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Spatiotemporal Gait Measurement With a
Side-View Depth Sensor Using Human
Joint Proposals

Andrew Hynes *“, Stephen Czarnuch

Abstract—We propose a method for calculating stan-
dard spatiotemporal gait parameters from individual human
joints with a side-view depth sensor. Clinical walking tri-
als were measured concurrently by a side-view Kinect and
a pressure-sensitive walkway, the Zeno Walkway. Multiple
joint proposals were generated from depth images by a
stochastic predictor based on the Kinect algorithm. The
proposals are represented as vertices in a weighted graph,
where the weights depend on the expected and measured
lengths between body parts. A shortest path through the
graph is a set of joints from head to foot. Accurate foot po-
sitions are selected by comparing pairs of shortest paths.
Stance phases of the feet are detected by examining the
motion of the feet over time. The stance phases are used
to calculate four gait parameters: stride length, step length,
stride width, and stance percentage. A constant frame rate
was assumed for the calculation of stance percentage be-
cause time stamps were not captured during the experi-
ment. Gait parameters from 52 trials were compared to the
ground truth walkway using Bland-Altman analysis and in-
traclass correlation coefficients. The large spatial parame-
ters had the strongest agreements with the walkway (ICC(2,
1) = 1.00 and 0.98 for stride and step length with normal
pace, respectively). The presented system directly calcu-
lates gait parameters from individual foot positions while
previous side-view systems relied on indirect measures.
Using a side-view system allows for tracking walking in
both directions with one camera, extending the range in
which the subject is in the field of view.

Index Terms—Depth sensor,
proposals, shortest paths, side-view.

gait analysis, joint

Manuscript received September 19, 2019; revised March 3, 2020, May
4, 2020, June 6, 2020, and August 14, 2020; accepted September 7,
2020. This work was supported by the Natural Sciences and Engineer-
ing Research Council of Canada, through grant RGPIN-2016-04165

and a Canada Graduate Scholarship — Master’s. (Corresponding author:

Andrew Hynes.)

Andrew Hynes is with the Faculty of Engineering and Applied Science,
Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada
(e-mail: ajhynes@mun.ca).

Stephen Czarnuch is with the Faculty of Engineering and Applied
Science, Memorial University of Newfoundland, St. John’s, NL A1B
3X5, Canada, and also with the Faculty of Medicine, Memorial Uni-
versity of Newfoundland, St. John’s, NL A1B 3V6, Canada (e-mail:
sczarnuch@mun.ca).

Megan C. Kirkland and Michelle Ploughman are with the Fac-
ulty of Medicine, Memorial University of Newfoundland, St. John’s,
NL A1B 3V6, Canada (e-mail: megan.kirkland@mun.ca; michelle.
ploughman@med.mun.ca).

Digital Object Identifier 10.1109/JBHI.2020.3024925

, Megan C. Kirkland

, and Michelle Ploughman

[. INTRODUCTION

HE analysis of human gait is an important component of
T treating walking disorders [1], which arise from neurolog-
ical diseases including cerebral palsy [2] and multiple sclerosis
(MS) [3]-[6]. Clinical gait analysis is commonly performed with
timed walking tests [7], [8]. For a deeper analysis, quantitative
gait measures can be obtained using pressure-sensitive walk-
ways such as GAITRite [5] or the Zeno Walkway [9]. The walk-
ways measure spatial and temporal gait parameters by recording
the positions of the feet over time. They can also measure kinetic
properties such as the centre of pressure of the foot. However,
walkways are unable to directly measure the kinematics of
body parts other than the feet. Full-body gait analysis has been
performed using sensors attached to the body [10]-[12], or by
tracking markers on the body with a motion capture system [13],
but these approaches typically require significant setup time,
expert knowledge, and specialized locations [14].

Markerless gait analysis has been performed using RGB
cameras, depth sensors, and other devices such as laser scanners.
Recently, Zago et al. [15] measured spatiotemporal parameters
without markers using two RGB cameras for stereoscopic vision.
Iwai et al. [16] used 2D laser range sensors placed at shin height
to estimate where the foot contacts the ground, but required
subjects to walk barefoot with shins exposed (e.g., wearing
shorts). Castelli et al. [17] used a single RGB camera to measure
spatiotemporal parameters without conventional markers, but
this still required subjects to wear white undergarments to mark
the pelvis and foot segments, and the subjects had to walk in
front of a homogeneous blue background. Other approaches
using single RGB cameras also exist (e.g., [18], [19]), but
these studies only evaluated angular gait parameters (e.g., dor-
siflexion) rather than spatiotemporal. Unlike an RGB camera,
a single depth sensor is sufficient for measuring the scene
in 3D.

Human pose estimation from depth sensors has recently
seen large advances, notably with the release of the Microsoft
Kinect [20]. Depth sensors typically provide traditional RGB
data as well as depth data (i.e., a measure of distance from
the sensor for each pixel in the field of view), providing a 3D
understanding of the scene [21]. A large volume of research has
now investigated the Kinect as a device for gait analysis [13],
[22]-[31]. The advantages of gait analysis with a depth sensor
include long-term monitoring in a home setting [23] and tracking

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0003-1039-9329
https://orcid.org/0000-0002-9192-4107
https://orcid.org/0000-0001-5558-5059
https://orcid.org/0000-0002-4594-0077
mailto:ajhynes@mun.ca
mailto:sczarnuch@mun.ca
mailto:megan.kirkland@mun.ca
mailto:michelle.ploughman@med.mun.ca

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

the full body in 3D at a low cost with natural clothing and without
wearable sensors or markers.

