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Abstract—Pressure sensitive walkways are a commonly used
measuring device for gait analysis. However, they can be pro-
hibitively expensive for out-of-clinic measurements. An alterna-
tive approach to gait analysis is the use of a depth sensing camera
(e.g., the Kinect). Our approach is to collect lower-body gait
data using a single, inexpensive Kinect camera, with a line of
sight perpendicular to the walking path. Participants with MS
performed walking passes on a pressure sensitive walkway and
in front of the camera. The following gait metrics were measured
with both systems: step length, stride length, stride width, and
stride velocity. We present the preliminary results of comparing
gait metrics, showing Spearman correlations ranging from 0.857
to 0.976. These preliminary results suggest that inexpensive gait
tracking may be a practical reality in non-clinical settings.

I. INTRODUCTION

Gait analysis is a common clinical practice for tracking dis-
ease progression and facilitating rehabilitation, for a variety of
neurological diseases including Parkinson’s [1], stroke [2], and
multiple sclerosis [3]–[9]. The analysis is often performed by
clinicians using observational tests, such as the Timed Up and
Go [10], or with the aid of pressure sensitive walkways [11].
Because these tests need a certified clinician, they are less
accessible to rural areas. Alternatively, gait analysis has been
performed by computer vision systems, such as depth sensing
cameras [7], [12], [13].

Pressure sensitive walkways measure important gait char-
acteristics that a computer vision system is unable to directly
evaluate, such as the force of the foot on the ground. However,
both systems can measure spatiotemporal gait characteristics
such as step length and stride velocity. A computer vision
system can also supplement the measurements of the pressure
walkway by tracking upper body parts and joint angles.

The purpose of this study is to compare our developed depth
sensor tracking system to a validated pressure sensitive walk-
way, the Zeno Walkway, in conjunction with the ProtoKinetics
Movement Analysis Software (PKMAS) [14], [15].

Participants with MS completed four walking passes on the
walkway, while being simultaneously recorded by a Kinect
camera from a side view. The native Kinect software develop-
ment kit (SDK) is intended to track from a frontal view, as is
common for its original purpose of gaming. Instead of using
the SDK, we build upon our previous work [16]–[18], which
developed an algorithm for tracking bodies from a side view.

This allows for our method to be implemented on a generic
depth sensing camera.

II. RELATED WORK

Performing gait analysis with the Kinect camera is an active
area of research [3]–[7], [9], [13], [19]–[28]. The Kinect
has been used to analyze gait for a number of neurological
disorders [29], [30], including multiple sclerosis [3], [5]–[7],
[9]. A common technique is to first track the human skeleton,
either using the native software development kit (SDK) [7],
[24], or with novel algorithms [28]. However, gait analysis
has been accomplished without skeleton tracking, by analysing
the motion of the body centre of mass [20]. The tracking
abilities of the Kinect from a non-frontal view have also been
examined, for general tracking [31], and for gait analysis [20],
[23], [28], [31].

Gabel et al. [24] measured both stride metrics and arm
kinematics. A model for walking was built using information
from wearable sensors. The Kinect SDK was used to track
a virtual skeleton, which was passed into this learned model.
Gholami et al. [7] used the concept of dynamic time warping
to develop novel gait metrics. Their study compared the gait
of participants with MS to a healthy control group, and they
developed a distance metric to compare dysfunctional gait to
healthy gait.

Several studies have compared the gait analysis of Kinect to
previously validated systems, including marker-based motion
tracking [21], [26], [32], [33] and the GAITRite pressure
mat [13], [20], [27]. Cippitelli et al. [23] tracked body joints
from a side view, using a purpose-built algorithm. They
obtained an objective score for the Get Up and Go test, and
compared results to a marker-based system. Motiian et al. [27]
focused on gait analysis for children, and compared results to
the GAITRite pressure mat. The Kinect SDK was used to
track the skeleton from a frontal view, accompanied by a side
view Kinect for data visualization during the annotation phase.
Dolatabadi et al. [13] tracked the walks of healthy participants
with both a GAITRite mat and a frontal view Kinect using the
SDK. They found strong agreement between the two systems
for a number of spatiotemporal gait parameters.

To our knowledge, gait analysis with the Kinect has not
yet been compared to a Zeno Walkway with the PKMAS
software. However, these two systems have been used in
conjunction to provide a non-immersive virtual reality for
treadmill training [34].
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III. METHODOLOGY

Eight walking trials were completed by two participants
with MS. Each trial consisted of four passes in front of the
camera, two to the left and two to the right. Data collection
occurred at the Recovery and Performance Laboratory, a part
of the Faculty of Medicine at Memorial University. The Kinect
tracked 11 separate body parts: the head, hips, thighs, knees,
calves and feet.

Four gait metrics were measured by both the Zeno walkway
and the Kinect: step length, stride length, stride velocity, and
stride width. For our Kinect system, only the head and foot
positions are needed to calculate these gait metrics. However,
tracking the full lower body is instrumental in correctly
estimating the foot positions [17], [18].

