
Toward synchronized, interference-free, distributed 3D
multi-sensor real-time image capture

Chengsi Zhang
Electrical and Computer Engineering

Faculty of Engineering and Applied Science
Memorial University

cz2075@mun.ca

Zizui Chen
Electrical and Computer Engineering

Faculty of Engineering and Applied Science
Memorial University
zizui.chen@mun.ca

Stephen Czarnuch
Electrical and Computer Engineering

Faculty of Engineering and Applied Science
Memorial University
sczarnuch@mun.ca

Abstract—Multiple three dimensional (3D) computer vision
devices capturing from different perspectives provides better
3D scene coverage. This multi-sensor approach has been widely
used in 3D model scanning, scene reconstruction, and motion
streaming or recording applications. However, collecting data
from multiple 3D cameras is challenging due to limitations
such as bandwidth, synchronization, or interference. Common
basic 3D sensors such as Microsoft Kinect v2 and Asus Xtion
Pro have limited resolution and frame rate, so the number
of 3D sensors that one computer can support is restricted.
More advanced 3D sensors like Intel RealSense D4xx series and
Asus Xtion 2 provide wider variety of resolution and frame
rate, but multiple-sensor capture is still limited by camera
interference and synchronization. Therefore, we have developed
a new multi-sensor grabber based on the new Microsoft Azure
Kinect in order to address the bandwidth, synchronization
and interference challenges. The grabber contains: configurable
synchronization component which handles synchronization and
avoids interference between sensors; capture component which
receives RGB and depth outputs from each sensor and stores
them into the host computer; and process component which
converts stored raw data to the dedicated 3D point cloud
data. Our results show that this grabber can stably capture
and produce synchronized 3D data from multiple sensors, and
it can support up to six sensors when using multiple host
computers. We evaluated the captured results on our perspective
independent 3D point cloud registration algorithm, and provided
robust registration results.

Index Terms—3D data capture, Homography, homography
decomposition, point cloud segmentation, 3D data analysis.

I. INTRODUCTION

Compared to two dimensional (2D) information, three
dimensional (3D) data are more useful at providing addi-
tional spatial geometry information and representing more
complex structures[9], which allows intuitive visualization,
geometric measurement, and space analysis. Therefore, the
scenes and objects that are represented by 3D information
have been widely used in many industries, such as train-
ing and simulation[10][11], augmented reality(AR) / virtual
reality(VR)[12][13], gaming[14] and movies[15].

However, due to the limited field of view, capture per-
spective and accuracy requirements, 3D sensors still cannot
capture all the information in a large scene or demonstrate
360 degree full coverage of an object within a single frame.
In order to provide more useful information, a 3D digital copy
of a scene or an object is usually produced by combining
multiple frames from one 3D sensor[16] (requiring temporal
inference) or registering inputs from multiple 3D sensors[1]
(introducing complexity).

Registering inputs from multiple 3D sensors more reliably
captures high-quality 3D data if some challenges can be
resolve. For example, infrared camera reconstruction suffers
from relatively low accuracy [30], which further leads to
precision loss in generated point clouds. Registering multiple
point clouds requires significant efforts toward coordination
and synchronization of the sensors, as well as addressing
bandwidth and memory limitations. We propose a novel,
distributed architecture image grabber that supports sensor
synchronization and capture from up to six commercial depth
sensors.

II. RELATED WORK

Existing sensors capable of capturing 3D data including
infrared-based systems (e.g. Microsoft Kinect [20], Intel
RealSense [21] and Leap Motion [22]), LiDAR-based systems
[23], Stereo vision-based systems [24] and more. Among
these systems, inferred-based sensors feature as low-cost,
widely available and with acceptable accuracy in short-range
sensing [25], [26]. For example, Microsoft Kinect is widely
used in research, largely because of the release of the open-
source SDK [27]. With the SDK, it is possible to capture
a 320x240 16-bit depth images at 30 frames per second.
The more recent models in Kinect series further improve the
resolution and performance [28], [29] to 512x512 16-bit depth
images at 30 FPS.

To register 3D images, multiple sensors need to be syn-
chronised in order to minimise the errors that arise from



(a) Daisy-chain configuration (b) Star configuration

Fig. 1: Azure Kinect DK synchronization configurations

object movements in scene. Most existing sensors, such as
Microsoft Kinect 2, do not have cross-camera or cross-
machine synchronisation capabilities.

