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Introduction - Background and Motivation

» Globally, conventional hydrocarbon resources are being steadily depleted, with a growing need for an artificial lift for production
management [1].

« Deployment of artificial lift (gas or beam pumping) to extend the life of a producing well [2,3] is vital to maintain production at the
desired level.

« At every phase during the life of a well, the need to minimize the cost of production, increase energy return on investment, improve
pump volumetric efficiency, prolong pump life and improve overall production efficiency, cannot be overemphasized [4-7].

« Petroleum production continues to face the reality of price fluctuations, and hence low-budget operations are required [8,9].
« Oil wells are increasingly abandoned in Canada due to technical and economic limitations to production [10].

« The need for a simple, economical, and environmentally sustainable alternative to keep the oil and gas wells on-stream and minimize
the impact of the depressive market cannot be overemphasized [1].

« Considering the prohibitive cost of premature oil well abandonment, this study develops innovative solutions to sustainably maintain
production from low-flow rate idle or suspended oil wells.
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Introduction - Research Objectives

This research develops an approach for estimating the energy requirement of a low flow rate oil well driven by a sucker rod
pump.

The pump’s energy requirement is then taken as a load driven by a 3-phase squirrel cage induction motor.

Technical and economic analysis is performed to determine the most feasible rating of 100% renewable energy sources that
can be sustainable deployed to drive the pump under intermittent and continuous pumping scenarios.

A low cost, open source, internet of things supervisory control and data acquisition system is designed to ensure automated
data acquisition, logging, monitoring and visualization of key performance indicators onsite.

The least cost, 100% solar PV and battery storage powered microgrid, is designed to drive the sucker rod pump-powered oil
well.

This research provides a renewable, fully electrified micro-grid system that is integrated with a low-cost, open-source Internet-
of-Things SCADA system.

The design is to empower the operators to reduce the carbon footprint of low-flowrate oil wells and have full control of their

onsite renewable energy generation.
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Design and Analysis of Sucker Rod Pump
Site Description
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Fig 1 Remote wells in proposed site Fig 2 Aerial view of the proposed site

The proposed site is near Medicine Hat, a city in southeast Alberta, latitude 50°2°32” N and longitude 110°48°49” W. Like most of the
Prairies, there are abundant suspended, orphaned, and abandoned wells in this area, and the parameters used for this system design

were obtained from an analogous site which serves as our case study for the simulator integration. m
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Design and Analysis of Sucker Rod Pump
System Design Methodology and Parametric Investigation
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Fig 3 The sucker rod pumping system[11]
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» There is a significant reduction in the energy

requirement as one transitions from heavy oil
(10°) to lighter oil (459).

* Mark Il pump minimizes the energy requirement
and is more reliable than air-balanced.
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Fig 5 API rod number as a function of minimum polished rod
size, stroke rate, and prime mover rating

» The energy requirement consistently increases with tapering for
API rod numbers 65 to 97, validating the choice of API 65.

» API rod number 65 is selected to sustain a target level of
production at a minimum motor rating.

« Rod 6 (0.75"), Rod 5 (0.625"), Rod 7 (0.875"), Rod 8 (1.0"), and

Rod 9 (1.125").
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Design and Analysis of Sucker Rod Pump
System Design Methodology and Parametric Investigation
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Fig 6 Prime mover rating by pump diameters Fig 7 Effect of pump diameter on min. motor size
* The rating of the electric motor (prime mover) decreases with * The energy requirement (minimum prime mover size in KW) generally
increases in the diameter of the pumps. decreases with an increase in the API gravity, from 10 to 40.

hence a pump diameter of 1.5 inches is chosen.

API gravity of 25 is adopted in sizing the artificial lift system.
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Design and Analysis of Sucker Rod Pump
System Configuration
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Fig 9 Integrated PROSPER™ + QRod™ Workflow

The artificial lift system sizing is independently implemented in
both petroleum production system simulators after which the
workflows are integrated to optimize the system sizing.
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Fig 10 Sucker-rod pump artificial lift design in PROSPER™




Design and Analysis of Sucker Rod Pump
Results

Three sets of plots are typically obtained from artificial lift
simulators, namely:

» rod displacement versus load/tension (pump dynamometer card)

» angular displacement versus mechanical torque (torque plot),
and

* pump position versus pump velocity (velocity plot).

By identifying the indices without integration and comparing it with
the integrated performance obtained with simulators, conclusions
can be drawn.

