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Abstract—We present our recent work towards an automated
characterization of gait using non-intrusive motion tracking,
with application to the rehabilitation assessment of persons with
multiple sclerosis (MS). We used a depth sensing camera to track
the walking motion of participants with MS. The system produces
multiple predictions for the positions of body parts. We employ a
graph theory algorithm to optimally select from these predictions,
and estimate the rigid lengths between adjacent body parts. The
positions are then treated as point masses in a linear spring
system, with each spring having a resting length equal to the
estimated length. As the system reaches equilibrium, the positions
are forced to conform to these lengths. Using our optimized data,
we group the following gait features into a feature vector: stride
length and width, walking velocity, and arm swing angle. In
future work, we will attempt to distinguish between normal and
abnormal gait using these parameters.

I. INTRODUCTION

Gait analysis has been highlighted as an important tool for
clinical therapy [1]–[3], and the assessment of gait has been
recently used as a method of monitoring the progression of
multiple sclerosis [4], [5]. Unfortunately, gait assessment can
require expensive equipment, such as a platform with sensors
that record the pressure of a walking person [6]. Analyzing
gait using computer vision based techniques could become
a more affordable option. Computer vision approaches have
previously been used for general gait analysis, using passive
markers placed on the tracked body [7], and using depth
sensors [8]–[10]. Also, gait analysis with a clinical focus has
been performed with a combination of computer vision and
wearable sensors [11]. However, there is scarce literature on
using depth sensors specifically for the gait analysis of persons
with multiple sclerosis, limited to exploratory studies [5].

Our own recent work is this area involved a new method to
process the data captured by a single depth sensor tracking the
gait of people with MS [12], by selecting accurate body part
positions from multiple options using a shortest path algorithm
from graph theory [13]. Treating optional part positions as
nodes in a graph, edges are placed between the nodes of
adjacent body parts. For each body part pair, there is a pre-
estimated length between the parts. The current part positions
on a given image frame may be spaced closer or further than
the estimated length. The weight of the edge between two
nodes is based on the difference between the current body
length and the estimate true length. By solving the shortest
path problem, the sum of the weights is minimized. The nodes

Figure 1. Selection of body part positions from multiple options. The white
dots represent all of the optional positions that are available for the image
frame. The circled dots are the chosen positions

along a shortest path are the body part positions that most
closely fit the estimated lengths of the body. We now build
upon this method of 3D human motion tracking to begin
characterizing clinical gait data related to multiple sclerosis,
without the need for wearable sensors or markers. Specifically,
we seek to automatically quantify clinically relevant lower
body gait parameters emergent in the literature: stride length,
stride width and walking velocity [14]–[16]. Furthermore, we
propose a movement towards upper body gait characteristics
by implementing a measure of arm swing.

II. METHODOLOGY

We used a single depth sensing camera to record the
motion of a walking person. The camera recorded 640x480
images at ∼30 frames per second. We identify potential body
part positions using the methods found in [5], then select
accurate positions from these data using our optimization al-
gorithm [13]. The selection of positions from multiple options
can be seen in Fig. 1. These optimum selections serve as
the initial part positions. To further improve the positions,
we implement an algorithm that models a physical spring
system, to move positions until they conform to a set of pre-
estimated body lengths. We then calculate the following gait
characteristics: walking velocity, stride length, stride width,
and arm swing angle.
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A. Spring System

After selecting optimal body positions from a set of options,
the positions are further revised using the principle of energy
minimization. The body parts on one quadrant of the body
(e.g., lower left), act as the masses in a series of linear springs.
There is one spring between each adjacent body part in a
quadrant. The true lengths of the body links have been already
estimated [13]. The resting length of a spring between two
parts is set to be the estimated length of that link. Therefore,
if the part positions are spaced too close or too far, the spring
system will have potential energy. As the system reaches
equilibrium, the part positions are moved to closely match
the estimated body lengths.

The process is executed on each body quadrant (up-
per/lower, left/right), for each image frame. To ensure real-
time processing, we use a method of fast spring simulation,
which was developed for 3D computer graphics [17].

B. Gait parameters

1) Walking velocity: The velocity of the walking person
is determined using the average position of the lower body
parts and the head. The velocity vector v is defined as the
difference between the current average position Pavg, and the
average position from the preceding image frame. As a clinical
measure, we calculate the median and mean velocities over the
image sequence.

2) Stride Length: Stride, as a clinical measure, has been
referred to as a full gait cycle (two steps) [18], and to a half
gait cycle [19]. We define the stride length SL as the distance
between the two feet when the legs are apart, as in [19].

