
Automated ground plane detection using human 
motion and environmental geometry 

 
S. Czarnuch 

Memorial University 
Department of Electrical and Computer Engineering, Faculty of Engineering and Applied Science and 

Discipline of Emergency Medicine, Faculty of Medicine 
St. John’s, NL 

 

 
Abstract-Tracking humans using computer vision has 

applications in healthcare delivery, security, computer interfaces 
and gaming. This is particularly true in a healthcare setting where 
people are constantly changing clothing and environments are 
dynamic and cluttered, preventing the use of other common 
methods of tracking (e.g., instrumented rooms, wearable sensors). 
In these challenging environments, the placement and orientation 
of cameras is often for practical convenience rather than technical 
system performance. However, knowledge of the cameras relative 
to the ground plane is necessary for automated human tracking to 
succeed. This study outlines a methodology for automatically 
detecting the ground plane by synthesizing human trajectories 
with knowledge of potential ground planes and their orthogonal 
sets. Potential human trajectories will be estimated using 
Veiwpoint Feature Histograms as a feature and a threshold 3D 
Euclidean velocity across frames between 1 and 2m/s. Orthogonal 
sets will be defined using all potential ground planes (e.g., walls, 
tables, floor). Results are presented for a pilot study with data 
collected from two different rooms and three different viewing 
perspectives in each room. 

Index Terms—Ground plane detection, computer vision, 
human trajectory, uninitialized tracking, perspective 
independence. 

I. INTRODUCTION 

In research and practice, the automated evaluation of human 
motion has significance in many areas including healthcare 
delivery, security, computer interfaces, and video gaming [1]. 
The emergence of inexpensive depth sensors (e.g., Microsoft 
Kinect [2]) has created an environment where inexpensive and 
portable computer vision systems [e.g., 1, 3] can be used to 
reliably track human motion, invariant to lighting, shape, 
colour and texture. Existing depth-based tracking-by-detection 
approaches have achieved some success commercially (e.g., 
the Microsoft Kinect gaming console) and scientifically [e.g., 1, 
4]. Indeed, with an ideal sensor perspective, human motion 
tracking has been achieved with significant accuracy [1, 5-7]. 
However, these approaches have seen limited practical 
application in challenging, real-world indoor environments 
(e.g., dynamic, frequently changing and/or cluttered). One 
significant issue with existing tracking approaches in 
challenging environments is that the sensor cannot be placed in 
an ideal location (e.g., fronto-parallel perspective). Indeed, in 
many real-world applications (e.g., in-home activity 
monitoring and automated healthcare) sensors are generally 
placed for practical convenience rather than for system 

performance. In these situations, the sensor’s viewing 
perspective is unknown, preventing the use of existing tracking 
approaches which require a known perspective (e.g., fronto-
parallel). Accordingly, after physical placement, the sensor 
must be calibrated to identify the ground plane, enabling the 
3D video data to be rotated to a known, useable perspective. 

The calibration process, or more specifically the 
identification of the ground plane, can be performed manually 
or automatically. In the case of RGB-D data, manual 
calibration generally requires a physical calibration target; a 
three-dimensional cube of known dimensions placed in a 
known location [8]. Alternatively, a user can manually select 
points representing inliers on the ground plane [e.g., 9] using a 
calibration interface. These manual processes require expert 
knowledge and are not practical in many cases. Automated 
methods of sensor orientation and calibration have also been 
developed. In cases where the sensor may not be oriented with 
the ground plane a target in the field of view of the system is 
instrumented with a marker or label [e.g., 10]. In these 
approaches the target must be present during calibration and 
the movement of the target must be known a priori. Other 
automated methods can segment the ground plane (and other 
surfaces) but require knowledge of the global horizontal and 
vertical axis  [e.g., 11].  