The comprehensive design from the integrated workflow is given
showing the design results. Three indices will be used in comparing
the performance of the pump size obtained from the two design
stages.

» Damped horsepower
* Cyclic load factor
*  Prime mover rating

Table 1 key indices, comparing a single simulator with an integrated approach

Simulator Min. NEMAD| Polished | Damped CLF | Theoretical
Motor Size (hp) | Rod Power hp efficiency
(bp) (%)
QRod 4.53 2.60 1.93 1.31 5740
QRod +PROSPER 278 191 0.87 1.09 63.71
, o Polished Rod Power
Theoretical ef ficiency (%) = X 100%

Table 2 Derating of High slip electric motor

Minimum NEMA D Motor Size

HP | 1kW=0.746HP

CLF | SF

Motor = (kW x CLF x SF)

2.78

2.07

1.09

1.15

2.59
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Feasibility Study of Renewable Energy for Remote Oil Well
Site Description and Renewable energy potential of the selected location

Medicine Hat is a city in southeast Alberta, latitude 50°2°32"N and longitude 110°48°49“W.

It is one of the sunniest parts of Canada with an average of 2,544 sunshine hours and 330 days of sunshine per year. [12]

Medicine Hat has the highest values for solar radiation and peak clearness index in the summer months, with a scaled annual average
solar radiation of 3.61 kwWwh/m2/day.[13]
The scaled annual average wind speed at 50 m above the earth’s surface for flat terrain in Medicine Hat is given as 5.70 m/s.[13]

/day)

-
-

Daily Radiation (kWh/m

PLISSES

IV

B Radiation

Clearness

O R &S &
¢eOLY

Fig 11 Monthly average solar radiation data
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Fig 12 Monthly average wind speed plot for Medicine Hat.
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Feasibility Study of Renewable Energy for Remote Oil Well

Site Description and Renewable energy potential of the selected location

» The renewable microgrid evaluated for simulation entails hybrid generation and redundancy.

[t consists of two (2) primary power sources: solar PV and wind, one (1) backup source (battery storage) and the
prime mover or high slip AC electric motor (NEMA D).

« The electrical energy from renewable energy generators will be used to power a high slip AC electric motor,
which serves as the prime mover for the sucker-rod-pumped artificial lift system.

« The proposed system is matched with the requirement of the producing well and is to be 100% renewable to
ensure minimal interruption of hydrocarbon production, reduce noise and eliminate exhaust gas pollution.
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Feasibility Study of Renewable Energy for Remote Oil Well
Site Description and Renewable energy potential of the selected location

The case study is a remote oil well that cannot be connected to the grid for technical and/or economic reasons, hence is
proposed to be powered by a small stand-alone hybrid renewable power system.
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Feasibility Study of Renewable Energy for Remote Oil Well
System Design and Description of Load Profile for the case study well

» Scenario A: Intermittent production (diurnal, during the day, 12 hours on, 12 hours off).

For intermittent production, the daily and monthly load profile, the pump is turned on for 12 hours of daylight from 7 am to 7 pm and off otherwise.
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Fig 15 Daily load profile for scenario A: Intermittent production (diurnal, during the day). Fig 16 Monthly load profile for scenario A

« Scenario B: continuous pumping

For continuous production, the load is run continuously. It is expected that the cost contribution of the required storage system will be justified by
the extra production made possible by continuous operation.
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Fig 17 Daily load profile for scenario B: continuous pumping. Fig 18 Monthly load profile for scenario B m
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Feasibility Study of Renewable Energy for Remote Oil Well
System Design and Description of Load Profile for the case study well

Design Inputs
Linit MarkIl w
FPump Depth 3,500 “ |t -
Surface Stroke Length 74.00 wlin -
Pump Diameter (D) 1.500 we i -
Tubing Size 2.875" (6.40 Ib/ft) 2.441"ID
[+] Anchored Tubing

Rods

(® Steel Rods

() Fiberglass and Steel Rods

API Rod Mumber 65 v

API Rod Grade D e

Fig 19 QuickRod Design Input Fig 20 Prosper Design Input Fig 21 Size and power rating of pump required
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Feasibility Study of Renewable Energy for Remote Oil Well
System Configuration and Components of Renewable Power System

From a continuous pumping load perspective, a continuous pumping load perspective, the energy consumption of the AC electric
motor is 60.11 kwWh/d, with a peak load of 4.55 kW.