Gait analysis with the Kinect is often conducted using the
Kinect Software Development Kit (SDK) to process the depth
images captured by the camera [22], [25]-[28], [30]-[32]. The
SDK outputs a skeleton model of the human body with 20
joints at an approximate frame rate of 30 frames per second [22]
(we adopt the terminology of [22] and [33] by referring to all
these positions as joints, while some are technically segments
or parts, such as the head and feet). Behrens et al. introduced a
computerized measure for gait analysis in persons with MS, the
Short Maximum Speed Walk (SMSW) test [32]. The parameters
of SMSW were calculated using the positions of the hip-centre
joint extracted from the SDK. This new test was found to
be correlated with established clinical measures including the
Timed 25-Foot Walk. Gabel et al. derived a feature vector from
multiple consecutive frames of skeleton data from the SDK [22].
A regression model used this vector to predict stride durations
and arm angular velocities, which were validated against data
from wearable sensors. Gait parameters have been measured
concurrently with the Kinect SDK and the GAITRite mat in
both children [28] and healthy adults [24], [30].

The Kinect SDK is intended to track the human skeleton
from a frontal perspective [29], so one camera is insufficient
for tracking a person walking both ways on a walkway. In [30],
a Kinect camera was placed at each end of a GAITRite mat so
the subject would be tracked from a frontal perspective while
walking in either direction on the mat. Participants in [28]
walked in only one direction on the GAITRite (towards a Kinect
atthe end of the mat). A second side-view camera captured depth
images for assisting with manual annotation. A frontal view is
also inconvenient because the practical range of the depth sensor
is less than 4 m. If the entire human shape needs to be seen, the
minimum distance from the sensor must be at least 2 m, resulting
in a measurable walking distance of at most 2 m [34]. From a
side view, the body is visible for the entire horizontal field of
view (about 4 m).

In response to the front-view limitations of the SDK, gait
analysis with a non-frontal Kinect has been explored. Cippitelli
et al. presented an algorithm for a side-view Kinect that functions
without machine learning [29]. A calibration step was required
in which the subject faces the sensor with outstretched arms. The
lengths between adjacent body joints were calculated from this
calibration image. The system tracked six joints visible on one
side of the body (head, shoulder, elbow, hip, knee, and ankle),
in order to produce an objective score for the Get Up and Go
Test (GUGT), which involves standing from an armless chair and
beginning to walk. While the six joints were sufficient for GUGT,
spatial gait parameters such as stride length require separate foot
positions to be measured directly. Baldewijns ez al. used the SDK
to extract the binary image of the person from a side view, but not
to track the full skeleton model [24]. Step length and step time
were calculated indirectly by analyzing the centre of mass of the
binary image. Stone and Skubic [23] performed continuous and
long-term monitoring of older adults with a Kinect mounted in
their apartments. A probabilistic model was used to estimate
gait parameters rather than tracking a skeleton, limiting the
applicability of this approach to clinical gait assessment.

The tracking ability of the Kinect SDK is rooted in a machine
learning algorithm developed by Shotton er al. [33]. Given
a single depth image, the trained system produces multiple
proposals for the 3D positions of human joints. Each joint
proposal is associated with a confidence value indicating the
likelihood that the position is correct. The different human
joints are identified independently (i.e., without information
from other image frames or the kinematic constraints of the
body). Unfortunately, the process from the joint proposals to the
final smooth tracking of the human skeleton is a proprietary and
unpublished algorithm [35].

We use a predictor developed for overhead hand tracking [36]
which is based on the algorithm of Shotton et al. [33]. Each pixel
in a random subset from a depth image is described with a mul-
ticlass probability density function (PDF) and the information
in the underlying PDFs is aggregated using a local mode-find
approach, resulting in multiple proposals for each tracked part.
We retrained our predictor to output multiple joint proposals
from side-view depth images of the human body. However, the
predictor can generate inaccurate proposals by mistaking one
body part for another, mixing up left/right parts, or detecting
background noise. Therefore, we present a method to select
accurate joints from the proposals which we group by part type,
removing the left/right distinction provided by the predictor. The
problem of accurately selecting from multiple joint proposals
has also been applied to pose estimation in RGB videos [37]
and multi-person pose estimation in RGB images [38].

We present three main contributions:

1) A method to select accurate head and foot positions per-
frame from multiple joint proposals after estimating the
fixed lengths of links between parts. The feet are then
assigned to left and right sides based on the direction of
walking motion.

2) A method to calculate standard spatiotemporal gait pa-
rameters from the left and right foot positions using the
same equations used by the Zeno Walkway.

3) A validation against the Zeno Walkway.

Our system is tested on a data set of 52 walking trials recorded
at the Recovery and Performance Laboratory, Memorial Uni-
versity. The study was approved by the Health Research Ethics
Board of Newfoundland and Labrador (#14.102). Participants
with MS were measured concurrently by a Zeno Walkway and a
Kinect vl camera from a side view. Participants were recruited
into our study out of convenience during their participation in
a separate aerobic exercise study. The camera was positioned
Im above the ground, 2.5m from the midpoint of the 14ft walk-
way (walkway specifications available from Protokinetics [39]).
Each trial consisted of multiple passes along the walkway in
both directions. Gait parameters were calculated from the Zeno
Walkway data by the Protokinetics Movement Analysis Soft-
ware (PKMAS), which uses calculations as defined by Huxham
et al. [40].

[I. POSE ESTIMATION

Let P be the set of all joint proposals on one frame captured
by the depth sensor. These proposals are positions in 3D space.
‘P is partitioned into subsets representing body part types. We
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Fig. 1.

utilize six part types: head, hip, thigh, knee, calf, and foot. Fig. 1
shows a two-dimensional view of the positions in P labelled by
part type.

Our method is based on the assumption that the links between
consecutive pairs of parts (head to hip, hip to thigh, etc.) have
fixed lengths [41]. This allows us to represent the joint proposals
on each frame as a weighted graph, with edge weights dependent
on the difference between the expected lengths for the trial and
the measured lengths on the frame. A shortest path from head
to foot in this graph finds a combination of parts with lengths
similar to the expected lengths, by minimizing the cumulative
error between the measured and expected lengths. The process
of estimating the expected lengths for the trial is explained later
in Section II-C.