In real-world applications where the sensor orientation and 
position are unknown and objects in the scene cannot be 
labeled or marked, existing automated approaches to ground 
plane detection do not work. This work outlines a novel 
approach for automatically identifying the ground plane using 
human motion trajectories and other large planes visible in the 
scene. This approach utilizes the fact that, in general, large 
surfaces (e.g., walls, ceiling, tabletops) are parallel or 
orthogonal to the ground plane, and that human trajectories are 
parallel to the ground plane, essentially using humans as virtual 
calibration targets. The outcome of this method is either the 
explicit identification of the ground plane if the plane is visible 
in the scene or the implicit identification of the ground plane 
normal (a plane parallel to the ground plane) if the plane is not 
direction observed. The proposed approach is entirely 
uninitialized, not requiring any information about the location, 
perspective and orientation of the sensor or the dimensions and 
occupants of the room. 



II. METHODS 

A. Experimental Setup 
A single Microsoft Kinect RGB-D sensor [12] was used to 

collect video data. The sensor was placed at an elevation and 
orientation out of alignment with the ground plane. The video 
stream was captured from the Kinect sensor using the OpenNI 
2.0 application program interface [13]. The intrinsic 
transformation matrix was recorded to allow registration 
between the depth and RGB image feeds. Raw RGB-D data 
were converted to 3D point clouds using the Point Cloud 
Library [9]. 

B. Procedure  
Participants were instructed to walk in front of the sensor 

according to a self-directed path and were allowed to move 
outside the field of view of the sensor. The pace of participant 
movement was not prescribed, though participants were not 
allowed to stop moving. For each trial, only a single human 
was visible at any point in time. 

C. Automated ground plane detection 
The ground plane was automatically detected from the 3D 

point clouds in five steps: 1) Potential ground plane detection; 
2) Foreground cluster extraction; 3) Feature and 
correspondence estimation; 4) Foreground cluster reduction; 
and 5) Ground plane identification. 

Potential ground plane detection: A RANdom SAmple 
Consensus (RANSAC) method was used to fit planes to the 3D 
point cloud with a minimum sample distance of 10cm. A plane 
was considered a potential ground plane if the number of plane 
inliers was greater than ten percent of the total points in the 3D 
point cloud as in our previous work [8]. The inliers of potential 
ground planes were removed from the 3D point cloud and the 
RANSAC method was invoked iteratively until no more 
potential planes were found. The vector of potential ground 
planes was updated for each consecutive frame captured. 

Foreground cluster extraction: Euclidean clustering was 
used to identify potential foreground objects in the 3D point 
cloud with potential ground plane inliers removed. Potential 
ground planes were removed to improve segmentation 
performance and because large planes are generally not part of 
moving objects, similar to [14]. A cluster tolerance of 5cm was 
used with a minimum cluster size of 7,500 points to remove 
spurious outliers and outlying clusters.  

Feature estimation: The Viewpoint Feature Histogram (VFH) 
[15] was used as a feature for each foreground cluster. The 
VFH, based on the Fast Point Feature Histograms descriptors 
[16], is fast and performs well at classifying human objects [14, 
15]. The normals of each cluster were first found using a kd-
tree nearest neighbor search of the extracted cluster with a 
search radius of 5cm. The VFH signatures were then estimated 
for each cluster using the point cloud data and the normals. The 
correspondence between clusters in consecutive frames of 
captured data was estimated using the Fast Library for 
Approximate Nearest Neighbors (FLANN). Clusters were 

considered a match across successive frames if the Euclidean 
squared distance was less than 50cm2. 

Foreground cluster reduction: The centre of mass of each 
foreground cluster was calculated for each frame of captured 
data. The 3D vector connecting consecutive centre of mass 
points was calculated with each new frame of data. A normal 
human trajectory was defined as having a velocity of 1 to 2 m/s, 
with a normal turning angle between consecutive frames 
defined as less than 25 degrees. Foreground clusters were 
rejected as potential humans if the length of three trajectory 
vectors (representing the Euclidean distance in three 
dimensions) was outside 1 to 2 m/s, or if the angle between 
consecutive vectors exceeded 25 degrees. A foreground object 
was considered a human if the summed distance of the 
trajectory vectors was greater than 1.5m and the outer bounds 
of the trajectory was greater than 1m.  