The system is designed with a discount rate of 8%, for 25 years and

consists of solar panels (Jinko Eagle PERC60, 300W) with an efficiency of 18.33%, deep cycle batteries [SAGM 12 205 (12V,
219Ah)] with four (4) units per string to obtain a string voltage of 48 V.

A 5.5 kW system converter (battery dedicated inverter: Schneider Conext XW + 548) was deployed with 93% efficiency.

A wind turbine with a 4.5 m rotor and a hub height of 12 m (AWS HC, 3.3 kW) was also selected as a secondary energy source, as
shown in the schematic of the system.

The system structure for diurnal pumping is shown in Fig. 10, with a daily energy consumption of 32.43 kWh/d and a peak load of

4.44 kW

The proposed design should economically exploit solar energy, wind energy, or both, with battery storage to sustain hydrocarbon

production.
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Feasibility Study of Renewable Energy for Remote Oil Well
System Configuration and Components of Renewable Power System

System structure optimized in HOMER with components integrated

SCHEMATIC SCHEMATIC
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Fig 22 intermittent pumping Fig 23 Continuous pumping
A total of 1,204 solutions were simulated, 578 were feasible  Atotal of 1,538 solutions were simulated
For intermittent pumping pumping, the daily energy consumption of » For continuous pumping, the daily energy consumption of
the AC electric motor is 32.43 kWh/d with a peak load power demand the AC electric motor is 60.11 kWh/d, with a peak load

of 4.44 k\W. power demand of 4.55 kW m
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Feasibility Study of Renewable Energy for Remote Oil Well
System Configuration and Components of Renewable Power System

Scenario A: Intermittent production (diurnal, during the day)

W Jinko60/300 5+ B Jinko60/300  5- WAWS33kW 25
4+ WAWSIKW 4 &
£ 34 e 3. £ 154
3 s 3 ;
2 24 -l 14
14 14 0.5 -
0 - 0 1 0 |
Jan FebMar AprMay Jun Jul AugSep Oct NovDec Jan Feb Mar AprMay Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Fig 24 Monthly electricity (1A) Fig 25 Monthly electricity (2A) Fig 26 Monthly electricity (3A)
(PV + Battery). (PV + Battery + Wind). (PV + Battery + Wind).
Table 3. (a) Simulation results by system types or categories for intermittent production (b) Cost of system types for intermittent production.
Architecture Cost System
Junk060/300 | Conext XW+5548 o,| NPC | COE | Operating cost ' Initial capital o ' Ren Frac Total Fuel
& ! + 1 Z] ? AWS3.3kW Y SAGM 12 205 ? (W) ﬂ’l Dispatch Y $) i ] Y. ) % ? S/ i ] V ©) e (i ] ?_ Uy) Y
- 4c] a 27.3 64 449 cC $64,969 $0.425 $1.318 $47932 100 0
& 4 83 P 264 1 60 412 cc $89512  $0.585  $1,466 $70,563 100 0
4+ 3 @) 4 80 380 cc $157,555  $1.03 $1,863 $133474 100 0
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Feasibility Study of Renewable Energy for Remote Oil Well
System Configuration and Components of Renewable Power System

Scenario B: Continuous production

M Jinko60/300 9 ¥ Jinko60/300 g E B AWS33kW 4 -
74 B AWS3.3kW 7-
6 6-
59 £5
= 3 = A
: 3
0 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Fig 27 Monthly electricity (1B) Fig 28 Monthly electricity (2B) Fig 29 Monthly electricity (3B)
(PV + Battery). (PV + Battery + Wind). (PV + Battery + Wind).
Table 4. (a) Simulation results by system types or categories for continuous production (b) Cost of system types for continuous production.
Archttecture Cost System
A ! + i) a Jmkgg%wo V AWS3.3kW V SAGM 12205 ¥ Conext('z(v\y)+5548 Y Dispatch Y NPC o V COE 0 ¢ Operést};g cost 0 Y Initial capxtal Ren Frac R Total Fuel Y
- ER @ 50.8 128 489 cC | 15130_,774 “50461 $3,163 589,883 100 0
~ + 8] 8 50.8 1 104 467 cC §145151  §0.512 $3,056 §105,644 100 0
4 BB P 6 160 6.54 cC $255377  $0901  $3095 $215,360 100 0
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Feasibility Study of Renewable Energy for Remote Oil Well
Discussion of Results

