

Design and Analysis of a Hybrid Power System for Postville Labrador Canada

Presented by:

Azadeh Farhadi Saransari

Supervisor:

Prof. M. Tariq Iqbal

Engineering Graduate Seminar

Memorial University of Newfoundland (Faculty of Engineering and Applied Science)

July 2024

Outline

- Introduction
- Literature Review
- Objectives of the Study
- Site Selection and Optimal Sizing Dynamic
- Dynamic Modeling and Simulation of the system
- SCADA System Design and Implementation
- Conclusions
- Future Works
- List of Publications
- Acknowledgment
- References

ERSITY Design and Analysis of a Hybrid Power System for Postville Labrador Canada

Motivations

- Providing reliable and low-cost electricity to remote areas
- Reducing greenhouse gas emission
- Studying the behavior of HRPS components under different environmental conditions to ensure reliability and stability
- Designing and implantation a SCADA system for real-time monitoring and control of the hybrid HRPS

Renewable energy sources

- Renewable energy (RE) is sourced from naturally replenished resources, including wind, water waves
- Global investments in renewable energy climbed from 54 billion dollars to 260 billion dollars between 2004 and the year 2011, marking an increase of approximately 381% [1].
- According to the International Energy Agency Photovoltaic Power System report, over 99% of the worldwide PV capacity, amounting to 228 GW, was linked to grid connections [2].

Canada's Renewable Energy Landscap:

- Canada used 16.9% of its primary total energy from renewable energy sources in 2022 [3].
- Home to the world's largest hydroelectricity system.
- Canada has one of the highest installed capacities for wind power and PV
- installed capacity for solar PV has surged from 26 megawatts (MW) in 2007 to 6,452 MW by 2022 [3].
- installed capacity for Wind has risen from 1,846 MW in 2007 to 15,132 MW in 2022

UNIVERSITY

Postville's power system

- Postville is a remote community situated in northern Labrador, Newfoundland and Labrador, Canada
- The community relies on three diesel generators, collectively generating 1072 kW, to supply its electricity

Figure 1: Postville Island

6/47

Table1. Specifics of the diesel	generators in Postville
---------------------------------	-------------------------

Unit	Make and Model	Power Output:	Year of Purchase 2017	
2096	Caterpillar C15	455 kW		
577	Detroit Diesel Series 60	252 kW	2001	
2084	Caterpillar C15	365 kW	2009	

М

Table 2. An overview of various hybrid energy systems

Ref.	Hybrid structure	Software	Location	SA-GC-OG	Analyzed parameters
[4]	PV-Wind-Diesel-Battery	Homer	India	Off-grid	Net present cost & Cost of energy
[5]	PV-Diesel-Battery	Homer-Matlab	Iraq	Off-grid	Net present cost , Cost of energy & Excess Energy
[6]	PV-Diesel-Battery	Homer	Tamil Nadu	Off-grid	Net present cost , Cost of energy & Excess Energy
[7]	PV-Wind	Home	Philippine	Off-grid	Net present cost ,&Cost of energy
[8]	PV	-	Greece	Grid-connected	Net present cost & Cost of energy

EMORIAL Design and Analysis of a Hybrid Power System for Postville Labrador Canada UNIVERSITY

- To investigate Postville's annual power consumption
- Design and size an optimized HRPS using existing load information with Homer pro
- Build and simulate a dynamic model in MATLAB/Simulink based on the HOMER pro sizing result
- Design a low-cost Matlab-based SCADA System to monitor and measure relevant parameters

Design and Analysis of a Hybrid Power System for Postville Labrador Canada

Site Selection and Optimal Sizing Dynamic

Postville community

- Located about 40 km (25 m) from Kaipokok Bay in northern Labrador, Canada
- No road connecting Postville to the rest of the world
- Current population 188 inhabitants
- The community is not linked to the grid

Figure 2: Image of Postville community (Source: captured from Postville Inuit Community Government)