Ground plane identification: A plane was fit to the human 
trajectory using RANSAC without a minimum sample distance. 
If a potential ground plane existed that was parallel to the 
trajectory plane, the ground plane was explicitly defined. 
Planes were considered parallel if the 3D angle between the 
plane normals was less than five degrees. If no plane existed 
that was parallel to the trajectory plane, planes orthogonal to 
known potential ground planes were defined (to utilize the fact 
that walls, ceilings, etc. are generally at right angles to each 
other). If these orthogonal planes were parallel to the trajectory 
plane, only the ground plane normal was identified.  

III. RESULTS 

Video data were captured using a single Microsoft Kinect 
RGB-D sensor [12] connected to a Dell Optiplex 9020 MTI7-
4790 3.6GHZ 16GB running 64-bit Ubuntu 14.04. Raw depth 
and RGB images were captured using the OpenNI 2.0 API [13], 
registered, and converted to point clouds [9] (see Fig. 1). Two 
different rooms were instrumented with sensors and three trials 
were completed in each room. For each trial, the sensor was 
moved to a predetermined location and elevation, described in 
Table 1, simulating several real-world applications.  

 

Figure 1: Raw data capture from sensor and converted to a point cloud 



Three participants performed the six trials, with each trial 
taking an average of 12.1 seconds. Image data were saved to 
disk at 30 frames per second resulting in 2178 frames of raw 
RGB and depth image data. 

A. Automated ground plane detection 
All image data were processed from disk after the trials were 

completed to identify the ground plane. The raw RGB-D data 
was converted offline to point cloud data. As a reflection of the 
exploratory nature of this study, algorithms and processing 
were not optimized for speed or performance. 

Potential ground plane detection: A RANSAC method was 
invoked on the full point clouds which had an average of 
223,532 points. The resulting threshold, set at ten percent of 
total points, for plane detection was an average of 23,532 
points. The largest plane in all cases was the back wall of the 
test rooms, which had an average of 132,662 points. The 

second largest plane was the floor, with an average of 51,811 
points (see Fig. 2). In some cases a third plane was fit to the 
window and radiator on the back wall with an average of 
28,211 points. Table 2 shows the average, minimum and 
maximum point cloud points for the full cloud and the number 
of points in the remaining foreground cloud following the 
removal of each potential ground plane. 

 
Foreground cluster extraction: Following removal of the 

potential ground plane inliers, Euclidean clustering on the 
foreground point cloud identified the human in the scene in 
every frame the human was present, with an average number 
of 17,996 points. In most cases, the window on the back wall 
was also identified as a cluster with an average of 11,412 
points. The column on the back wall was also identified as a 
cluster in some cases with an average of 8,257 points. As seen 

TABLE 1 
PHYSICAL LOCATION AND PERSPECTIVE OF SENSORS FOR EACH TRIAL 

RELATIVE TO THE CENTRE OF THE WALKING PATH 

Room 

Sensor Elevation (cm) 
Sensor Perspective 

(degrees from fronto-parallel) 

Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 

1 100 200 25 0 45 -45 

2 200 25 100 -45 0 45 

TABLE 2 
POINT CLOUD DATA POINTS DURING GROUND PLANE DETECTION PROCEDURE 

Average Min Max 

Total points 223532 220973 227347 

Points after first plane inliers removed 90870 81749 101907 

Points after second plane inliers removed 39059 28905 48959 

Points after third plane inliers removed 17460 13842 21077 

    

Figure 3: Sample images from a walking trial, increasing in time (left to right). Top row: raw RGB images. Middle row: foreground segmented images using 
Euclidean clustering. Bottom row: Point cloud visualization of registered RGB-D images with centre of mass trajectory overlay. 

TABLE 3 
DATA POINTS IN FOREGROUND CLUSTERS 

Average Min Max 

Points in cluster 1 17996 15978 19806 

Points in cluster 2 11412 7587 18037

Figure 2: Potential ground planes



in Fig. 3, Euclidean clustering is prone to noise, where in some 
cases only the human in the scene was clustered, while in 
others the window and column were also identified as clusters. 
Table 3 shows the average, minimum and maximum number 
of points in the cluster point clouds. 