A. Graph Representation

The joint proposals of P are represented as the vertices of a
weighted graph G. The vertices of part type ¢ form a complete
bipartite graph with the vertices of part type t 4 1 (i.e., there is
an edge between each vertex of type ¢ and each vertex of type
t + 1, and no edges between vertices of the same type [42]).
The edges are directed from type ¢ to type ¢ + 1. An example of
graph G is shown in Fig. 2.

Each proposal 7 has a 3D position p; and a part type ¢;. The
measured length L;; between two proposals ¢ and j is

Lij = ||lpi — pjl (1)

If t; =t; + 1, then proposals ¢ and j are connected by a
directed edge @ — j in G, and there is an expected length L ¢,
between parts of type ¢; and parts of type ¢;. As introduced
in [41], the weight W;; of the edge is

Wij = (Lij — Lit,)” @)

B. Shortest Paths

After the weighted graph G has been constructed, an algo-
rithm is run to find the shortest path to each vertex representing
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Example frame in a walking trial. (a) RGB image captured by the Kinect camera. (b) Corresponding depth image showing all joint proposals.
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Fig. 2. Graph representation of joint proposals. Each proposal is rep-
resented by one vertex in the graph. The black vertices and edges show
a possible shortest path from head to foot. The path consists of one
proposal for each part type.

a foot proposal. A shortest path between two vertices u and v is
a path along the edges from u to v with the lowest possible sum
of edge weights [43]. Fig. 2 shows a possible shortest path in G
from head to foot.

Since each edge in G is directed from a vertex of part type
t to one of type ¢t + 1, there are no paths in the graph that can
begin and end on the same vertex. Therefore, G is classified as a
directed acyclic graph (DAG). We use an algorithm that finds all
shortest paths from a single source vertex on a DAG, described
in [43]. This is similar to Dijkstra’s algorithm, but is specifically
optimized for a DAG.

The vertices of the graph must be in topological order before
the algorithm is run. A topological ordering is a sequence of
vertices such that for each edge v — v, u appears before v in
the ordering. A topological ordering for GG is obtained by listing
the vertices of each part type in order from head to foot.

G can be viewed as a single-source graph where the source
vertex is connected to each head vertex with a zero-weight edge.
Thus, the algorithm for single-source shortest paths on a DAG
can be run on G.
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The algorithm finds a shortest path to every vertex in G, but
our use of the term ‘shortest path’ will refer only to a path ending
on a foot vertex for the remainder of the paper. The structure of
G guarantees that such a path consists of exactly one vertex for
each part type, as demonstrated in Fig. 2.

C. Length Estimation

An iterative algorithm is run on the walking trial to estimate
the expected lengths. The lengths are first assumed to all be
zero. The graph G is weighted using these expected lengths.
The shortest path algorithm is executed on G, and the path
with the lowest total weight is selected. The measured lengths
from this path are recorded for the frame. The algorithm cal-
culates the medians of the measured lengths recorded so far
(from the first frame to the current frame). If the medians have
not changed from the previous frame, the expected lengths
are updated to be these medians. The process restarts from
the beginning of the trial with the new expected lengths. The
algorithm terminates when each expected length has converged
to a stable value. The final expected lengths are then used on the
full walking trial for selecting the head and feet.

D. Foot Selection

There are 1 ¢,0¢ proposals for foot positions in a frame. From
these, two must be selected as the best estimates for the actual
feet of the walking person.

The simplest solution would be to select the two paths with the
lowest total weights. However, it is possible that these paths both
emanate from the same actual leg in the image, while a different
path is the correct one for the other leg. Another solution would
be to select the two paths with foot positions furthest from each
other. This would be effective if all the foot proposals emanated
from the actual two feet. But a noisy (highly inaccurate) foot
proposal can be generated on a frame, and this approach would
tend to select that proposal.

Therefore, the challenge is to select two paths that are not too
close together and yet do not end on noisy foot positions. Our
solution is an algorithm which evaluates the paths in pairs rather
than individually. The links between proposals are now given
scores rather than weights, and a pair of paths receives a total
score. The algorithm finds the pair with the highest total score
over a series of rounds. Paths that are spaced apart will achieve
a higher score than paths that are close together, but only if they
do not contain noisy proposals.

A subset of proposals, Ppqhs, is taken from the set of all joint
proposals P. A proposal is in P, if itis included in any of the
shortest paths. Many noisy joint proposals are absent in Ppqp,,
as evident in Fig. 3.

A score S;; is assigned to the link between two proposals %
and j in Ppq¢ps if both of the following conditions are met:

1) There is a fixed length between the part types ¢; and ¢;.
2) Proposals ¢ and j are on the same shortest path.
The score is calculated with a simple quadratic function.

Sy =—(x—1)°+1 3)

where x is the ratio between the measured length L;; and
expected length L, ,. The ratio is calculated by dividing the

(@ (b)

Fig. 3. Removing noisy joint proposals. (a) P, the set of all joint
proposals on a frame. (b) Ppq¢hs, @ Subset of P. A proposal is in Ppqns
if it is included in any of the shortest paths to the feet.

S(z)

-1+

Fig. 4. Plot of the score function defined in Equation 3. The dashed
vertical line marks the beginning of the domain = > 1.

greater length by the lesser length, so that z > 1.

= méX(L”, Ltitj) (4)
mln(Lija Ltitj)

The links between proposals with consecutive part types are
the only links represented by edges in G. However, there are two
additional links of fixed length: hip to knee and knee to foot. The
expected length from hip to knee is calculated as the sum of the
expected lengths from hip to thigh and thigh to knee, since all
three parts should lie in a straight line. The same applies to the
knee, calf, and foot. Scores are assigned to these additional links
as well as the links represented by edges in G.