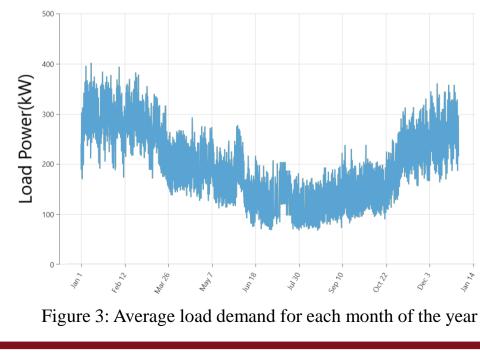
10/47

Postville community

- It relies on three diesel generators with a total power output of 1067 kW
- Annual consumption of over 500,000 liters of diesel fuel

Diesel generator disadvantages

- Not environmentally friendly
- It is difficult to provide fuel in the harsh climate
- Risking residents' lives and properties


Isolated hybrid renewable power system

- Decreasing in fuel consumption and pollution due to reduced in Diesel Generator size
- Lower electricity prices as a high proportion of renewable power system

Power consumption data

The load profile for the Postville has been provided by Newfoundland & Labrador Hydro (Electricity Generation Company) every 15 minutes

- The average daily electrical consumption is 4683.2 kW/day,
- random variation is 10.608%,
- peak demand is 401.71 kW.

12/4

Site Selection and Optimal Sizing Dynamic

Weather conditions and Renewable Resources at the Site

Annual weather condition is achieved from Nasa Prediction of Worldwide Energy Resources.

The scaled annual average of solar irradiation is 2.87 kWh/m2/day

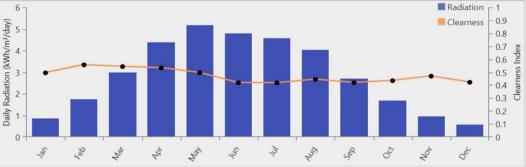
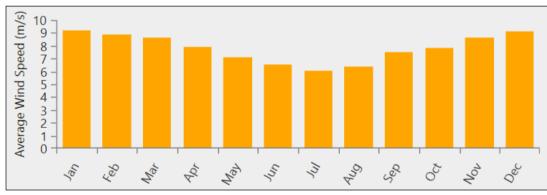



Figure 4: Monthly average solar irradiance and clearness index

13/47

Figure 5: Monthly average wind speed

The annual average wind speed is recorded as 7.81 m/s at 50m height

Sizing system using Homer pro

- Homer pro
 - Optimization tool developed by the National Renewable Energy Laboratory (NREL)
 - Aims to identify the most economical equipment configuration

Sizing system

- Renewable energy and traditional energy sources are combined
- AC diesel generator as back-up power

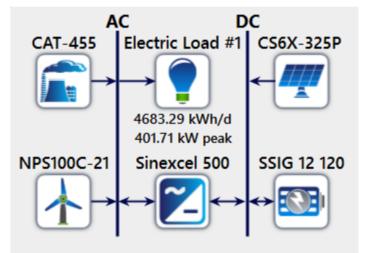


Figure 6: Schematic diagram of the hybrid power system

14/47

Specification of system components

Table 3. PV parameter

Technical data	Value
Maximum Rated Power	325 W
Cell per Module	72
Maximum Power Voltage	37 V
Maximum Power Current	8.78 A
Temp Coef of V _{oc}	-0.31 %/°C
Temp Coef of <i>I</i> sc	0.053 %/°C
Lifetime	25 Years

Table 5. Diesel generator parameter

Technical data	Value
Capacity	455 kW
Fuel type	Diesel
Rated voltage	208 to 600 V
Speed	1800 RPM

Table 6. Battery parameter

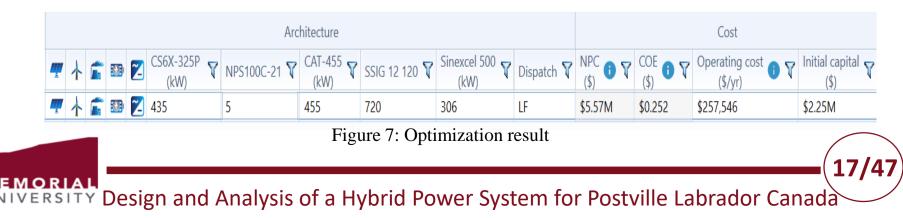
Table 4. WT parameter			
Technical data	Value		
Rated power	100 kW		
Rated voltage	400V		
Rated wind speed	15 m/s		

