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Abstract—We propose a novel feature vector towards per-
spective independent scene registration using 3D sensors. We
captured both RGB and depth data from multiple 3D sensors
placed arbitrarily, leading to perspectives that were not known
to our system. Our previous work on perspective independent
ground plane estimation provided the foundation for our current
work. Our perspective independent ground plane estimation
algorithm produces 3D point clusters representing all moving
persons, and all static objects in the room. Based on the
unique geometric information relating moving objects to static
objects, we define a global 3D feature to represents the objects’
spatial relationships within a 3D point cloud. We then use this
novel vector to determine the rotation around the y-axis and
translation along the x- and z- axes, revising the pre-alignment
we first completed using the ground plane. After using this
feature in our registration algorithm, we successfully find the
estimated transformation matrix between two point clouds for
13 out of 16 data trails.

Index Terms—Human identification, homography, homogra-
phy decomposition, point cloud segmentation, 3D data analysis.

I. INTRODUCTION

At present, three dimensional (3D) data has been uti-
lized for many applications including interactive model-
ing, virtual display, and digital reconstruction, which have
widespread utilization in many industries including training
and simulation[1][2], augmented reality (AR)/virtual reality
(VR)[3][4], gaming[5] or movies[6]. However, because 3D
data provide more information, they also requires more pro-
cessing time and memory storage compared to traditional two
dimensional (2D) data. In addition, due to the limitations of
field of view (FOV), accuracy requirements, and coverage
requirements, a full 3D digital copy of a scene or object
usually consists of multiple partial 3D data frames that are
combined by 3D registration algorithms.

3D registration is the process of finding the possible
transformation matrix between two 3D data frames, so that
the common data in these two 3D data frames can be aligned
together. This process essentially involves finding the feature
descriptors in two 3D data frames, matching the feature
descriptors in one frame to another based on similarity, and
finally calculating the rotation, translation and scaling when
similar feature descriptors align together. Existing feature

descriptors can be broadly separated into two categories: local
feature descriptors and global feature descriptors.

A. Local feature descriptors

Local approaches first try to identify the key points that
may represent the most valuable information, and then con-
struct a group unique identifiers from the 3D data frame,
where each unique identifier is constructed from a small clus-
ter of points associated with key points[7]. After determining
the feature descriptors, the transformation matrix is calculated
by estimating the best solution for all the descriptor matches.
Since the local feature descriptors are generated from the
key points, the accuracy of finding correct key point largely
decides the performance of registration results based on local
feature descriptors. Local descriptors share some common
issues including the balance between low descriptiveness and
high computational complexity, and high sensitivity to the
noise and distortion in the 3D data frame[9].

B. Global feature descriptors

Unlike the local feature descriptor that is based on small
clusters of points, the global feature descriptor summarizes
the useful geometric information on the entire data frame
level. After constructing the global feature descriptor for two
3D data frames, an optimal transformation solution is calcu-
lated across the whole point cloud by minimizing the distance
between two global feature descriptors. Due to the global
feature descriptor usually relying on segmentation algorithms
(whose performance is highly sensitive to errors and noise)
to extract the most representative object information from the
3D data frame[8], local non-linear refinement is often applied
after the registration based on the global feature descriptor.
Compared to the local feature descriptor, the global feature
descriptor has higher tolerance for larger values of initial po-
sition difference between two 3D frame. However, since this
type of descriptor is generated from the selection of partial
data that might be useful, this descriptor is highly likely to
result in incorrect or insufficient correspondences[10].

In this paper, we propose a novel global feature vector
targeting the rigid transformation in perspective independent
3D registration, which uses the output information of our
previous ground plane detection algorithm[11]. Our ground



plane detection algorithm estimates the position of the ground
plane in each sensor independently, as well as segmenting
any moving people and other static objects in the indoor
environment. Based on these data, our new global feature is
able to register two 3D data frames captured from perspective
independent cameras in a cluttered, dynamic and complex
indoor environment if minimum assumptions are met:
• At least one person can be seen smoothly moving in both

3D sensors’ FOVs
• The moving person’s body is perpendicular to the ground
• The perspective and position of both cameras remain

unchanged.