Like the edge weight IW;; in G, the score S;; is dependent on
the expected and measured lengths between joint proposals ¢ and
J. While W;; is restricted to non-negative values (a consequence
of Equation 2), S;; can be positive or negative. The highest
possible score is one, occurring when the measured length equals
the expected length. The score becomes negative when the ratio
of the lengths is greater than two. The quadratic function defined
in Equation 3 is shown in Fig. 4.

Once the scores are assigned, all possible pairs of shortest
paths are compared. Algorithm 1 summarizes the process to
select the best pair of shortest paths. P4, is the set of positions
included in a pair of paths. A sphere of radius 7 is centred on
each position in P4, If positions p; and p; from Ppa¢ns both
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(©)

Comparing pairs of shortest paths. The visible points constitute P,,:1, @ subset of P (see Fig. 3). A sphere of radius r is centred on each

joint proposal in a pair of paths. The lines between points indicate links with non-zero scores, ranging from negative (blue) to positive (red). (a) The
two paths end on nearby foot positions. Several links with good scores (from the other leg) are missed by the spheres. (b) One path ends on a noisy
foot position. The link from calf to foot has a negative score, reducing the total score of the pair. (c) The spheres include links with good scores from
both sides of the body. This pair of paths has the highest total score for radius r.

Algorithm 1: Selecting the Best Pair of Shortest Paths.
Input: pairs All pairs of shortest paths
radit  Array of radii for the spheres
Ppaths Set of proposals along the paths
S Matrix of scores between proposals
Output: pairy.s; Best pair of shortest paths
1:  function SelectBestPair(pairs, radii, Ppaths. S)
2 np < number of pairs
3 votes < array of n, zeros
4 for r € radii do
5 scores <— array of n,, zeros
6
7
8

for pair € pairs do
Ppair < Set of positions in pair
Vipheres <= combined volume of spheres
centred on positions in Ppy;;

9: Stotal < 0
10: for p; € Ppains do
11: for p; € Ppains do
12: if p; and p; are both in Vyppercs then
13: Stotal < Stotal + Sij
14: scores[pair] < Stotal
15: winners, < all pairs with a score equal to
max (scores) for radius r
16: votes(winners,.) + votes(winners,) + 1

17 pairpest < pairslarg max(votes)]
18:  return pairyes;

lie inside the combined volume of spheres, the score .S;; is added
to the total score for the pair of paths (note that S;; = 0 unless
p; and p; are on the same path). Fig. 5 shows spheres of one
radius on different pairs of paths, and the links with non-zero
scores included by these spheres.

Negative scores discourage the selection of a noisy foot pro-
posal. Consider the scenario where the two correct foot proposals
are close together while an incorrect proposal is far away. If
scores were restricted to positive values, the link to a noisy foot
proposal would have a small positive score, still contributing to

the total score. When the score is negative, the noisy proposal
causes a net decrease in the total score.

After a total score has been calculated for each pair of paths,
a vote is given to the pair with the highest score. In the case of a
tie, a vote is given to each pair tied for the top score. The process
repeats with a new radius for the spheres, and the votes for the
pairs are accumulated.

When the votes have been counted over a range of radii, the
pair with the most number of votes is selected. The two foot
positions from this pair are deemed to be the best estimates for
the actual feet on the frame.

E. Head Selection

When a frame includes multiple head proposals, the two short-
est paths selected in Section II-D could include two different
head proposals. When this occurs, the path with the lower total
weight defines the selected head position.

lll. GAIT ANALYSIS
A. Walking Passes

The walking trials have a varying number of passes along
the Zeno Walkway. For each pass, participants enter the field
of view, walk along the walkway, and exit on the opposite side.
This process ensured a number of empty frames between each
pass. To identify the passes, the indices of the non-empty frames
in a trial are clustered with DBSCAN (density-based spatial
clustering for applications with noise) [44], which determines
the number of clusters automatically. Each detected cluster of
frame indices is treated as one walking pass. DBSCAN also
labels data points as noise if they are too far from the core
clusters. Any frames identified as noise are excluded from the
following calculations.

B. Orientation

The general direction of the walking pass is needed for de-
tecting stance phases and assigning them to left and right feet.
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Fig. 6. Detecting stance phases and assigning left/right sides. (a) The stance phases are detected by clustering the values of signal ®. The unique

clusters are shown with different colours, while values marked as noise are shown in black. (b) The signal ¥ for the same walking pass. This signal
is used to assign sides to the clusters. High values of W indicate that a cluster is on the right. (c) The detected clusters of ® are shown again after
assigning sides. These correspond to the stance phases of the left and right feet.

Because the foot positions are 3D, an up direction is also needed
to assign left and right sides.

P o014 and Py, g are the arrays of selected foot positions
for the walking pass. The vector from the mean foot position
to the head position is computed on each frame. The overall up
direction ¥, is the median of these vectors (as a unit vector).

Pfoot,mean (Pfoot,A + Pfoot,B) /2

Vup Phead - Pfoot,mean

unit(median(Vy,)) 3)

Vup

A new array P s, is obtained by interweaving the rows of
Poot, 4 and P oo p to ensure temporal order. The frames of
the walking pass are grouped similarly.

A linear model is fitted to P f,,; with the RANSAC (random
sample consensus) algorithm [45]. RANSAC is an iterative al-
gorithm which evaluates the goodness of fit for multiple random
samples of the data. The output linear model is defined by a point
Pcentroid and a unit vector ¥ forwarq. The vector estimates the
general forward direction of the walking pass.

Finally, the perpendicular vector Py, is the cross product of
the up and forward vectors.

(6)

Vperp = Vup X V forward

The RANSAC algorithm also classifies each point as an inlier
or outlier. The array of grouped foot points P f,.; is revised to
only contain inlier points for further calculations.

C. Stance Phase Detection

The stance phases of the feet are identified by analyzing the
motion of the feet over time. The displacement of a foot is
expected to be close to zero for a stance phase since the foot is
planted on the floor. The forward direction ¥ fo,parq s used to
create a one-dimensional signal for detecting the phases. V f40¢
is the set of vectors from pcentroig to the grouped foot positions
in the pass, P 0.