Technical data	Value
Туре	Lead-acid
Nominal voltage	12V
Nominal capacity	1.42 kWh
Maximum capacity	118 Ah

Site Selection and Optimal Sizing Dynamic

Cost Summary of the Systems

- Case A: PV/Wind Turbine /Diesel Generator /Battery
- Case B: Wind Turbine/Diesel Generator/Battery
- Case C: PV/Wind Turbine /Battery
- Case D: Wind Turbine / Battery
- Case E: PV/Diesel Generator /Battery
- Case F: Diesel Generator /Battery

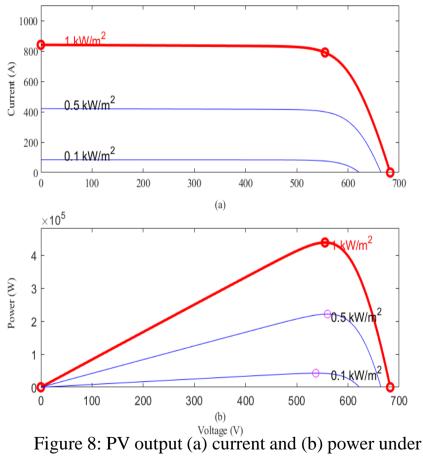

Table 7. Optimal results of hybrid power system for selected location


Configuration	NPC (\$)	COE (\$)	O&M(\$/year)	capital cost(\$)
Case A	5.357M	0.252	257.576	2.25M
Case B	5.92M	0.268	282.690	2.27M
Case C	6.85M	0.310	220.737	3.99M
Case D	7.82M	0.354	232.522	4.81M
Case E	9.97M	0.451	687.901	1.08M
Case F	13.3M	0.603	1.03M	7.765

Simulation Result of Homer pro

Based on the Homer Pro most optimization results consist of:

- 435 kW capacity PV array
- Five wind turbines (100 kW every)
- 720 number of battery with a string size of 30
- One diesel generator with a capacity of 455 kW
- power converter with a 306 kW rating
- The renewable fraction is 77.6%
- Excess electricity is 32.1%
- The net present cost is \$5.57 million
- The Cost of Energy (COE) of \$0.252 million
- The Annual operating and maintenance (O&M) costs of \$257,546


Dynamic Modeling & Simulation of Proposed System

Photovoltaic panel (PV)

PV array consists of:

- > 15 PV modules connected in series
- > 90 PV modules connected in parallel
- Each module is rated at 325 watts.
- ➢ The PV array generated power is 438 kW
- The PV system's output is linked to an 1100 μF and 0.001Ω DC link capacitor and resistor.

different irradiances.

19/47

Wind Turbine

A wind energy setup consists of three parts:

- 1. Aerodynamic Phas
- 2. Mechanical Phase
- 3. Electrical Phase

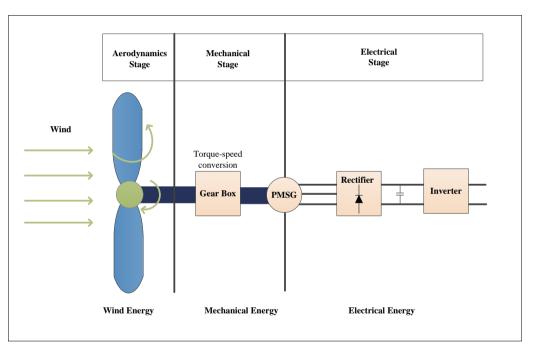


Figure 9: Wind turbine electrical system.

Diesel Generator

- A Diesel generator setup consists of three parts:
 - 1. Diesel engine
 - 2. Excitation system
 - 3. Synchronous generator
 - It operates effectively within 208V to 600V
 - The capacity of a diesel generator is 455 kW
 - As a backup system, It Initially linked to a breaker before direct connection to the load

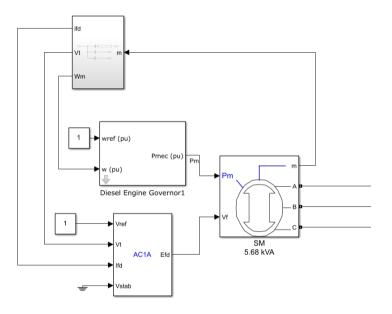


Figure 10: Diesel generator system

21/47

Control Strategy

- Maximum power point tracking (MPPT)
- DC-DC Buck Converter

The designed converter operates at a switching frequency of 10 kHz, featuring an inductance of $L_{Buck} = 0.247 mH$ and a capacitance of $C_{Buck} = 0.423 mF$.