A computer, without special hardware, usually can support
up to two depth sensors through the USB 3.0 interface, or four
depth sensors using the USB 2.0 interface. Extension cards
can be installed to overcome the USB bandwidth limitation
to a certain point, but interference still restricts the number
of sensors that can generally be synchronised. Depth cameras
emit invisible infrared light and measure the time taken to
receive the reflected infrared light. When multiple sensors
are emitting at the same time, the measurements interfere
with each other, reducing the overall accuracy of each sensor.
This is because, in general, a sensor cannot tell the difference
between the infrared light emitted by itself and the infrared
light emitted by other sensors. Thus, the accuracy of the depth
image is significantly reduced, and increases with the intro-
duction of each new sensor. The most recent Microsoft depth
sensor, the Azure, addresses this issue through a software-
based time sharing approach which quickly turns on and
off the infrared source of each camera. We build on this
software-based solution, which can theoretically support up
to eight subordinate sensors along with a ninth master node,
to develop our distributed registered image grabber.

III. METHODOLOGY

Our grabber is built based on the Azure Kinect camera
which consists of a RGB camera, an infrared camera and an
inertial measurement unit (IMU). Compared to other existing
3D sensors, the Azure Kinect camera offers a large variety
of image resolutions. There are six different resolutions for
the RGB sensor with four configurable frame rates, while
the depth sensor has four different resolution with four
configurable frame rates based on the user-set depth sensor
field of view (FOV) mode[17]. Unlike the Kinect V2, where
the capture frame rate only depends on the bandwidth and
ambient lighting conditions, all the configurations of the
Azure Kinect are customizable. Accordingly, our grabber
can be flexibly configured based on the research or data
requirements. In addition, another essential feature of the
Azure Kinect is that it natively supports multiple sensor

synchronization. Each Azure Kinect device has one ”Sync
In” and one ”Sync Out” portal. By connecting two Azure
Kinect devices with a 3.5mm audio cable, both devices can
be synchronized on the sensor level [18].

Our grabber consists of a configurable synchronization
component, capture component, and post-process component.
The configurable synchronization component handles the cap-
ture mode of each sensor as well as synchronization among all
the connected Azure Kinect devices; the capture component
is responsible for receiving the raw RGB and depth data from
all the sensors; and the post-processing component converts
the raw data capture by each Microsoft Azure sensor into an
overall registered 3D point cloud image.

A. Synchronization component

There are two type of configurations when using a 3.5
mm audio cable to connect multiple Azure Kinect sensors.
With normal 3.5 mm male-to-male audio cables, multiple
Azure Kinect devices can be connected in a daisy-chain
configuration by connecting the ”Sync out” port of each
sensor to the ”Sync in” port of the next sensor sequentially
as shown in Figure 1 (a). Within this connected sensor group,
the first sensor does not have anything connected to it’s
synchronization input, and is therefore the master camera.
Alternatively, multiple cameras can be configured in a star
configuration (Figure 1 (b)), where the master camera is
central to the devices, and all other subordinate devices are
directly connected to the master in parallel.

Unlike the Kinect sensor, When using most other existing
3D sensors, the capture action periodically happens only
based on the frame rate of each individual sensor. In this
way, the grabber is only able to roughly synchronize the
frames based on the timestamp, and as a result frames will
be discarded or interpolated when the cameras’ frame rates
are different. When using the Azure Kinect, one the other
hand, since the capture action of all the subordinate devices
are triggered by the master camera, each frame provided
by one sensor will always align with data from all other
sensors perfectly. Therefore, the synchronization of multiple
Azure Kinect sensors is achieved on the sensor level, and one
instance of our grabber only controls and reads data from one



Azure Kinect device at a time, reducing the USB bandwidth
requirements.

In addition, the configurable synchronization component
also provides an input parameter to define the capture delay
between the master sensor and a subordinate sensor. Within
an Azure Kinect device group, only one sensor’s IR is turned
on while all other sensors are in an idle state. Hence, the
interference between each sensor is entirely eliminated. The
minimum capture delay between two sensors is 160µs [18],
so the largest delay will be 160µs /sensor × 8 sensors =
1280µs, which is smaller the minimum idle time 1450µs of
a Azure Kinect sensor, between the master camera and last
subordinate camera, assuming all eight subordinate cameras
are connected with the master camera.