Vfoot = Pfoot — Pcentroid @)

The signal @ is found by taking the dot product of the direction
VECtor ¥ forward With each vector in 'V f44. This transforms the
array of vectors into a 1D array of values, which are coordinates
along the line of walking motion. If the line of motion is perpen-
dicular to the camera, the values are analogous to x coordinates
in the camera view.

o = [{’forward -V | vV E Vfoot] (8)

Fig. 6 shows a scatter plot of the signal with frames on the
x-axis. Because the foot points A and B have been grouped
together in P .., there are two values in ® for each frame
(unless one of the foot points was marked as an outlier by
RANSAC).

The stance phases are detected by clustering the one-
dimensional values of & with DBSCAN. Each cluster returned
by the algorithm is a unique stance phase, while values marked
as noise correspond to swing phases.

Since the values of the signal are also temporal in nature, we
use one of modifications proposed in ST-DBSCAN [46], which
adapts DBSCAN for spatiotemporal data. The original algorithm
requires two parameters: min_pts, the minimum number of
neighbours a point needs to be considered a core point, and
€, the radius defining the spatial neighbourhood of the point.
The modification introduces a third parameter €,, which defines
the temporal neighbourhood. The final neighbourhood is the
intersection of the spatial and temporal neighbourhoods. Thus,
if a foot point generates a value in ® that is similar to a cluster
in space but not in time, it will be correctly marked as noise.

D. Side Assignment

The detected stance clusters are now assigned to left and right
sides. A second one-dimensional signal, U, is calculated using
Vperp instead of ¥ ¢oqrd. The values of W are analogous to z
(depth) coordinates in the camera view if the subject is walking

perpendicular to the camera.
U = [Vperp - V|V E Vg ©))

Each cluster is independently assigned to the left or right side.
The value vg;de, stance 18 the median of W values in the cluster. As
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Fig. 7. Spatial gait parameters for right foot 1.

TABLE |
EXAMPLE OF STANCE PHASES ORDERED BY INITIAL FRAME

Stance no.  frirst  fiast Position Side
0 281 295 [157, -90, 267] R
0 291 306 [103, -90, 280] L
1 303 317 [40, -89, 259] R
1 315 332 [-17, -86, 266] L
2 327 342 [-73, -82, 249] R
2 339 350 [-121,-78,262] L

described in the previous section, there are usually two values
of the signal on one frame, emanating from foot points A and B.
Therefore, vg;ge, swing 15 calculated as the median of ¥ values
that correspond to frames in the cluster but are not in the cluster
themselves. If none of these values exist, Vg;de, swing 15 assumed
to be zero. All clusters are initially assumed to belong to the left
foot. If Vside,stance > Vside,swing» the cluster is assigned to the
right foot instead.

E. Gait Parameters

PKMAS defines a stride as the first contact of one foot on the
floor to the proceeding first contact of the same foot. The other
foot is in a stance phase during this stride. Thus, stride ¢ for foot
a is defined by three positions: Py ;, Ps.i» and P j+1, illustrated
in Fig. 7. In this diagram, p, ; is right foot 1, p, ; is left foot 1,
and pg, ;41 is right foot 2.

The positions and times defining a stride are estimated from
the detected stance phases. The first and last frames (f ;¢ and
fiast) of each stance phase are recorded, and the stance position
is calculated as the median of all positions in the phase. The
left and right stance phases are grouped together and ordered
by initial frame. An example is shown in Table I. Each group
of three consecutive stance phases represents a stride, where the
three median positions are pg_;, Pp,i» and Py i+1, respectively.
However, gait parameters are only computed if the three phases
have alternating sides (either L-R-L or R-L-R). This is intended
to prevent the recording of incorrect gait parameters if the
clustering algorithm misses a stance phase or adds an extra one.

The stride length is the distance from p, ; t0 Pg,i41-

lstride7a7i = ||pa,i+1 - pa,i” (10)

The step length and stride width depend on py_; pro;. This is
the projection of py, ; onto the line defined by p,,; and pg 1.

(1)
(12)

lstep,a,i = ”pa,i—&-l - pb,i,pr()j”

Wstride,a,i — ||pb,i - pb,i,proj”

The stride time is the time from the first contact of one foot
to the next first contact of the same foot. Assuming a constant
frame rate (frames per second; fps), this can be calculated by
dividing the difference of frames by the frame rate.

_ ffirst,a,i—i—l - ffirst,a,i
tstride,a,i -
fps

The stance time is the time from the first contact to the last
contact of the same foot.

13)

_ flast,a,i - ffirst,a,i
tstance,a,i - fps

The stance percentage is the stance time divided by the stride
time.

(14)

tstance a,
Pstance,a,i = —— . 100%

stride,a,i

5)

Unfortunately, time stamps were not recorded during the data
collection phase of this study, so we could not reliably assess
the frame rate value or its consistency (and if time stamps
were available, the stride/stance time could be calculated by
simply subtracting the corresponding time stamps, ignoring the
frame rate altogether). For this reason, we only report on stance
percentage instead of stride and stance time.

If the frame rate is assumed to be constant, the stance percent-
age can be calculated without it because it is cancelled from the
equation.

o ffirst,a,i+1 - ffirst,a,i . 100%

Pstance,a,i =
flast,a,i - ffirst,aﬂ

(16)

The stride length, step length, stride width, and stance per-
centage are calculated for each stride in the walking pass and
for each pass in the trial.

The PKMAS system also outputs negative gait measurements
in the case of atypical step length (when p, ;41 falls behind
Pb,;) or stride width (when py, ; crosses over the line from p, ;
to pg,i+1). The equations for these atypical cases are described
in [40]. However, accounting for atypical gait was not in the
scope of this project. Instead, we compared the absolute values
of the Zeno gait parameters to our system.