The left foot position Plf and right foot position Prf

are estimated by our motion tracker. The absolute distance
between the feet is calculated as

dfeet = ||Plf −Prf || (1)

During normal walking motion, the value of dfeet is periodic.
The peaks occur when a person is in mid-stride. The stride
length, as defined by [19] is the value of these peaks. Since
our motion tracking can contain stochastic noise, there may be
peaks of dfeet that are invalid. These outliers are dealt with
by removing values that are beyond two standard deviations
from the mean. The periodic nature of the motion makes it
appropriate for curve fitting. Accordingly, we fit a sine wave
to dfeet using the method of least squares.

3) Stride Width: While the stride length is calculated over
a time duration, the stride width is calculated for each frame.
First, the average three-dimensional position of the two feet is
found, and its velocity vector is calculated by subtracting the
previous position from the current. To smooth out the list of
velocity vectors, the vector at the current frame is set to be
the median of the vectors from the past 30 frames (equivalent
to one second of time).

We define the stride width as the current distance between
the two feet, in a direction perpendicular to the current velocity
vector of the average position between the feet. The plane Π
passes through the average position of the feet, and it is normal
to the velocity vector of this average position. Both foot

Figure 2. Total number of options (nodes in graph) for the body parts, across
all image frames

positions Plf and Prf are projected onto Π. The stride width
SW is defined to be the distance between these projected
points.

SW = ||projΠ Plf − projΠ Prf || (2)

4) Arm swing angle: The tracked upper body parts consist
of the head, arm (approximately elbow), and hand. The vector
from the head to the hand is recorded on each frame. The
arm swing angle θ is calculated between this vector, and the
reference vector ̂.

θ = cos−1 [(Phead −Phand) · ̂] (3)

During a normal walking motion, the angle of this vector
will be periodic, as the arm swings. The vector angle com-
pletes a period over a full swing cycle.

III. RESULTS

A total of 668 image frames were recorded. Of these,
279 had at least one predicted body part position. After
implementing our method to select body part positions from
multiple stochastic options [13], we use our spring system
method to optimize these positions. We then calculate the
key gait characteristics that can be used for clinical analysis.
The entire image sequence was processed offline. The full
process, including the pre-estimation of the body lengths,
required 4.4 seconds, using a 2.9 GHz Intel Core i7 processor.
Accordingly, this approach executes at 15.8 ms per frame of
data, or approximately 63 fps.

On each image frame, four graphs were created, for the
left/right sides, and the upper/lower body parts. The number
of nodes in each graph varies between frames and parts. Fig. 2
shows the total number of nodes for each body part, which
represent the optional part positions. The arm and knee had
the greatest number of options available overall. The graph
optimization process is a fast portion of the computation,
requiring 2.6 ms per frame of data.

A. Spring System

On a given image frame, the actual body lengths (dis-
tances between adjacent body parts) may differ from the
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Table I
WALKING SPEED STATISTICS [CM/S]

Mean Median Standard Deviation

151.4 136.0 76.7

Figure 3. Distance between feet over a portion of the image frames

pre-estimated body lengths. The goal of the spring system
is to adjust position predictions to match the pre-estimated
body lengths, while minimizing the amount that the positions
move. To evaluate the effect of the spring system, a cost was
calculated between the estimated body lengths and the actual
body lengths, on each image frame. The cost C between the
estimated length vector Lest and the actual length vector Lact

is

C =

N∑
i=0

||Lest,i − Lact,i|| (4)

where N is the number of lengths in both vectors. The average
cost is the sum of each image cost C, divided by the total
number of image frames. For the upper body, the average
cost was originally 18.42 cm. After implementing the spring
system, this was reduced to 3.05 cm. Similarly, for the lower
body, the average cost dropped from 24.5 cm to 4.59 cm. The
spring system is a relatively slow portion of the computation,
requiring 7.4 ms per frame, or 46.8% of the total time.

B. Gait parameters
1) Walking velocity: The results for the magnitude of the

walking velocity are shown in Table I. The median walking
speed was found to be 1.36 m/s, which is within the range of
normal average walking speed (1.25 - 1.5 m/s) [20].

2) Stride Length: The distance between feet varies in a
periodic cycle as a person walks. Fig. 3 shows this distance
plotted over 70 image frames. The peaks in the plot represent
the instances when the person is in mid-stride. In order to
analyze the stride length, a sine wave was fit to the data using
the method of least squares. The data shown in Fig. 3 has a
sine wave approximation of

y = 28.2 sin(0.46(x+ 1)) + 28.7 (5)

where x is in radians. The stride length can be approximated
by the maximum value of the sinusoidal wave, which is 56.9

Table II
STRIDE WIDTH STATISTICS [CM]

Mean Median Standard Deviation

23.5 27.9 16.8

Figure 4. Histogram of stride width values, over the full data set

cm. This approximation can also be used to determine the
frequency of a walking cycle. The angular frequency ω is 0.46
rad/frame. As ω = 2πf , the frequency is 0.073 cycles per
frame. Given ∼30 frames per second, the frequency is 2.20
cycles per second. As the person travels a full stride length
over one cycle, their speed is f ×SL = 125.0 cm/s, which is
acceptably close to the walking speed found in section III-B1.