Feature and correspondence estimation: Viewpoint Feature 
Histogram signatures were successfully estimated in all cases 
where foreground clusters were found. Fast Library for 
Approximate Nearest Neighbor (FLANN) correspondence 
between matching clusters between frames (Table 4) were less 
than the threshold 50cm2 in 82.6% of the total frames, with an 
average mean squared distance of 42.1cm2. FLANN 
correspondence between non-matching clusters was greater 
than the threshold in all frames, with an average mean squared 
distance of 15559.5cm2. 

Foreground cluster reduction: The trajectory of all 
foreground objects, measured as the 3D vector connecting the 
centre of mass of consecutive corresponding clusters (see Fig. 
3), resulted in the removal of non-human clusters in an average 
of 5.32 iterations. As shown in Table 5, human clusters moved 
an average of 1.24cm and changed direction with an average 
angle of 7.7degrees, while non-human clusters moved an 
average of 4.01cm with average angle of 62.8 degrees. Human 
clusters were confirmed after exceeding the 1.5m total 
trajectory distance with an average of 126 frames, which in all 
cases occurred after the outer bounds of the trajectory 
exceeded 1m. 

Ground plane identification: A plane was fit to the human 
trajectory in all six trials using RANSAC. In four trials, the 
angle between the human trajectory plane and the actual 
ground plane was less than the threshold five degrees. In all 
four of these trials, the correct plane was selected as the ground 
plane, since the angle between the other planes was also 
greater than the threshold angle. In the remaining two trials, the 
angle between the human trajectory and all the potential 
ground planes was greater than five degrees. The orthogonal 
sets of planes, calculated as any plane that was perpendicular 
to all potential ground planes, were also greater than the five 
degree threshold. Both of these trials resulted in a failed 
convergence on a ground plane, both explicitly (from the set of 
potential ground planes) and implicitly (from the set of 
orthogonal planes). 
 

IV. DISCUSSION AND CONCLUSIONS 

The automated detection of a ground plane generally 
requires either knowledge of the horizontal and vertical planes 
or a calibration target in the scene.  However, in many practical 
cases the location and orientation of the sensor is not known 

and is not guaranteed to be level with the ground plane. 
Additionally, the use of a calibration target is also infeasible in 
many real-world situations. The preliminary work presented 
from this study proposed using the natural motion of humans, 
or more specifically human trajectories, as a method of 
identifying the ground plane. Essentially, humans were used as 
a virtual calibration target. 

The preliminary findings of this study suggest that this 
method of automated ground plane detection is not overly 
robust, converging on a solution in four of six trials. However, 
considering each individual step of the procedure elucidates the 
cause of the high proportion of failed convergences. The 
method of potential ground plane detection identified the actual 
ground plane in all cases, and also successfully identified the 
rear wall – a plane orthogonal to the actual ground plane. Once 
these potential ground planes were removed from the full point 
cloud, Euclidean clustering foreground detection successfully 
identified the actual human as a potential human in all cases, 
along with other clusters that were not potential ground planes. 
The Viewpoint Feature Histogram signatures were successfully 
used to find an 82.6% frame-to-frame correspondence between 
human clusters which, in conjunction with the centre of mass 
trajectories, allowed all foreground clusters except the actual 
human to be rejected.   

 The failed ground plane convergence occurred in both of the 
failed trials at the final process during the ground plane 
identification.  In both failed trials, the actual ground plane was 
correctly identified. Furthermore, in both failed trials the 
orthogonal set of potential planes also contained a plane 
parallel to the ground plane. However, the human trajectory in 
both failed trials was almost linear, with the variation actually 
occurring in the vertical plane as an artifact of ambulation (i.e., 
the centre of mass “bobbing” up and down). When a plane was 
fit to the human trajectory, the best-fit plane was not parallel to 
the ground plane. Rather, the trajectory plane was arbitrarily 
oriented. Accordingly, when compared to the set of potential 
and orthogonal planes, convergence failed. Indeed, under these 
conditions convergence could equally likely have occurred 
with the correct plane or an incorrect plane as opposed to 
failing. 