A. Stride detection

During the swing phase of a normal stride, one foot remains
planted on the ground, while the other moves forward. These
are the stance foot and swing foot, respectively.

Using the tracked body part positions, the distance between
the two feet is recorded for each frame. An example of the
foot distance data can be seen in Fig. 1. There are four main
sections of data, showing the different passes in front of the
camera. The peaks in the data indicate instances when the feet
are furthest apart in a stride.

A stride is detected with the following steps:
1) Use a peak detection algorithm to locate the peaks

in the foot distance data. The MATLAB findpeaks
function [35] was used for this implementation. The
minimum peak prominence was specified as 75% of the
maximum foot distance, to avoid detecting false peaks.

2) Record the frame numbers of each detected peak.
3) Cluster the peak frame numbers, so that peaks are

grouped by walking pass.
4) Examine each pair of consecutive peaks that both occur

in the same pass. This represents a full walking stride.
The pair of frame numbers Fi and Ff are later used to
calculate stride velocity.

When a stride is detected, the two peak frames are analyzed
to obtain gait metrics. The distance travelled by the left foot
between the two frames is calculated, as well as for the right.
Ideally, one foot will move a relatively long distance while the
other remains in its place. The foot which travelled a greater
distance is labelled as the swing foot, and the other as the
stance foot.

B. Gait metrics

Before the gait metrics are calculated, all peak foot positions
are projected onto the same plane. The plane passes through
the point

[
0 ymin 0

]T
, where ymin is the lowest y coor-

dinate of the peak foot positions in a trial. The normal vector
of the plane is

[
0 1 0

]T
. This plane is intended to model

the surface of the Zeno walkway.
The gait metric calculations were designed to closely match

the calculations by PKMAS, as described in [8]. A diagram of
a full stride is shown in Fig. 2. The swing foot moves from its

Figure 1: Foot to foot distance for each image frame in a
walking trial, with detected peaks marked.
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Figure 2: Diagram of step length, stride length, and stride
width. During a stride, the stance foot stays stationary while
the swing foot moves forward. The labels assume that the right
foot is swinging.

initial position Pswing, i to its final position Pswing, f . The
swing path S is defined as the displacement vector between
these points.

S = Pswing, f −Pswing, i (1)

The stride length is the distance between the initial and final
swing foot positions.

lstride = ||S|| (2)

The stance foot position, Pstance, is projected onto the line
between the two swing foot positions.

Pproj = projS Pstance (3)
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This projected point is used to calculate step length and
stride width. A full stride consists of two step lengths. The
first step length is the distance from Pswing, i to Pproj , and
the second from Pproj to Pswing, f .

lstep, i = ||Pswing, i −Pproj ||
lstep, f = ||Pswing, f −Pproj ||

(4)

The stride width is the distance from the stance foot to its
projection along the swing path.

wstride = ||Pstance −Pproj || (5)

Finally, the stride velocity is calculated using the positions
of the head. Phead, i and Phead, f are the head positions at
frames Fi and Ff , respectively. Since the frame rate of the
Kinect camera is 30 frames per second, the difference of frame
numbers is multiplied by 30 to obtain a stride time in seconds.
Thus, the stride velocity is

vstride =
dhead

30(Ff − Fi)
(6)

where dhead is the distance from Phead, i to Phead, f .
After gait metrics have been calculated for every detected

stride in a trial, outliers are removed from the dataset of
each gait metric. Outliers are defined as values outside of
the median ± 2 · MAD, where MAD is the median absolute
deviation [36].

IV. RESULTS

A. Relative Error

The mean of the gait metric measurements was calculated
for each walking trial. Table I shows data from both the Kinect
and Zeno systems, as well as the relative error. The Kinect
measurements for step length and stride length were con-
sistently under the Zeno measurements, resulting in negative
relative errors. In general, the stride velocity has the lowest
relative error magnitudes, ranging from 0%–6%. There is a
mixture of negative and positive errors. The stride width has
the highest overall relative errors, ranging from 2%–47%. For
this metric, the Kinect measurements are consistently above
the Zeno measurements.

B. Correlation

The Spearman correlation coefficient was used to measure
the correlation of the two systems. The coefficient, also
referred to as Spearman’s rho, has been previously used for
assessing gait analysis with Kinect [5], [30]. It does not require
that the variables are normally distributed, and it is more robust
to outliers than the Pearson coefficient [37].

Table II shows the Spearman coefficient for each gait
metric. The Kinect measurements of step length, stride length
and stride velocity are all strongly correlated with the Zeno
measurements, having coefficients > 0.95.

Figure 3: Bland-Altman plot for stride velocity

C. Agreement

Bland-Altman analysis [38] is a common method in medical
statistics for assessing the agreement between two systems of
measurement. It has been used for concurrent validity studies
with the Kinect [13], [25], [33].