B. Capture component

The capture component allow users to specify the RGB
image resolution, the depth camera capture mode (depth
camera FOV and resolution), and frame rate based on the
data requirement. Since we are using the captured results for
3D data registration, we keep all the configuration parameters
the same for all Azure Kinect sensors within the post-process
component. In order to ensure the generated 3D point cloud
has the same frame rate as the raw RGB/Depth data, the
capture component obtains the raw RGB and depth data
frames from a sensor and puts them into the memory First in
First out (FIFO) queue with only the current timestamp and
the sensor serial number. At the same time, since we want
to ensure the queue cannot be quickly filled up by the raw
data frames, we dedicate another thread to pull out frames
in the FIFO queue and save them to the local disk as binary
files with the combination of their captured timestamp and
camera serial number as the unique file name. Finally, we save
the device calibration parameters and capture configurations
to disk as the Azure Kinect capture configuration file to
support future post-processing of the data. Our sensor level
synchronization ensures that the capture component of our
grabber simply reads in data from each sensor and saves it
to the local disk without any processing which dramatically
improves the capture efficiency of our grabber.

C. Post-process component

The post-process component is an isolated component,
because converting RGB and depth 2D images into 3D point
cloud frames is computational expensive. Furthermore, this
component needs to be easily changeable based on specific
applications outside our intended multi-sensor registration.
After the capture process is completed and all the RGB and
depth images are saved to the local disks as binary files,
the post-process component can be triggered by the user to
process the data of each sensor by following the timestamp
sequence. In order to generate the correct 3D point cloud
data from the raw RGB and depth image data, the user has
to use the same RGB image resolution, the depth camera
capture mode, and frame rate capture configurations from the
Azure Kinect capture configuration file as when these image

Session # of participants frames
1 1 176
2 3 328
3 2 193
4 3 464
5 2 730
6 2 717
7 1 711
8 2 813
9 2 695
10 2 745
11 1 717
12 1 774
13 2 789

TABLE I: Caption

data were captured. Unlike the previous Kinect sensors, Azure
Kinect device captures the depth image by using a fish eye
sensor. The raw RGB and depth image is first transformed
into a normal depth image by assigning the pixels in the fish
eye depth image to the pixels in the undistorted color and
depth images based on the transform mapping table, which
is generated by the Microsoft Azure internal API function
k4a transformation t get context. Since this API function
requires the extrinsic and intrinsic parameters of the Azure
Kinect device that captured these data, we again read the
sensor calibration parameter data from the configuration file.
Finally, we generate the 3D point cloud frames by combining
the undistorted RGB and depth images and storing on the
local disk as ply format files.

Fig. 2: Azure Kinect fish eye depth image

IV. DATA

By using this grabber, we have captured 13 data trials with
at least one of four human participants walking in the scene
(see Table I) for our previous perspective independent ground
plane estimation research [19] and multiple sensor registration
work. The recorded raw data are organised in pairs consisting
of one frame of RGB image encoded in 3-channel 8-bit binary
format, with a size of approximate 8100 kilobytes, and one
frame with the corresponding depth image encoded in single-
channel 16 bit binary format, with a size of around 720
kilobytes. The generated 3D point cloud frame encoded in
ply format has a size of around 7700 kilobytes.



V. DISCUSSION AND CONCLUSIONS

We developed a new grabber that can capture RGB and
depth images from multiple sensors, based on the Microsoft
Azure Kinect device and Microsoft Azure API. Our grabber
is efficient for multiple sensor capture, resolving common
issues that other 3D sensor grabbers have encountered, such as
limitations associated with transfer bandwidth, data synchro-
nization, and sensor interference. In addition, our grabber is
highly configurable and user friendly so that the user can
capture the data based on their customized requirements.
Due to the high accuracy when compared with our attempts
to use other 3D sensors, we have used this grabber to
capture the data trials that were required for our multiple
sensor registration work as well as additional datasets for our
previous ground plane estimation research [19]. In the future,
we will verify the performance of this grabber while using
up to eight Azure Kinect devices and even further improve
the efficiency and accuracy of this grabber.

REFERENCES

[1] Jia, Zhen, et al. ”Method and system for multiple 3D sensor calibra-
tion.” U.S. Patent No. 10,371,512. 6 Aug. 2019.

[2] Sultani, Zainab Namh, and Rana Fareed Ghani. ”Kinect 3D point cloud
live video streaming.” Procedia Computer Science 65 (2015): 125-132.

[3] Schröder, Yannic, et al. “Multiple kinect studies.” Computer Graphics
2.4 (2011): 6.

[4] Bhandari, Ayush, et al. “Resolving multipath interference in Kinect:
An inverse problem approach.” SENSORS, 2014 IEEE. IEEE, 2014.
In SENSORS, 2014 IEEE (pp. 614-617). IEEE.

[5] Lee, Ju-Hwan, Eung-Su Kim, and Soon-Yong Park. “Synchronization
error compensation of multi-view RGB-D 3D modeling system.” Asian
Conference on Computer Vision. Springer, Cham, 2016.