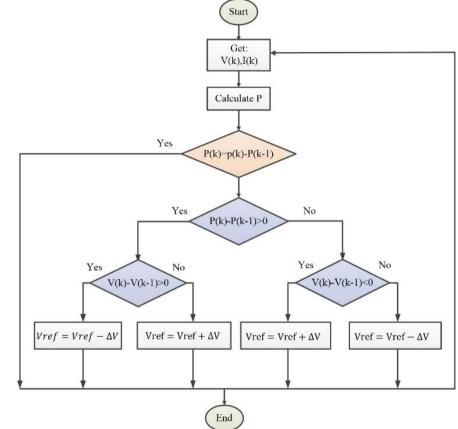


Figure 11: Flow chart of P&O technique for the MPPT

22/47

Dynamic Modeling & Simulation

Table 8: Weather and breakers situations.

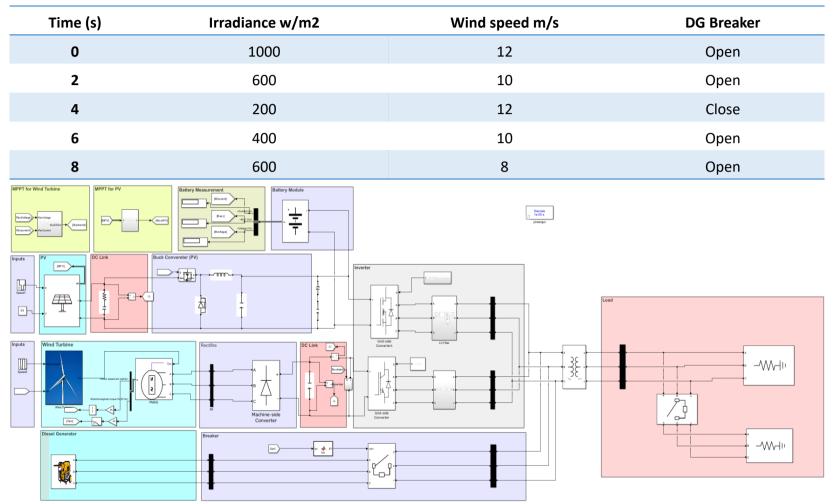


Figure 14: MATLAB simulation model for proposed hybrid power systems

23/47

Results

PV Power Dynamics:

- When PV power decreases, PV current output decreases.
- > PV voltage remains relatively constant.

MPPT Controller:

- Manages voltage and current fluctuations.
- Ensures optimal PV output

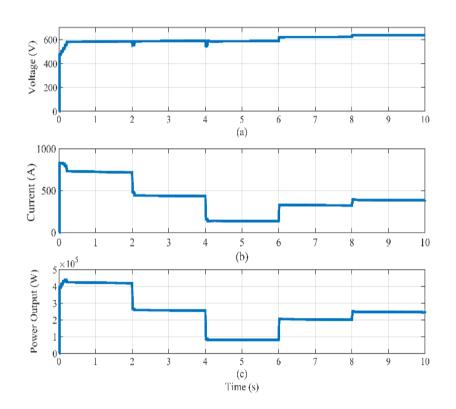


Figure 15: PV (a) Voltage, (b) Current, and (c) Power for varying solar radiation input.

Results

Surplus Power Condition:

- When Load power is lower than the combined output from WT, Photovoltaic PV panels, and DG)
- Battery Behavior: charging: Battery output power and current increase.

Insufficient Power Condition

- Scenario: Load power exceeds the combined output from WT, PV, and DG.
- Battery Behavior: discharging: Battery output power and current decrease.