TABLE 3 

DATA POINTS IN FOREGROUND CLUSTERS 

Average Min Max 

Points in cluster 1 17996 15978 19806 

Points in cluster 2 11412 7587 18037 

Points in cluster 3 8257 7559 9246 

TABLE 4 
FOREGROUND CLUSTER CORRESPONDENCE MEASURES FRAME-TO-FRAME 

 
Mean distance squared 

Average Min Max 

Clusters corresponding 42.1 2.37 114.7 

Clusters not corresponding 15559.4 5334.4 51482 
    

TABLE 5 
TRAJECTORY STATISTICS BETWEEN CONSECUTIVE CENTRE OF MASS 

ESTIMATES FOR HUMAN AND NON-HUMAN CLUSTERS 

 Distance (cm) Absolute angle (º) 

 Avg. Min Max Avg. Min Max 

Human clusters 1.24 0.82 3.01 7.7 0.1 78.2 

Non-human clusters 4.01 0.75 18.34 62.8 1.3 167.4 



The preliminary nature of this study and inconsistent results 
suggest several limitations. The generalizability of the 
successes of the proposed methodology are hampered by the 
small sample size and test cases. Although the approach is 
robust programmatically, the sequential nature of the 
methodological steps may not be as robust under more realistic 
scenarios. For example, the direct determination of ground 
planes with the proposed sample distance of 10cm includes, as 
inliers, a small set of points from adjacent clusters. In this way, 
the feet of any humans will be included in the plane estimation, 
and ultimately excluded from future cluster extraction. The 
implications of these limitations can only be validated with 
more rigorous testing under additional real-world scenarios.  

Additionally, the use of a single feature, the Viewpoint 
Feature Histograms, for subsequent correspondence estimation 
may be underestimating the importance of this step. 
Considering the importance of correctly identifying the 
correspondence between humans in successive frames of data, 
future work will look to implement multi-feature methods of 
human identification and correspondence. A combination of 
global (e.g., VFH) and local (e.g., FPFH) features may provide 
more robust and reliable characterization of humans under 
more varied real-world conditions.   

The main failures of this overall methodology occurred as a 
result of linear trajectories. Perhaps the most significant 
limitation of this work is in the translation of the human 
trajectories into a plane that is guaranteed to be parallel to the 
ground plane. An implicit assumption of this approach was that 
all human motion would occur on a plane parallel to the 
ground plane. However, provision was not made for a two-
dimensional trajectory – one that would satisfy the criteria of 
being parallel yet not have a unique planar solution. 
Considering that such linear motion is not only within the 
boundaries of the implementation assumptions but also 
practically valid, future work must focus on developing a 
method of using this linear trajectory to identify the ground 
plane. For example, a weighted evaluation of the angle 
between the human trajectory and potential planes, in 
conjunction with the Euclidean proximity of the contributing 
point cloud to the potential planes may disambiguate potential 
planes and the actual ground plane. This scenario will of 
course not work in cases where the ground plane cannot be 
explicitly observed but presents one possible solution. 

One other notable limitation of this study is that the 
implementation of this methodology was not optimized for 
speed or performance. Execution metrics were not taken, but 
observation revealed that the approach was not even close to 
executing in real time. This limitation was the substantive 
motivation behind buffering the captured images at 30 frames 
per second for future processing. For this approach to satisfy 
the main objective of the work, which is to automatically 
identify the orientation and location of a depth sensor in real-
world applications, significant emphasis must be placed on 
improving the efficiency of code execution. 

Notwithstanding the limitations of the current study, 
preliminary results support the continued efforts toward 
automated ground plane detection using human motion 
trajectories. Addressing the limitations of the current study will 
be the initial focus of future work, with particular focus on 
evaluating the robustness of the existing approach and 
optimizing execution. Ultimately, the evaluation of this refined 
approach in a true real-world context will be necessary to 
understand the true efficacy of the methodology. 
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