II. RELATED WORK

Both local and global feature descriptors have numerous
existing implementations. One of the most popular local fea-
ture descriptors is Fast Point Feature Histograms (FPFH)[12].
A simplified point feature histogram (SPFH) for each point
in the 3D data frame is first generated by constructing three
histograms from each point and its neighbour points along
three dimensions, then FPFH is built based on weighted sum
of the SPFH of a feature point and the SPFHs of the points in
the feature point’s support region. The dimension of FPFH is
3d where d is the number of bins along one dimension[12].
Local Surface Path(LSP) is one of the fundamental local
feature descriptors. Two key factors of LSP are the shape
index of each point p in the support region of a key point k
and the cosine value of the angle between the surface normal
of the point q and the normal at the key point k. The LSP
descriptor is calculated by accumulating points in particu-
lar bins along the two dimensional coordinates formed by
these two key factors. Another useful local feature descriptor
that has widespread utilization is Signature of Histogram of
Orientations (SHOT)[13] which is based on Local Reference
Frame(LRF)[13]. The LRF is constructed for each key point k
and its neighbour points which are in its support region. After
dividing the support region into three volumes along radial,
azimuth and elevation axes, a local histogram is calculated
by accumulating points counts into bins based on the angles
between the normal of neighbour’s points and the normal of
the key point k in each volume. Finally, the SHOT descriptor
is generated by combining all the local histograms. Signature
of Histogram of Orientations for Color (SHOT COLOR) is
then extended based on SHOT approach to work with texture
data[14].

Similar to the local feature descriptors, the global feature
descriptor also has numerous implementations. Marianna and
et al[15] encodes the 3D data frame by using Global Structure
Histograms (GSH). This global feature starts with construct-
ing local descriptors based on surface-shape characteristics of
3D data, and then labelling the surface class for each point
by using k-means algorithm followed by the computation of
Bag-of-Words model. After the relationship between different
classes is determined by triangulation, GSH can be formed
as histogram based on the distribution of distance along
the surface. One of the recent global feature descriptors

built based on SHOT is Scale Invariant Point Feature(SIPF)
[16] which represents the object or scene with border shape
encoding. It first encodes the object border by combining LRF
and covariance matrix which is defined in the SHOT[13],
then it computes the feature value q∗ = argminq‖p− q‖
between feature point p and the edge point q as the reference
direction. After dividing the angle q∗ of local cylindrical
coordinates into N regions, whose angle is within 2πiN
and 2π(i+ 1)N for i = 0, 1, . . . , N-1, SIPF descriptor is
constructed by concatenating all the normalized cell features

Di = exp(
di

1− d
), where di is the minimum distance between

a point p and the ith region. Another recent global feature
descriptor with promising computational time and robustness
to Gaussian noise is Global Orthographic Object Descriptor
(GOOD)[17]. GOOD first defines a unique but repeatable
LRF based on the Principle Component Analysis, and then
the data in the 3D frame is orthographically projected onto
three planes that are constructed as the X-Z, X-Y and Y-
Z axes respectively. Each plane is divided into multiple bins
and a distribution matrix is computed by counting the number
of points for each bin. Finally, the GOOD descriptor is
constructed by concatenating the entropy and variance vectors
from each distribution matrix across the whole 3D frame.

However, in the scenario our application is targeting, which
is in clustered, dynamic and complex indoor environments,
none of the existing local or global features can properly
register the 3D data frames from two perspective independent
sensors. Therefore, with the inspiration from [18], we propose
a novel global feature that describes the uniqueness of an
indoor geometry feature and utilizes the ground plane as the
reference plane.

III. METHODOLOGY

Since our new global feature descriptor is built based on
the output data that is generated from our previous estimating
ground plane work and we also use the ground plane as the
reference plane, this section first briefly describes our previous
work.

A. Ground plane estimation

Our ground plane estimating algorithm aims to identify and
segment the ground plane in a scene where the camera has
an arbitrary and unknown orientation and location, with the
assumption that at least oen person can be seem smoothly
moving in the camera FOV. The whole process can be
separated into three steps: 3D data segmentation, moving
object identification, and ground plane estimation. During 3D
data segmentation, all large planes are extracted as possible
ground plane candidates Pi and all isolated point clusters
are segmented as objects Oi in the indoor environment
after all the large planes are removed. We then use Scale-
invariant feature transform (SIFT) based Motion-Split-And-
Merge (MSAM)[19] to find the moving person(s) among the
object group Oi and the approximate moving trajectory vector
~t of each moving person within a block of frames Bi. Finally,
we estimate the ground plane based on a cascaded filter



(a) left camera objects (b) right camera objects

Fig. 1: 3D data captured from two sensors

which mainly relies on the geometric relationship between
the ground plane and other objects. Therefore, the output
of the ground plane estimation algorithm consists of the
most likely ground plane GP , the moving human(s) Mi, the
static objects Oj , and the estimated trajectory vector for each
moving human ~tki in the kth block of frames.