V. EXPERIMENTS AND RESULTS
A. Data Sets

Our data set consisted of 52 walking trials measured con-
currently by a Zeno Walkway and Kinect v1 depth sensor. Four
female participants with MS were instructed to wear their normal
clothing and walk at a natural pace. For each trial, participants
were either instructed to walk while completing a cognitive task
(i.e., dual-tasking) or to just walk at a normal pace without a
cognitive dual-task (see Table II).

Two additional walking trials were captured only by the
Kinect in the same environment. A label image was created
from each depth image in these trials by segmenting the human
form using the same technique used to train the part predictor, as
seen in Fig. 8. The approximate true positions of body parts were
obtained for these two trials by computing the median position of
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TABLE Il

PARTICIPANT TRIAL BREAKDOWN, DEMOGRAPHIC AND CLINICAL DETAILS, INCLUDING EXPANDED DISABILITY STATUS SCALE (EDSS) SCORES

(b)

Fig. 8. Example frame from a labelled walking trial. The white dots
indicate the median positions of body part segments in the label image.
(a) Depth image. (b) Corresponding label image.

each segment of pixels, then converting from image coordinates
to real world coordinates.

Our method for selecting joint proposals (Section II) was
applied to frames containing at least one proposal for each part
type of interest (head, hip, thigh, knee, calf, and foot). A total of
19399 frames were processed from the 52 Zeno trials and two
labelled trials.

The method and results were implemented in Python using
scientific computing libraries [47]-[54].

B. Pose Estimation

The head and two foot positions were first selected on each
frame without assigning left/right sides to the feet (Section II-D
and Section II-E). The approximate true positions from the
two labelled trials were used to evaluate the accuracy of this
selection.

We defined accuracy as the ratio of frames where the selected
position is within a distance D of the true position. Following
the convention of [33], we set D = 10 cm. The selected head
positions achieved an accuracy of 0.98.

A limitation of approximating true foot positions from the
labelled trials is that the feet occlude each other as the person
walks, pushing the centre of the pixels away from the true centre
of the foot. A gold-standard motion tracking system such as
Vicon [13] would be needed to establish a ground truth for
the foot positions. Furthermore, because our method selects
foot positions from the available proposals on a frame, the

Normal Dual Age Height Weight EDSS Handed Comorbidities Medications
Walk Task (cm) (kg)
2 4 60 160 70 35 Left Hypertension Teriflunomide, Perindopril, Atenolol
Dyslipidemia Nifedipine, Simvastatin, Hydralazine
Carbamazepine
4 10 40 171 60 2.5 Right Raynaud’s Fingolimod, Pantoprazole, Valacyclovir
Dyslipidemia Carbamazepine, Venlafaxine
Vitamin D, Co-cyprindiol
4 10 47 175 75 3.0 Right - -
5 13 48 168.5 90 6.0 - Migraines Glatiramer Acetate, Oxybutynin
Anmitriptyline, Citalopram
Vitamin D, Ketorolac
— 901
X
280
<
g
2 70
<
60 A
0 2 i 6 8 10
Radius [cm)]
Fig. 9. Modified accuracy of selected foot positions compared to the
radii used in Section II-D. A radius r on the z axis indicates that the

radii {0,1,...,7} were used. This accuracy was calculated as the ratio
of frames where both selected foot positions were within the distance D
of the corresponding modified truth positions.

selected positions can only be as accurate as the most accurate
proposals. There can be frames where none of the proposals are
within the distance D of either approximate true position. For
these reasons, we computed modified accuracies by comparing
the selected foot positions to a modified truth. The modified
left/right truth position was set as the proposal closest to the
approximate true position from the label image.

In order to compare the selected foot positions to the modified
truth, they were matched with the left and right modified truth po-
sitions by taking the pairing with the smaller total distance from
matched to truth. Then, the left/right foot modified accuracy was
computed as the ratio of frames where the left/right matched
position is within the distance D of the corresponding modified
truth position. The resulting modified accuracies were 0.98 and
0.98 compared to the left and right modified truth positions.
We also found the ratio of frames where both of the matched
foot positions were within the distance D of their corresponding
modified truth positions. This resulted in a modified accuracy of
0.97.

The feet were selected using spheres of various radii
(SectionII-D). Fig. 9 shows the modified accuracy of the selected
feet versus radii. Each radius 7 on the horizontal axis indicates
the range of radii {0, 1,...,7}cm. The modified accuracy im-
proved significantly from a radius of zero to one. Only small
improvements were observed afterwards.

C. Gait Analysis

There were 214 walking passes over the 52 walking trials
measured by the Kinect and Zeno Walkway. Fifteen (28.8%) of
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TABLE IlI
BLAND-ALTMAN ANALYSIS AND ICCS

Normal walk

Dual-task walk

Bland-Altman [%] ICC Bland-Altman [%] ICC
Bias 1.960 I1CCsy I1CC3,1 Bias 1.960 1CC2 1 1CC31
Stride length [cm] 1.09 1.71 1.00 1.00 0.93 2.28 0.99 1.00
Step length [cm] 1.58 4.61 0.98 0.98 0.15 4.56 0.99 0.99
Stride width [cm] 39.14 71.56 0.66 0.87 43.67 70.19 0.61 0.89
Stance percentage [%] —0.91 7.45 0.83 0.83 0.24 6.26 0.89 0.89
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Fig. 10. Comparison of gait parameters calculated from the Kinect an

=)
S

M

5 10 18
Zeno Walkway [cm]

70
Zeno Walkway (%]

60

© (d)

d Zeno Walkway. The upper plots are Bland-Altman plots. The horizontal

lines show the bias (solid) and limits of agreement (dotted). The lower plots are direct comparisons of the values. The diagonal line shows the ideal
agreement. (a) Stride length. (b) Step length. (c) Stride width. (d) Stance percentage.

the trials were normal walking, and the remainder were dual-
task. Gait parameters were calculated for a total of 709 strides.
The median number of strides was 11.5 per trial and 3.0 per pass.
As stated in Section III-A, frames were grouped into walking
passes with DBSCAN, which can mark data points as noise.
Only one frame was marked as noise out of all the trials.

