLOSEST POINT ALGORITHM CONVERGENCE SCORES AND NUMBER 

OF ITERATIONS DURING FINAL ALIGNMENT 

 Trial 
1 2 3 4 Mean 

Convergence Score 0.00786 0.0185 0.00616 0.0249 0.0144 
Iterations 574 469 631 733 602 

Convergence Time 19.3s 15.8s 21.2s 24.6s 20.23s 

Figure 1: Sample frames captured during two walking sequences. Top row 
shows the participant in full view of each sensor. Bottom row shows the 

participant partially out of view of one sensor 
 



expert, precluding the use of multi-sensor systems by clinicians 
in clinical settings. Under the assumption that the centre of 
mass (CoM) of objects moving in a scene can be reasonably 
approximated by each sensor within a multi-sensor setup, our 
preliminary findings suggest that the trajectories of the CoMs 
over time can be used to align the multiple perspectives to a 
global reference frame. Furthermore, our findings support that 
the global ground plane can also be identified using the CoM 
trajectories.  

The preliminary success of our proposed technique of using 
the CoM points as both keypoints and features for the initial 
alignment suggests two possible advantages over the standard 
surface normal features in this application. Firstly, error in the 
identification of the CoM in each frame is negligible when the 
CoMs are accumulated into a temporal trajectory curve. 
Secondly, the need for multiple sensors to share some common 
spatial structures (i.e., have some overlap of the point clouds) 
is mitigated by using the CoMs. Performing a brute-force final 
alignment using an Iterative Closest Point algorithm provided 
good results with adequate fitness scores. Furthermore, visual 
inspection of the resultant point clouds in the global reference 
frame (see Fig. 2, column (d)) shows good coherence between 
the point clouds from each sensor.  

A. Limitations and future work 
This study was not without limitations. The results presented 

represent preliminary work toward the development of a multi-
sensor system that can perform an automatic extrinsic 
calibration. The findings are representative of a small data 
sample and are partially speculative in nature. Future work will 
initially seek to develop more empirical methods and data to 
support the proposed approach. 

 Despite the positive results obtained from the initial 
alignments, the use of trajectories requires several predicate 
conditions to be met in order to be successful. To assure 

convergence, the foreground objects must move in both 
dimensions (relative to the ground plane). Additionally, the 
initial SAC-IA method seeks an alignment that minimizes the 
error between features (and keypoints). If the trajectories are 
not originally close in alignment the method may converge on 
the wrong solution. This situation may also occur if the 
trajectories are complicated (e.g., many points where the 
trajectory crosses itself). Note that since the method first aligns 
the planes of the trajectories using RANSAC, the incorrect 
solution will always be a two-dimensional rotational error. One 
promising solution to the limitations of the initial alignment 
method is through the use of more representative features of 
the CoM trajectories. The CoM points over time are more 
reflective of keypoints rather than features. The velocity and 
acceleration of these keypoints are more analogous to the 
standard surface normal features used on raw point clouds. 
Accordingly, we will continue to investigate this approach to 
initial alignment using the CoM points as keypoints, with the 
velocity and acceleration of the points as the alignment 
features. Furthermore, we will also consider defining more 
heuristic criteria for performing the initial alignment, such as 
limiting the size of the trajectories to simple, representative 
segments, ensuring motion in two dimensions is present using 
the RANSAC method. 

The algorithms used in this study were developed to support 
an arbitrary number of sensors. However, this study was 
restricted to the use of two Kinect sensors mounted in two 
locations. Future work will investigate additional sensors and 
additional perspectives to ensure generalizability of both the 
initial and final alignment approaches. Additionally, the 
approach must be validated in different physical environments, 
and with multiple people walking simultaneously. 

 From the perspective of a system intended to perform an 
extrinsic calibration and run in real-time, the most significant 

 (a) Raw trajectories before alignment (b) Trajectories after initial alignment (c) Point clouds after (d) Point clouds after 
   initial alignment final alignment 
Figure 2: Trajectories and point clouds before and after alignments for two sample frames, organized by row with red representing data from sensor 0 and black 

representing data from sensor 1. Column (a) shows the raw centre of mass trajectories over time before alignment. Column (b) shows the trajectories after 
initial alignment. Column (c) shows the point clouds for each sensor after initial alignment. Column (d) shows the point clouds in the global reference frame 

after final alignment 



limitation is the speed of the final alignment. Across the four 
trials, the average convergence time of the final alignment was 
20.23 seconds. Theoretically, this alignment is only necessary 
a single time. However, in a real-world application, this 
algorithm would need to be run periodically to ensure the 
alignment was correct, particularly if convergence scores were 
not ideal. One possible solution would be to reduce the 
computation time by reducing the number of data points. This 
could be achieved by first attempting the alignment using 
keypoints and surface normal features. Should this 
significantly faster approach fail, the brute-force PCL 
alignment could then be performed on the full point clouds. 
Additionally, the alignment could be run concurrently on a 
separate thread (assuming adequate resources on the machine) 
allowing image acquisition to continue buffering images. 

Notwithstanding the limitations of the current study, 
preliminary results are encouraging. Automatic extrinsic 
calibration is shown to be possible using the trajectories of the 
centre of mass of objects in the scene. The trajectories can be 
used to provide an adequate initial alignment between 
arbitrarily placed sensors such that a final alignment can be 
performed on the raw point clouds to a global reference frame. 
The combination of the initial and final transformation 
matrices theoretically allows the effective alignment of the 
sensors across any captured frame. Furthermore fitting a plane 
to the trajectories captured from each sensor using RANSAC 
can identify the global ground plane. These findings suggest 
that data from multiple arbitrarily placed sensors can be 
synthesized into a global reference frame with known ground 
plane without manual extrinsic calibration using a target 
calibration fixture. This automated extrinsic calibration has 
implications in many areas that may gain advantage from 
multiple sensors, and in particular may impact the automated 
assessment of gait in people with neurological disorders such 
as multiple sclerosis.  
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