[6] Lachat, Elise, et al. ”Assessment and calibration of a RGB-D camera
(Kinect v2 Sensor) towards a potential use for close-range 3D model-
ing.” Remote Sensing 7.10 (2015): 13070-13097.

[7] Grunnet-Jepsen, Anders, et al. ”Using the RealSense D4xx depth
sensors in multi-camera configurations.” Santa Monica, CA, USA
(2018).

[8] Martı́n, Roberto Martı́n, Malte Lorbach, and Oliver Brock. ”Deterio-
ration of depth measurements due to interference of multiple RGB-
D sensors.” 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2014.

[9] Meyer-Marcotty, Philipp, et al. ”Impact of facial asymmetry in visual
perception: a 3-dimensional data analysis.” American Journal of Or-
thodontics and Dentofacial Orthopedics 137.2 (2010): 168-e1.

[10] Waran, Vicknes, et al. ”Injecting realism in surgical training—initial
simulation experience with custom 3D models.” Journal of surgical
education 71.2 (2014): 193-197.

[11] Bruzzone, Agostino G., and Francesco Longo. ”3D simulation as
training tool in container terminals: The TRAINPORTS simulator.”
Journal of Manufacturing Systems 32.1 (2013): 85-98.

[12] Garon, Mathieu, et al. ”Real-time high resolution 3D data on the
HoloLens.” 2016 IEEE International Symposium on Mixed and Aug-
mented Reality (ISMAR-Adjunct). IEEE, 2016.

[13] Cox, Donna J., Robert M. Patterson Jr, and Marcus L. Thiebaux.
”Virtual reality 3D interface system for data creation, viewing and
editing.” U.S. Patent No. 6,154,723. 28 Nov. 2000.

[14] Adams, Khaled. ”3D enhancements to gaming components in gaming
systems with real-world physics.” U.S. Patent No. 10,115,261. 30 Oct.
2018.

[15] Emoto, Michiko, Shinya Miyamoto, and Kazuyoshi Yamamoto. ”Nav-
igation apparatuses, methods, and programs for generation of a 3D
movie.” U.S. Patent No. 7,974,781. 5 Jul. 2011.

[16] Whelan, Thomas, et al. ”Real-time large-scale dense RGB-D SLAM
with volumetric fusion.” The International Journal of Robotics Research
34.4-5 (2015): 598-626.

[17] https://docs.microsoft.com/en-us/azure/kinect-dk/hardware-
specification, ”Azure Kinect DK hardware specifications”, Microsoft
Azure.

[18] https://docs.microsoft.com/en-us/azure/kinect-dk/multi-camera-sync,
”Synchronize multiple Azure Kinect DK devices”, Microsoft Azure.

[19] Zhang, Chengsi, and Stephen Czarnuch. ”Perspective Independent
Ground Plane Estimation by 2D and 3D Data Analysis.” IEEE Access
8 (2020): 82024-82034.

[20] Microsoft Corp ”Kinect for Windows”
https://developer.microsoft.com/en-us/windows/kinect/ Kinect -
Windows app development

[21] Intel ”Stereo Depth - Intel® RealSense™ Depth and Tracking Cameras”
https://www.intelrealsense.com/stereo-depth/

[22] UltraLeap ”Digital worlds that feel human — Ultraleap”
https://www.ultraleap.com/

[23] Taylor, Travis S ”Introduction to Laser Science and Engineering” 2019
CRC Press

[24] Ayache, Nicholas ”Artificial vision for mobile robots: stereo vision and
multisensory perception” 1991 Mit Press

[25] Smisek, Jan and Jancosek, Michal and Pajdla, Tomas ”3D with Kinect”
Consumer depth cameras for computer vision pg.3–25 2013 Springer

[26] Zhang, Zhengyou Microsoft kinect sensor and its effect IEEE multi-
media vol.19 no.2 pg.4–10 2012 IEEE

[27] El-laithy, Riyad A and Huang, Jidong and Yeh, Michael ”Study on the
use of Microsoft Kinect for robotics applications” Proceedings of the
2012 IEEE/ION Position, Location and Navigation Symposium pg.280–
1288 2012 IEEE

[28] Microsoft Corp ”Kinect for Windows
SDK” https://docs.microsoft.com/en-us/previous-
versions/windows/kinect/dn799271(v=ieb.10)

[29] Microsoft Corp ”About Azure Kinect DK”
https://docs.microsoft.com/en-us/azure/kinect-dk/about-azure-kinect-dk

[30] Khoshelham, Kourosh ”Accuracy analysis of kinect depth data” ISPRS
workshop laser scanning vol.38 no.1 2011