After removing data points beyond two standard deviations
from the mean, the maximum value of the full foot distance
data set was found to be 56.75 cm, which is close to the sine
wave approximation.

3) Stride Width: The mean, median, and standard deviation
of the stride width are shown in Table II. There is a large
degree of variability in the stride width values, as evidenced
by the relatively large standard deviation, and as seen in Fig. 4.

4) Arm swing angle: The angle between the head and the
hand is shown in Fig. 5 as a histogram for the left and right
sides. The left arm is rotated by small angles more frequently
than the right.

IV. DISCUSSION

The results from the spring process show that it is effective
in moving the body part positions so that they better conform
to the pre-estimated lengths between adjacent parts. While
these results are positive, we have yet to determine that the
inclusion of this process increases the overall accuracy of the
positions. Ground truth measures will be needed to directly
evaluate the benefit of including this function. Although nearly
half of the computation time is devoted to the spring process,
real time image processing is maintained.

The stride length was calculated by taking the maximum of
the full data set, after removing outliers. It was also calculated
by fitting a sine wave to a portion of the foot distance data,
and taking the maximum value of this curve. The results from
the two methods were very similar. The sine wave method had
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Figure 5. Histogram of head to hand angle for left arm (top) and right arm
(bottom)

the added benefit of also calculating stride frequency, which
can be used to determine walking speed. A composite of the
two methods could involve removing outliers from the full
data set, then fitting a sine wave to the entire set.

The accuracy of the stride width calculation is dependent on
projecting the foot positions onto the correct plane. A plane
is fully defined by its normal vector and a point on the plane.
To ensure that the plane is always located between the feet,
the point on the plane was chosen to be the average position
of the feet. The stride width is intended to measure the foot to
foot distance that is perpendicular to the direction of walking
motion. Thus, the velocity vector of the average foot position
was used. However, the average position of the feet could
move in a direction other than the true direction of motion,
from one frame to the next. To account for this, the median
velocity of the past 30 frames was used, with the intention of
capturing the true velocity direction of the person.

For clinical analysis, it may be useful to compare gait
parameters from the left and right sides, which can be asym-
metric [21]. The results for the arm angles demonstrate an
asymmetry between the left and right arms, as there is a
different frequency distribution of the angles (Fig. 5). The
same method could be used for legs as well. The asymmetry
between left and right sides of the body can be an indicator
of abnormal gait, such as a limping motion.

V. LIMITATIONS AND FUTURE WORK

The success of this system is based on two main areas:
the accuracy of the motion tracking, and the calculation of
gait metrics from the tracking data. Currently, the motion
tracking algorithm has been optimized for a walking motion,
and it may experience a reduction in accuracy when the
walking is abnormal (e.g., stumbling, shuffling). Because this
system is intended to be used for clinical gait analysis, it
must be made robust to these types of motion, as they are
more common among participants with progressed multiple
sclerosis. In future work, gait metrics should be calculated
using ground truth (e.g., manually annotated) motion tracking
data, or to clinical ground truth evaluations, to remove the
uncertainty introduced by our motion tracking. These gait

metrics could then be compared to the metrics calculated using
our motion tracking data.

If the accuracy of our system is found to be comparable
to gold standard assessments, our methods may offer an
inexpensive and portable method of unobtrusively obtaining
clinical gait data. To further increase the potential relevance
of our system, we will further investigate the types of gait
measurements that are useful to multiple sclerosis clinicians,
and attempt to obtain them using our system.

VI. CONCLUSION

We have presented a method of extracting clinically relevant
gait metrics of persons with multiple sclerosis using a single,
inexpensive depth sensor without wearable markers or sensors.
The methods proposed can be easily extended to multiple
depth sensors, which may be used to increase the accuracy
of motion tracking and the range of physical coverage of
the system. Our motion tracking is based upon producing
stochastic options for human body parts in an image, and
selecting from these options using graph theory principles. We
have also made use of a simulation algorithm from computer
graphics to further improve our predicted body part positions.
Using these optimized motion tracking data, we employ statis-
tical methods to calculate gait characteristics, including stride
length and width, walking velocity and arm swing angle. The
long term goal of this research is a system that is accurate,
affordable, and portable, so it can become a viable alternative
to other assessment equipment, while still providing objective
information that can help understand disease progression in
persons with multiple sclerosis.
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