In a Bland-Altman plot, the difference between two mea-
surements is plotted against the mean of the two measure-
ments. Bland and Altman recommended that 95% of the data
should lie within the lower and upper limits of agreement,
which are defined as ±1.96 standard deviations from the mean
difference. The differences can also be displayed as percent-
ages of the mean values, so that they are proportional to the
magnitude of the data [39]. This is useful for comparing limits
of agreement between metrics with different magnitudes, such
as stride velocity and stride width. Fig. 3 shows the Bland-
Altman plot for stride velocity, with differences expressed as
percentages.

Table III shows the results of Bland-Altman analysis for
each gait metric. The bias is the mean of differences between
measurements. This bias is visible in Fig. 4. The Kinect
measurements of step length have a clear negative bias, while
the stride velocity is essentially unbiased.

Although the stride velocity has the lowest absolute bias,
the step and stride lengths have narrower limits of agreement.
A narrow range between the limits indicates strong agreement.

V. DISCUSSION

The results indicate that the Kinect measurements of stride
velocity are highly similar to the Zeno walkway measure-
ments, with low relative error, low bias and a narrow limit
of agreement. The step length and stride length have high
correlations, but there is a significant negative bias. If the
source of this bias is identified and corrected, the step and
stride length could be in even stronger agreement than stride
velocity. The stride width metric has the least agreement
between systems.

The effectiveness of this approach to gait analysis relies
on correctly detecting strides from peaks in the foot distance
data. During a walking pass, some image frames may only
contain noise. These are deleted by our system, making them
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Table I: Mean gait metrics and relative error for each trial

Step Length [cm] Stride Length [cm] Stride Velocity [cm/s] Stride Width [cm]

Trial Kinect Zeno Rel. error Kinect Zeno Rel. error Kinect Zeno Rel. error Kinect Zeno Rel. error

1 49.8 55.6 -11% 99.9 112.6 -11% 121.1 120.6 0% 13.6 13.4 2%
2 47.9 53.2 -10% 96.8 108.0 -10% 102.0 103.4 -1% 13.1 11.4 15%
3 44.5 48.9 -9% 89.4 96.9 -8% 94.9 90.9 4% 14.6 11.2 30%
4 48.6 54.2 -10% 97.4 110.1 -12% 107.2 110.8 -3% 12.6 11.1 13%
5 45.3 50.2 -10% 90.5 100.6 -10% 98.1 98.9 -1% 12.1 9.9 23%
6 42.0 46.9 -10% 83.5 94.3 -12% 88.7 94.6 -6% 12.4 9.7 28%
7 56.0 64.1 -13% 114.3 129.0 -11% 124.3 123.8 0% 12.3 8.4 47%
8 57.3 63.6 -10% 115.5 128.0 -10% 116.8 121.8 -4% 11.0 8.1 37%

(a) Step Length [cm] (b) Stride Velocity [cm/s]

Figure 4: Mean gait metrics of the Kinect plotted against the Zeno walkway. The line of equality shows the ideal placement
of the points.

Table II: Spearman correlation between the two systems

Gait metric ρ

Step Length 0.9762
Stride Length 0.9762
Stride Velocity 0.9524
Stride Width 0.8571

Table III: Bland-Altman results as percentage

Limits of agreement (%)
Bias (%) Lower Upper Range

Step Length [cm] -10.9 -13.1 -8.6 4.4
Stride Length [cm] -11.0 -13.8 -8.2 5.6
Stride Velocity [cm/s] -1.4 -7.9 5.1 13.0
Stride Width [cm] 21.1 -1.3 43.4 44.7

blank. Because of this, the number of walking passes cannot
be determined by simply counting the blocks of uninterrupted
frames. Instead, the peak frame numbers are clustered, so
that the peaks are correctly grouped by walking pass. If the
number of walking passes is known beforehand, then k-means
clustering is sufficient for this purpose, where k is the number
of passes in front of the camera. If the number of passes is
unknown or variable, the mean shift clustering algorithm is
suitable, as it automatically determines the number of clusters.

VI. LIMITATIONS AND FUTURE WORK

As shown in the results, the Kinect camera system measures
step and stride length with a negative bias. The cause of this

bias will be addressed for future publications. Furthermore, the
stride width calculation will be inspected and possibly revised
to achieve a better agreement with the Zeno walkway.

The Zeno walkway measures gait metrics for the left and
right sides, and for each individual stride. Future work could
examine the agreement of the Kinect with these measurements.

The trials that were measured at the Recovery and Perfor-
mance Laboratory by the Kinect and Zeno walkway involved a
variety of walking conditions. Specifically, participants either
walked normally, or were asked to engage in a cognitively
challenging task while walking (dual-tasking). These different
types of walks will be analyzed separately in further work.

VII. CONCLUSION

Participants with MS completed walking trials on a pressure
sensitive walkway designed for gait analysis, the Zeno walk-
way. They were simultaneously recorded by a Kinect camera
from a side view. The PKMAS software was used to calculate
gait metrics from the walkway measurements.

Four gait metrics were measured by the Kinect camera and
the Zeno walkway: step length, stride length, stride width, and
stride velocity. The measurements from the first 8 walking
trials have been presented, and the two systems have been
compared. Strong agreement was found between the two
systems with stride velocity, and medium to strong agreement
with other gait metrics.
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