B. Global feature descriptor

After we apply the ground plane estimation algorithm
to two 3D data frames from two perspective independent
sensors, we obtain information about the ground plane,
moving human(s) and a trajectory vector of each moving
human within a block of frames, and static objects (e.g.,
see Figure 1). With the assumption a moving human walks
through an area common to the two camera’s FOVs, we can
align the two 3D data frames based on the ground plane,
or more specifically by using the y-axis translation, z-axis
rotation (yaw) and x-axis rotation (roll) of the ground plane.
Hence, by using first aligning the two frames to their ground
planes, the entire 3D transformation problem is simplified to
the 2D problem of finding the remaining x-axis and z-axis
translations and a y-axis rotation (pitch). By converting the
3D registration challenge to a 2D problem, all of the vectors
in 3D world we use to construct our global feature descriptors
are reduced to 2D vectors by removing the y-axis value from
the original three dimensional vector. In other words, we can
now describe the two dimensional vectors as if we are viewing
the 3D data frame from an overhead perspective. From this
perspective, our vector is then simply the set of human-to-
object vectors within the scene.

Depending on the accuracy of 3D data segmentation and
the organization of the objects in the room, objects in the
indoor environment are separated into multiple point clusters.
Therefore, the first step for constructing our global feature is
building the human-to-object vectors ~MOij that point from
the center of mass M center

i of each moving human Mi to the
center of mass Ocenter

j of each static object Oj , as shown
in Figure 2. This creates a 2D vector pool containing i× j
vectors of geometric description, where i is the number of
moving humans and j is the number of objects. Within the

set of all object point clusters Oi, multiple point clusters may
actually represent the same real object (e.g., be incorrectly
separated by segmentation). To overcome this, if objects
are close to each other and have similar euclidean distance
to the human, we merge the two human-to-object vectors
~MOij and ~MOik by building a new vector ~MOijk whose

origin is M center
i and the center of mass point Ocenter

j k

of two point clusters Oj and Ok, if ‖ ~MOij − ~MOik‖< ε

and ∠( ~MOij , ~MOik) < α, where ε and α are the euclidean
distance threshold and angle threshold respectively.

After combining the redundant vectors from the 2D vector
pool, we construct a global feature matrix Fi for the ith
moving person by combining all the human-to-object vectors
~MOi that start from the center of mass point M center

i of the
moving human Mi at time t.

Fi =

[ ~MOi0
· · ·
~MOin

]
, n = 0, 1, · · · , J (1)

Fig. 2: Human-to-object vectors from top view

Since the approximate trajectory vector for each human
within a block of frames is known, we determine whether
the moving human Mi in the first camera’s frame is possibly
the same moving human M ′i in the second camera’s frame by
checking the number of row pairs (between the global feature
matrix Fi and F ′i ) that have a mean squared error (MSE) that
is lower than the threshold µ. We achieve this by calculating



the mean squared error between all the possible pairs between
a vector in Fi and all existing vectors in F ′i . If the mean square
error between a vector ~MOij in Fi and another vector ~MO′nm
in F ′i if above µ, we remove these two vectors from the global
feature matrix. By comparing all possible combinations, we
conclude that the global feature matrix represents the same
person in both cameras if the number of vector pairs with an
MSE below µ is larger than the threshold ν. We use the known
approximate trajectory vector as the reference direction (i.e.,
the trajectory vector should have the same direction for the
same person), and we find the y-axis rotation (pitch) matrix
by calculating the average rotation angle after aligning all the
vector pairs with an MSE below µ. Finally, we calculate the
x-axis and z-axis translations by matching the point cluster
of the moving human Mi in the two camera frames.

Similar to other global feature descriptors, the transfor-
mation matrix that our feature descriptor generates usually
contains noise and error. Therefore, the final step of our
global feature descriptor registration is the iterative closest
point (ICP) [20] algorithm for refining the transformation of
the roughly aligned 3D data frames.

IV. DISCUSSION AND FUTURE WORK

In this paper, we proposed a novel global feature descriptor
for registering multiple 3D data frames captured from multi-
ple perspective independent 3D sensors, only assuming that
at least one moving person can be seen in the common FOV
of the sensors, and that the human’s body is perpendicular to
the ground plane while moving. Our global feature descriptor
is targeted toward indoor scenes that are highly cluttered,
dynamic and complex, where other existing local and global
feature descriptors do not provide good result based on their
limitations. One of our most significant limitations is that due
to the process of constructing our global feature, our approach
will not work in the scenarios where only a human and ground
plane appear in the common FOV of 3D sensors. In the future,
we will focus on improving the efficiency and complicity of
this global feature generation; applying our global feature to
more real datasets; verifying the success rate of our global
feature against common sources of noise; and comparing the
computation time and accuracy with other local and global
features.
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