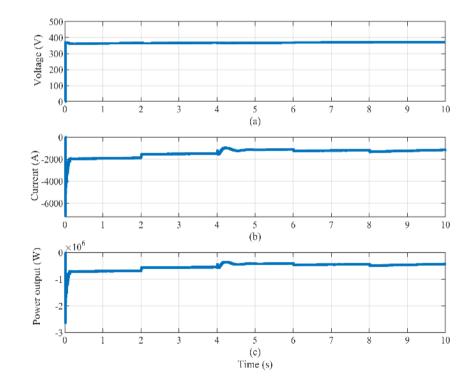


Figure 16: Battery (a) Voltage, (b) Current and (c) Power

25/4

Results

- The peak load demand in Postville is approximately 400 Kw
- The average load demand is around 200 kW.
- The breaker is utilized to represent both the average and peak loads.
- \succ Initially, the load is 200 kW.
- Between time 4 and 6, the load breaker is closed, adding approximately 200 kW
- The voltage peak level will remain constant regardless of the load power.

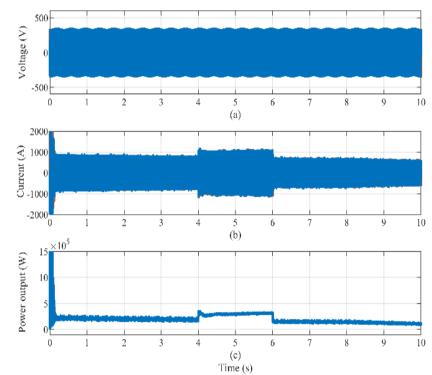


Figure 17: Load (a) Voltage, (b) Current and (c) Power

26/47

Dynamic Modeling & Simulation

Dynamic Modeling & Simulation

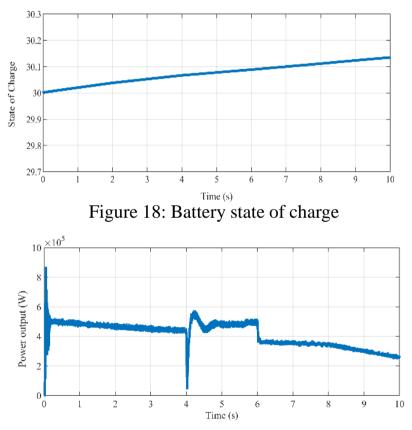


Figure 19: Wind Turbine output power

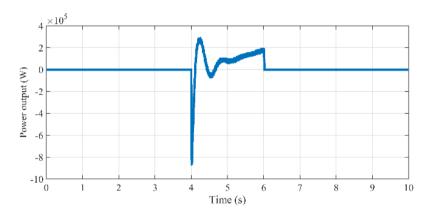


Figure 20: Diesel generator output power

Proposed SCADA system

Main Objective:

- In-depth monitoring of the system's key parameters in real-time.
- Designing a relay mechanism to automatically activate and deactivate diesel generators
- Saving the received data for any future studies.
- Designing Low cost SCADA system for the community

SCADA system

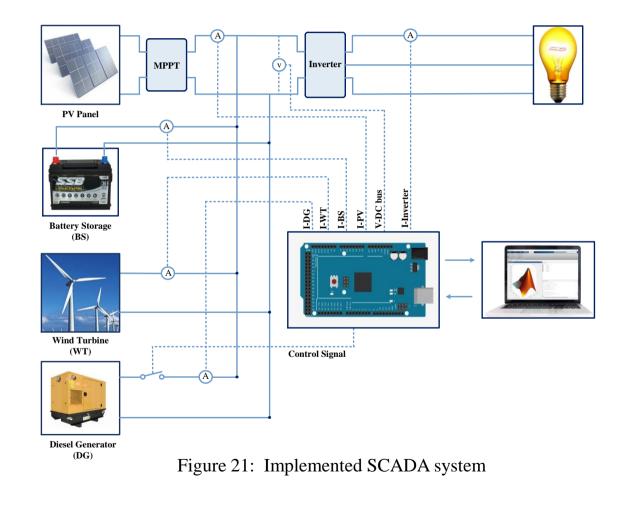
Supervise Control & Data Acquisition

1- Field Instrument Devices (FIDs) Sensors and Actuators connected to the system

2- Remote Terminal Devices (RTUs)

Microprocessor based device that monitors and controls field devices

3- Communication Network


Connect the remote terminal units (RTUs) with the SCADA Master (MTU)

4-Master Terminal Unit (MTU)

Issues the Control commands to the Remote Terminal Unit (RTUs), Gathers, store, process, and display Data