NPC (S) Consumption {MWh/ yr)
300000 255377 30,000 1 e 21 080 21 9a « Type3 (W?nd tgrbine + baFtery storage) will be ignored _in
200000 15?555130??4145151 20.000 the analysis as it has the highest overall cost of the feasible
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o 0000
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LCOE (S/kKwh E . El tricit M HY . .
el xeess Electriciny (MWhH/vo) «  System type 2 (solar photovoltaic + wind+ battery
iﬁgg 0.201 50 16862 . . A
e f— storage) results in a higher level of excess electricity, a
oaog  0.435 0. 461 0 512 20 25721 30 R .
3:333 l o . m S m p— lower amount of unmet load and lower capacity storage
0.000 o compared to system 1.
1B 14
{b) LCOE for each architecture (£) Excess generated electricity for each architecture * Hence type 2 haS hlgher net present COSt and hlgher
levelized cost of energy than type 1.
Operating Cost (S/vyr) Unmet Load (kKWh/yr)
AOO0 20 . . - -
2000 s m @ - «  Hybrid renewable power generation with continuous
2000 1318 ‘ﬁ l l l 10, l pumping (2B) is seen to have the least amount of unmet
1eOen 5 -
N . . B BERECn load _(0 kWh/yr) for all the system types and pumping
1A configurations.
{c) Operating cost for each architecture {2) Unmet load for each architecture
Total Production {MWh ) Capacity Storage (kKWh,/yr)
1oo.co 72 70 7856 =0.00 2170 21 BO

2000
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13 a5 1000 4 62
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Fig 30 (a) to (e) compares indices for continuous and intermittent pumping for the six renewable architectures.



Feasibility Study of Renewable Energy for Remote Oil Well
Discussion of Results

Table 5 Showing Variation in NPC, COE and Unmet load (%0)

|

SR WS PV WT BS NPC COE  Unmet
(%)
(KWhim¥day) (m's) (&W) (kW) (S)  ($1.000) (5)
0,03 51 809 8 30 304 107 0.0400)
0.03 57205 5 200 20 081  0.0346
_ 0.93 632 487 5 30 203 075 0.0383
(361 51 508 13 046  0.0636)
361 57 508 N 131 046 00636
161 632 508 213 046 0.0636/
(638 51 252 27 98 035  0.0797)
6.38 57 252 27 98 035 0.0797
L 638 632 252 27 98 035 00797

The variation in NPC, COE, and unmet load (%) due to variation in daily
solar radiation and average wind speed

Below the average daily solar radiation (3.61 kWh/m2/day), the hybrid
renewable energy system (solar photovoltaic, wind turbine and battery
storage: type 2) is the most preferred architecture with the least unmet load
percentage and highest system NPC and LCOE.

Above the mean daily solar radiation (3.61 kWh/m2/day), type 1 (solar
photovoltaic and battery storage) is the preferred architecture with the least
system cost and slightly higher unmet load than type 2.

Comparing systems 1 and 2:
System type 1, minimizes [net present cost, levelized cost of energy, total
production, consumption, and excess electricity], while

System type 2, minimizes [unmet load, capacity storage].

1 \IA I ! \Il IOI :I I.l |
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Feasibility Study of Renewable Energy for Remote Oil Well

Results
Table 6 Proposed feasible solutions.
Solar PV TypelA TypelB Unit
Rated capacity 273 0.8 W
MMean cutput 445 830 W
Mean daily output 107 190 kLWh'd
Capacity factor 16.3 16.3 %o
Hours of operation 4 377 4 377 hrs/yr
PV penetration 330 331 T
Wind
Total rated capacity 3.30 W
Mean output 0.669 W
Total production 5,862 EWhiyr
Capacity factor 203 %o
Hours of operation 7.329 hrs/'vr
Wind penetration 26.7 %
Battery
Number 64 123 (4bt'string)
String in parallel 16 32 Strings
Bus voltage 43 43 W
MNominal capacity 163 336 E'Wh
Uzable nominal 118 235 E'Wh
capactty
Energy in 3,860 15244 EWh'yr

Energy out 3,294 12,982 EWhiyr

The major criteria of which configuration to choose depends on :
system cost, total unmet load and unmet load fraction

The hybrid generator option: type 2B for continuous pumping, is preferred in
wells where the production due to the extra pumping hours can justify the
higher system cost incurred over the life of the well.