1) Stance Positions: As described in Section III-D, the de-
tected stance positions of the feet were assigned to left and right
sides. Therefore, these positions can be directly compared to the
left/right modified truth positions from the labelled trials, rather
than matching pairs of foot positions as done in the previous
section. The left/right accuracies were both 1.0 when compared
to the modified truth positions.

2) Bland-Altman: Bland-Altman analysis [55] is a common
technique to quantify the agreement between two measurement
devices. The difference between two 1D arrays of measurements
X 4 and X g are computed, and the bias of device A compared to
device B is the mean of these differences. In this case, X 4 is the
array of measurements from our system for one gait parameter
and X p is the array of corresponding walkway measurements.

Since the gait parameters have different magnitudes (e.g.,
stride length is longer than stride width), a direct compari-
son of Bland-Altman differences would be biased towards the
smaller parameters. Furthermore, the parameters have a va-
riety of dimensions (length, speed, and percentage of time),

making the comparison invalid. Because of this, we computed
relative differences as suggested in [56]. The relative differ-
ence between two measurements x 4 and x g was calculated as
(ra —xp)/ mean(za,zp).

The limits of agreement are defined as the bias 4 1.960,
where o is the standard deviation of the differences. Assuming
that the differences are normally distributed, then 95% of the dif-
ferences are expected to lie between the limits of agreement [56].
Thus, a low tolerance (1.960) defining the limits indicates a
strong agreement.

Table IIT displays the bias and limits of agreement of gait
parameters calculated by our method when compared to the
ground truth walkway, separated by walking type (normal or
dual-task). For normal walking, stance percentage had the
lowest relative bias magnitude (0.91%) and stride width had
the highest (39.14%). Stride length had the lowest tolerance
(1.960 = 1.71%) and stride width the highest (71.56%). For
dual-task walking, step length had the lowest bias magnitude
(0.15%) and stride width the highest (43.67%). Stride length
had the lowest tolerance (2.28%) and stride width the highest
(70.19%). The results are visualized in Fig. 10, showing the bias
and limits of agreement of all walking trials grouped together.

3) Intraclass Correlation: Interclass correlation coefficients,
such as Pearson’s coefficient, quantify the correlation between
variables of different classes. By contrast, intraclass correlation
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Fig. 11. Relative difference of stride width between the two systems
plotted against the actual (Zeno) stride widths. The relative difference is
highest when actual stride width is lowest.

coefficients (ICCs) quantify both the correlation and agreement
between variables of the same class. An ICC value ranges from
zero to one, where one is the highest reliability [57].

We calculated ICCs of the form ICCs; and ICC3 ;. The
former quantifies the absolute agreement between raters (the
Kinect and Zeno Walkway), and the latter quantifies consistency
across the walking trials. Both are calculated from the same
matrix, where each row represents a walking trial and each
column represents a rater. A detailed description of the required
calculations can be found in [58].

The two forms of ICC are reported in Table III for the gait
parameters. For normal walking, stride length had the highest
agreement (/C'C 1 = 1.00) and stride width the lowest (0.66).
Stride length also had the highest consistency across trials
(ICC3,;; = 1.00) and stance percentage the lowest (0.83). For
dual-task walking, stride length and step length had the highest
agreement (0.99) and stride width the lowest (0.61). Stride length
also had the highest consistency across trials (1.00) and stride
width and stance percentage the lowest (0.89).

4) Analysis of Stride Width Error: Bland-Altman analysis
and ICCs (Table III) both indicated that stride width had low
agreement between the Kinect and Zeno Walkway. Further
analysis was conducted to identify the source of the error. Fig. 11
shows the relative differences per trial plotted against the Zeno
stride widths. The points are coloured by participant. The plot
indicates that there is an inverse relationship between the actual
(Zeno) stride width and the relative difference. It also shows that
the highest differences all emanated from Participant 2, who had
the lowest actual stride widths. This visualization suggests that
our system overestimates the stride width when the actual value
is small.

V. DISCUSSION

Our system is capable of calculating standard spatiotemporal
gait parameters starting with multiple joint proposals, which are
generated from side-view depth images of walking trials. The
joint proposals are represented as a weighted graph, with weights
dependent on the difference between expected and measured
lengths between body parts. The shortest paths from head to foot

find combinations of parts with lengths similar to the expected
lengths. We employ a voting process to select the two shortest
paths that best represent the actual two sides of the body, in turn
providing the best head and feet. By examining the motion of
the feet over time, the stance phases (when the foot is contact
with the floor) are detected. The stance phases are assigned to
left/right sides using the general direction of walking motion.
Gait parameters are calculated from the positions and frames of
these stance phases.

A potential drawback of tracking from a side view is that one
leg occludes the other as it passes. However, our gait measures
are intended to be robust to this disturbance, because they are
calculated from frames when the feet are mostly or fully apart.
Additionally, a side view supports multiple sensors placed along
a longer walkway, allowing for analyses of long walking trials.
The field of view provided by frontal-view sensors cannot be
easily extended in this way, compounded by issues such as inter-
ference between sensors facing each other or sharing significant
overlap in field of view.

The signals ® and ¥ (from Sections III-C and III-D) are
analogous to the x and z (depth) coordinates of the camera
view when the subject is walking in a line perpendicular to the
camera. These signals are used instead of the actual x and z
coordinates to cover the cases where the line of motion is not
directly perpendicular. This helps our method to be generalized
to other non-frontal camera views, such as from an upper corner
of a room.