System description

MEMORIAL UNIVERSITY Design and Analysis of a Hybrid Power System for Postville Labrador Canada

System component

EMORI

- 1- Remote Terminal Units
- The Arduino Mega 2560 is used as a remote terminal unit
- The board includes 4 UARTs for hardware serial communication
- 16 analog inputs and 54 digital I/O pins.
- This device runs at 16 MHz with a crystal oscillator
- Contains a USB port, power connector, ICSP \geq header, and reset button.
- It supports serial (TTL), TWI (I2C), and SPI communication

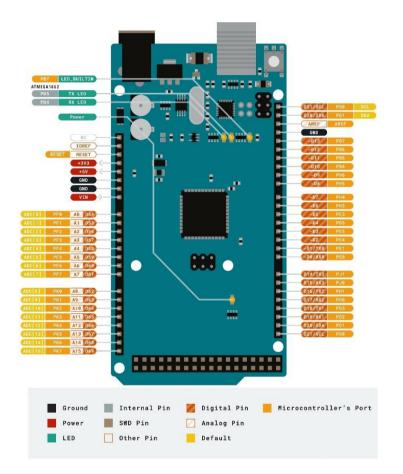


Figure 22: Pinout Diagram of Mega 2560 [9]

System component

2-Sensors

- ACS712 Current Sensor
 - both AC and DC currents
 - Operating voltage 5.0 V
 - Typically available in 5A, 20A, and 30A versions.
 - This study uses the 5A and 185 (mV/A) of sensitivity
 - Connected in series
- F031-06 Voltage Sensor
 - Voltage divider principle
 - Operating voltage 3.3 5.0 V
 - Range 0 25 V DC.
 - Connected in parallel

Figure 23: current sensor Module [10].

Figure 24: Voltage sensor Module [11].

33/4

System Components

- 3- Switching device
- The SRD-05VDC-SL-C one Channel Relay Module regulates the operation of a diesel generator.
- It is designed to switch high-voltage or high-current devices using a low-voltage control signal (typically 5V DC from Arduino GPIO pins).

Figure 25: relay module [12].

- 4- Core Terminal Device
- The main PC used for this research is an Asus Vivobook S13, Core(TM) i7
- 5- Software tool
- > To build the SCADA system, MATLAB, including MATLAB App Designer, is used

Implementation Methodology

To implement the proposed SCADA system

> One voltage sensor connected in parallel with the DC bus.

Five current sensors: connected in series with:

- 1. PV panel
- 2. Wind turbine
- 3. Diesel generator
- 4. Battery
- 5. Inverter
- One Relay connected in series with the diesel generator.
- All sensors powered by Arduino Mega 2560's VCC pin
- Sensors grounded through the Arduino ground pin

	System	Specification	Analog / Digital	PIN #
	1	Relay	Digital	24
	2	DC bus voltage sensor	Analog	A0
	3	Inverter current sensor	Analog	A1
	4	PV panel current sensor	Analog	A2
	5	Wind turbine current sensor	Analog	A3
	6	Battery storage current sensor	Analog	A4
)	7	Diesel generator current	Analog	A5
		sensor		

Table 9: The Arduino interconnections with sensors

35/47

Data Acquisition and Control System Algorithm

Initialization;

- 1. Establish the connection between MATLAB and the Arduino board
- 2. read sensor values from analog and digital pins
- 3. Launch App Designer and loading the .mlapp file

While data is being received from Arduino

- 4. Collect measurements and update App Designer UI
 - 5. Calculate and calibrate the values of data
 - 6. Display all sensor values on the dashboard and for data visualization;
 - 7. Write the current data in Excel file row by row
- if PV and wind turbine current decrease by a certain value the
 - 8. Turn the generator on (the green LED);

else

9. Turn the generator off (the Red LED);

end

end

if Arduino does not send any data, then

```
10. Print ' Data has not been received ', reconnect in 5s;
```

else

```
11. Go to step 3.
```

end

System Setup

The setup consists of two primary components:

- A demo solar/wind energy training system (LabVolt Series) manufactured by Festo
- The hardware configuration assembled to implement the SCADA system.
- DC power supply was used as a diesel generator