The lowest system costs are incurred at the highest mean daily solar
radiation and average wind speeds

Solar photovoltaic and battery storage type 1A for intermittent pumping is
the least cost alternative

Using the least unmet load criteria, hybrid generation: solar PV, wind and
battery storage in continuous pumping has been demonstrated to have the
least unmet load and capacity storage with 0 kWh/yr of unmet load, capacity
storage of 0.56 kWh/yr, a net present cost of $145,150.50, a levelized cost of
energy of $0.51/kWh and an operating cost of $3,056.04/yr.

Using the least cost criteria, solar PV and battery system in intermittent
pumping has been demonstrated to be the most preferred with 4.55 kWh/yr
of unmet load, capacity storage of 11.70 kWh/yr, a net present cost of
$64,969, a levelized cost of energy of $0.425/kWh and an operating cost of

Vi VIO K| A
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Open-Source, 10T Based SCADA System for Remote Oil Well
System Description

« The essential nature of oil production requires continuous site monitoring to acquire, log, and process the data so
that timely intervention can ensure continuous and optimal operation.

« The case study is a low-flowrate oil well artificially lifted with a pump jack, driven by an electric motor and
powered by solar energy.

« The system implements a low-cost, open-source loT-based SCADA system for remote monitoring and control of
oil and gas facilities using Node-RED and Arduino microcontrollers.

» The system integrates multiple sensors (temperature, flow rate, water level, voltage, current, position,
accelerometer, distance) and actuators (motors) into the SCADA system.

» A web-based graphical user interface (GUI) is developed using Node-RED for real-time visualization, data
logging, and remote access to sensor data and control functions.

« The system uses a secure remote access solution for the SCADA system using port forwarding, network address
translation (NAT), and HTTP basic access authentication with Nginx. m

UNIVERSITY



Open-Source, 10T Based SCADA System for Remote Oil Well
System Description

Inclinometer (3) and beam
Maximum transducer (4) o
Vov Power

Point
Tracking

lpv lvg i
Ll \.
Motor and Crank Hall Effect

% Transducers o /{ o

, \/ Rod Position

Sensor

 The IloT-based open-source SCADA system consists of three

subsystems, a master terminal unit, and two terminal units.

 The design and implementation of the SCADA system involves

hardware and software selection .

»  Each sensor directly collects onsite data for key parameters which

are analysed in the Arduino integrated development environment

(IDE) and then logged and processed for monitoring and Fig 31 Schematic diagram of the production system.

visualization.

Vil VIO R | A
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Open-Source, 10T Based SCADA System for Remote Oil Well
Implementation Methodology

i 9))) WiFi

« The system is designed for monitoring, supervision, and remotely [VOItage Sensor Terminal Unit
. . - (Server)
controlling motors and sensors deployed for oil and gas facilities. =
Current Sensorf=— Temperature
[ Sensor
e’/
_ Rotary Encoder—-‘#
» The loT-based open-source SCADA system consists of three subsystems, a !
. _ _ _ ( Arduino Mega \ [ ArduinoUno | |, Flow S
master terminal unit, and two terminal units. : : i oW >ensor
Accelerometert——,| Microcontroller Microcontroller
Terminal Unit 1 Terminal Unit 2
\ J & P (=1 Level Sensor
»  The design and implementation of the SCADA system entail hardware and [D'Stance Sensorr—>
Liquid Crystal
software selection , D'q | (rIYCD)
: ISpid
Electric Meilobil i e
Motor Load

«  each sensor is then programmed in the Arduino integrated development Fig 32 Schematic of loT-based SCADA System

environment (IDE). m
V| VIO R | A
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Open-Source, 10T Based SCADA System for Remote Oil Well
Web Interface

» The design methodology is to provision the web server on the
local computer and make it accessible from the Internet,

192.168.2.50:480 X <+

» Client requests to the Node-RED application running on the C O 1921682504

webserver are transferred from the external IP address, and port

of the router to the internal IP address and port of the local server Al

(port forwarding) and Ui DI
» Server responses are in turn transferred from the webserver to the Username

router (network address translation, NAT) and on to the

respective client. Password

Fig 33 Access Authentication for Web Interface:

* Port forwarding is implemented by mapping the internal IP
address/port of the server to that of the router.

e This option eXposes the Node-RED server on the Internet for NGINX client access authentication page when logging in to the server.
remote access.