We found that few radii were needed for the foot selection
algorithm to achieve a high accuracy. The addition of a single
radius beyond zero caused the majority of the improvement,
from < 0.60 to > 0.92. Furthermore, high accuracies were
achieved for the feet individually when compared to expected
positions (0.98 for each foot individually, 0.97 for both feet at
the same time) when selecting the best proposals available.

We compared our gait parameters to ground truth parameters
from the Zeno Walkway, a pressure-sensitive walkway used in
clinical practice. Compared to the work of [30], who separated
trials by walking type, our agreement (/C'C5 ;) on normal
walking pace was higher for step length (0.98 > 0.93), and
our consistency (/C'C'3 1) was higher as well (0.98 > 0.94). For
dual-task walking, agreement was again higher for step length
(0.99 > 0.94), and consistency was much higher (0.99 > 0.79).
In terms of limits of agreement, we had a similar tolerance
(1.960) for step length with normal walking (4.61% =~ 5%)) and
dual-task (4.56% =~ 5%). They did not report results for stance
percentage, but did report on step and stance time, which we treat
as proxies since stance percentage is the stance time divided by
the stride time (Equation 15), and step time is the corresponding
time for step length instead of stride length [30]. For normal pace,
they achieved higher agreement (0.96 for step time and 0.93 for
stance time vs. .83 for stance percentage) and consistency (0.90
and 0.92 vs. 0.83). For dual-task walking, they again achieved
a higher agreement (/C'C>; = 0.98 for step and stance time
vs. 0.89 for our stance percentage) but our consistency was
similar (0.88 and 0.89 vs. 0.89). Their tolerance was lower for
normal pace (4% for step and stance time vs. 7.45% for stance
percentage), but the gap was smaller for dual-task walking (6%
and 5% vs. 6.26%).
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Subjects in [31] completed trials at a comfortable walking
speed and their maximum walking speed. We compare our
results for normal pace to theirs with comfortable walking. Our
agreement was comparable to theirs for stride length (1.00 ~
0.999), step length (0.98 ~ 0.994), and step width (0.66 ~
0.646).

Participants in [16] completed walking trials at 100, 75, and
50 percent of comfortable speed. However, they only reported
results with all walking types grouped together, so we compare
our normal walking and dual-task results to their grouped results.
For normal walking, our agreement was higher for stride length
(1.00 > 0.83) and step length (0.98 > 0.71). The same was
found for dual-task (0.99 > 0.83 and 0.99 > 0.71). Agreement
for our stance percentage was higher than their stance time
(0.83 > 0.74) but lower than their stride time (0.83 < 0.89).
However, our agreement for dual-task walking was the same as
their stride time agreement (0.89).

VI. LIMITATIONS AND FUTURE WORK

The approximate true positions of the head and feet were de-
rived from two manually labelled walking trials (Section IV-A).
As we mentioned in Section IV-B, these labelled trials are not
ideal for establishing ground truth positions because some parts
occlude each other as the person walks, moving the centres of the
pixel segments away from the true centres of the parts. Because
of this, we reported a modified accuracy for our selected foot
positions, comparing them to the best proposals available rather
than directly to the positions from the labelled images. Moving
forward, the selected positions should be compared to a ground
truth from a gold-standard motion tracking system such as
Vicon [13]. Furthermore, our method of selecting from proposals
means that we are limited by the accuracy of the proposals
themselves. This work could be extended by a post-processing
step to improve the accuracy of the selected positions, such as
temporal filtering.

As explained in Section III-E, we did not report on stride or
stance time because time stamps were not captured during the
data collection phase of this study. However, we did report on
stance percentage because it can be calculated without knowing
the frame rate, under the assumption that the frame rate is
constant (Equation 16). Future work should ensure that time
stamps are captured for all depth frames, enabling the direct
calculation of stride time, stance time, and stance percentage.

Fig. 11 shows that the relative difference of stride width was
highest when the actual stride width was lowest. In these trials,
our system would overestimate the stride width. We hypothesize
that this is caused by different definitions for the positions of the
feet. The Zeno gait parameters are calculated using the positions
of the heels of the feet, while our system locates the general
positions of the feet — typically the centres. The difference is
negligible for a large spatial gait parameter like stride length,
but may be significant for stride width, especially if the feet are
turned outwards. In future work, we propose locating the rear
of each foot using our knowledge of the direction of motion,
such that our measurement will be consistent with the Zeno heel
positions. This could improve the measurement of stride width

and enable the calculation of additional gait parameters such as
foot angle (i.e., by similarly locating the front of the feet).

VIl. CONCLUSION

We presented a new system for measuring clinical gait pa-
rameters with a side-view depth sensor. The use of a non-frontal
depth sensor, in comparison to a frontal sensor, adds convenience
to clinical trials because only one camera is required for a person
walking in both directions along a walkway. Furthermore, a non-
frontal sensor extends the range in which a full person is in the
field of view. While researchers have previously investigated gait
measurement with non-frontal depth sensors, our contribution is
the direct calculation of standard gait parameters from individual
foot positions from the side perspective.

We first selected human joint positions from multiple pro-
posals generated on depth images. The selected foot positions
were further analyzed to detect stance phases, which were used
to calculate four gait parameters (stride and step length, stride
width, and stance percentage). The results demonstrated that
accurate positions were selected from the available proposals.
Using a pressure-sensitive walkway as ground truth, we found
that the large spatial gait parameters (stride and step length) were
the most reliable.

Possible extensions to our system include the use of other
body parts to measure gait parameters that are inaccessible to
a pressure-sensitive walkway. In order to track the upper body,
our foot selection process could be applied to select the two
best hand proposals, by finding the shortest paths from the
head to the hands. The method could also be adapted into an
online algorithm that continuously updates estimates of the body
lengths and walking direction.

In conclusion, we envision a vision-based system capable of
measuring gait parameters from the full body, that can collect
data conveniently and unobtrusively for clinical purposes. To
encourage further research, we have made our code open source
at github.com/ajhynes7/side-view-depth-gait. The authors can
be contacted for the full data set.
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