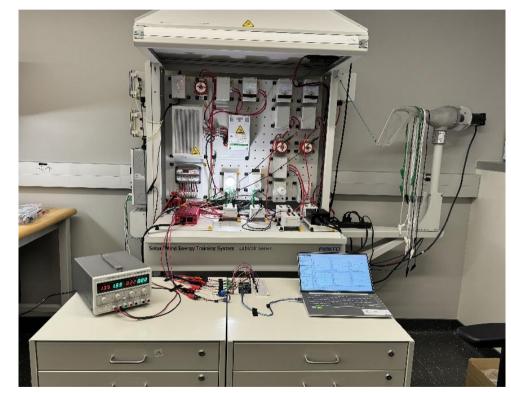


Figure 26:Experimental configuration.

System Setup

- The outputs from the solar panel, battery bank, power supply, and wind turbine are all connected to the DC bus
- The DC bus output is connected to a DC/AC inverter.
- The power inverter converts 12V DC power into 120V AC power using a 1 kW DC-to-AC converter.

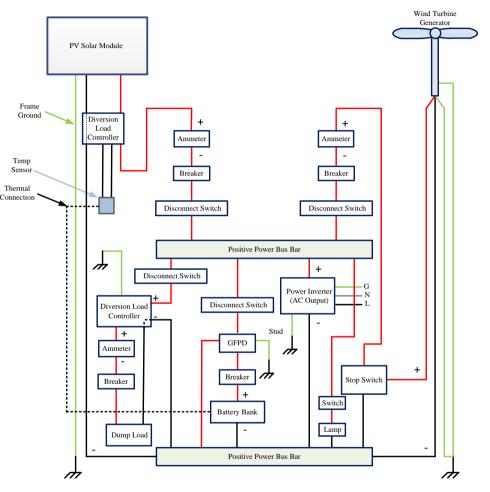


Figure 27: Wind turbine and PV system configuration

38/47

System Setup

- > The system's core processing unit is the Matlab App Designer dashboard.
- > It handles all necessary processes including data monitoring, control, and fault detection mechanisms.

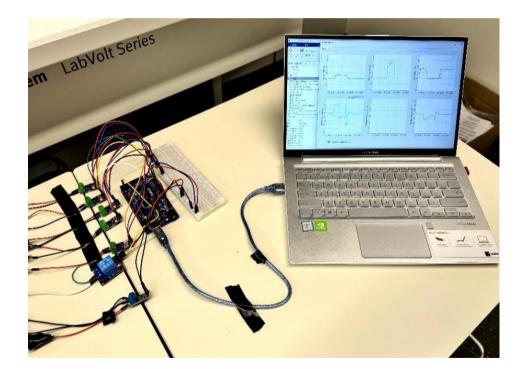


Figure 28: Assembled configuration of the proposed system

39/47

Results

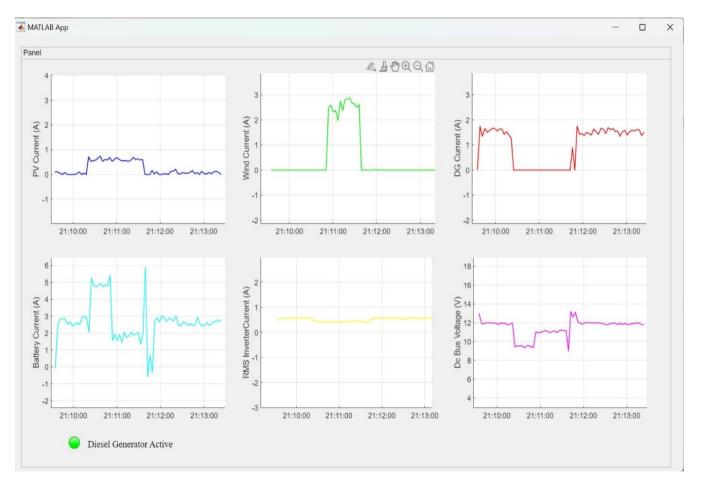


Figure 29: App designer dashboard for monitoring

40/47

Conclusion Future Work Acknowledgment

The research contributions of this study can be summarized as follows:

- Postville's climate and environment have been studied, and annual power consumption has been obtained
- An optimized low-cost HRPS has been designed and sized with Homer pro.
- Cost comparison between the existing system and the proposed hybrid system has been studied.
- The system dynamic behavior has been studied in MATLAB/Simulink.
- A Matlab-based SCADA system has been designed and implemented to monitor and control the HRPS.

DNIVERSITY Design and Analysis of a Hybrid Power System for Postville Labrador Canada

- Investigating the integration of ocean wave energy and floating PV systems.
- Comparing the proposed renewable energy with other renewable sources.
- Enhancing Battery Charge Control by implementing advanced algorithms for real-time optimization of charge/discharge cycles.
- Designing open Source SCADA system & IoT-Based
- Implementing a wireless structure for remote monitoring and control
- Designing an email alert system for backup device activation/deactivation notifications.

- Farhadi, A., and M. T. Iqbal. "Optimal Sizing and Techno-Economic Analysis of a Hybrid Power System for Postville". *European Journal of Engineering and Technology Research*, vol. 9, no. 2, Mar. 2024, pp. 5-12, doi:10.24018/ejeng.2024.9.2.3127.
- Farhadi, A., and M. T. Iqbal. "Simulation and Dynamic Analysis of a Hybrid Renewable Power System for Postville, Labrador". *European Journal of Electrical Engineering and Computer Science*, vol. 8, no. 3, June 2024, pp. 38-45, doi:10.24018/ejece.2024.8.3.628
- Farhadi, A., and M. T. Iqbal. "Design and Implementation of Matlab-based SCADA Architecture for a Hybrid Power System". *Journal of Electronics and Electrical Engineering*, under review

I would like to express my sincere gratitude to:

- My thesis supervisor Prof. M. Tariq Iqbal
- School of Graduate Studies (SGS) and Faculty of Engineering and Applied Science
- Engineering Research Council of Canada (NSERC)
- My husband, family, and friends

References

[1] Basaran, Kivanc, Numan Sabit Cetin, and Selim Borekci. "Energy management for on-grid and off-grid wind/PV and battery hybrid systems." *IET Renewable Power Generation* 11.5 (2017): 642-649.

[2] Negar Noroozi and Mohammad Reza Zolghadri, "Three-Phase Quasi-Z-Source Inverter With Constant Common-Mode Voltage for Photovoltaic Application," *IEEE Transactions on Industrial Electronics*, vol. 65, no. 6, pp. 4790–4798, Jun. 2018, doi: <u>https://doi.org/10.1109/tie.2017.2774722</u>.

[3] Available from: <u>https://natural-resources.canada.ca/our-natural-resources/energy-sources-distribution/renewable-energy/about-renewable-energy-canada/7295</u>

[4] <u>Khan, Mohammad Junaid, Amit Kumar Yadav, and Lini Mathew.</u> "Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India." *Renewable and Sustainable Energy Reviews* 76 (2017): 577-607

[5]] Aziz, Ali Saleh, et al. "Techno-economic and environmental evaluation of PV/diesel/battery hybrid energy system using improved dispatch strategy." *Energy Reports* 8 (2022): 6794-6814.

[6] <u>Vishnupriyan, J., and P. S. Manoharan. "Prospects of hybrid photovoltaic-diesel standalone system for six different</u> climate locations in Indian state of Tamil Nadu." *Journal of cleaner production* 185 (2018): 309-321.

[7] <u>Pascasio</u>, Jethro Daniel A., et al. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands." *Renewable Energy* 179 (2021): 1589-1607.

[8] <u>Sagani, Angeliki, John Mihelis, and Vassilis Dedoussis.</u> "Techno-economic analysis and life-cycle environmental impacts of small-scale building-integrated PV systems in Greece." *Energy and Buildings* 139 (2017): 277-290.

[9] Arduino Mega Pinout. Available online: https://store.arduino.cc/products/arduino -mega-2560-rev3?queryID=undefined

46/4

[10] Current sensor. Available online: <u>https://techiesms.com/product/acs712-5a-curren t -sensor-module/</u>

[11] Voltage sensor. Available online: <u>https://components101.com/sensors/voltage-sensor-module</u>

[12] Relay module. Available online: <u>https://digipurk.ee/en/product/keyes-5-v-relay-module-for-arduino/</u>

Any Questien