* Hence, a basic access authentication is implemented using Nginx.
Nginx requires the internet client to provide a username and
password before access to the Node-RED on the server is granted, NIVERS Y

hence improving the security, are shown. ,
7



Open-Source, 10T Based SCADA System for Remote Oil Well m

Node-RED loT Platform on the Local Server : Node-RED process flows for all Sensors required e
¢ - Control MotorA 5 ~ function TT '
function m
@ connected
Fig 34 Process flow for Position sensor . f
Senses and Displays the position of the sucker rod J__ Control Molor 8 'i'_‘%‘ il [,— 1

Fig 37 Process flow to control motors A and B

Two DC gear motors re used to model the rotational output from the electric motor
prime mover which drives the sucker rod pump

@ connected

@ connected
Fig 38 Process flow for the distance sensor

The flow sensor detects the distance travelled by the sucker rod string from a reference datum

@ connected

Fig 35 Process flow for the current and voltage sensor
Monitors the voltage and current for the prime movers driving the sucker rod pump

2yt
() function Q
D

@ connected

) Fig 39 Process flow for the level, flowrate and temperature sensor
Fig 36 Process flow for the accelerometer

: ; _ The fluid flow, level and temperature sensor track the flow rate, volume and temperature
Measures the changes in the pumping speed to track pump behavior and of the produced fluid from the subsurface, through pipelines to storage tanks 28
detect pump inefficiencies p , gnh pip g



Open-Source, 10T Based SCADA System for Remote Oil Well
Hardware Design, Experimental Setup, and Implementation

All the 10T sensors, motors, and display are

laid out Rotary
Position g
As shown in this figure, the Server is Sensor S Arduino Uno [RY,
) —— / with base Fluid Level
available on a local host computer and Ardiins Megs - “hield .
serves as the master terminal Unit with Motor | : .

The remote terminal units : Arduino
Mega and Uno are connected to the local A

server via USB ports. Rl \ | o\ S AN Qi Distance Sensor | N

s

| —

The Arduino Mega and Uno are connected
to the computer via USB ports.

Flowrate
Sensor

In this experimental setup, all the sensors,
motors, and display are laid out

Sensor :

The graphic user interface (GUI) is also Fig 40 Experimental setup of the proposed loT-based SCADA system

available in Node-RED and contains a
dashboard with logs and charts for the TERIGRIA

visualization of sensor data in real-time. UNIVERSITY
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Open-Source, 10T Based SCADA System for Remote Oil Well
Results : Charts and gauges (System 1)

ILIAI!\IA IOI :l'll
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Rotary Position History

Current History Voltage History Distance

XYZ Position History

AfS [J A2 [] At

0
N mn 1500 1600 1700 1800 1900 AN00

Rotary Position

Current Voltage Distance

214

Degrees

N

0.02 A

0
10:15:00 101700

Fig41 (a) Current (b) Voltage (c) Distance (d) Accelerometer (e)Position

Subsystem 1: Arduino Mega

» The dashboard for sensors connected to Arduino Mega

» The dashboard for this subsystem includes gauge and chart outputs for
current, voltage, distance, rotary position, and accelerometer sensors.

* In this work, the user interface shows the received sensor data, both as a

gauge and a chart.
30



Open-Source, 10T Based SCADA System for Remote Oil Well
Results : Charts and gauges (System 2 &3)

Fig 41 (f) Water Level

Water Level Flow Rate Temperature

\

21.87 ‘ 19.18

Celsius

Flow Rate History

Water Level History 5 Temperature History

)
2410 2420 2430 2440 2450 2500 25

2410 2420 24:30 2440 2450 2500 2510

(9) Flowrate

Subsystem 2

The dashboard for the sensors on Arduino Uno is
shown

It is available in Node-RED as a web GUI that updates
or responds in real-time.

The user interface shows the sensor data both as a
gauge and a chart.

It shows the water level, flow rate, and temperature.

(h) Temperature

= Control Motors

Control Motor A Control Motor B

(1) Control of motors Aand B

Subsystem 3

 shows the dashboard panel to control motors A and B
connected to Arduino Mega’s motor shield.

 This dashboard uses Arduino nodes in Node-RED and
Firmata on the microcontroller to start and stop the motors.

1\|AI!\’1I'IE|I‘||
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Open-Source, 10T Based SCADA System for Remote Oil Well m
Results/Conclusion

» Monitoring of the oil well site parameters such as flowrate from the producing well and
comparing it with the speed of the electrical motor is imperative to diagnose problems in an
actual producing well.

» When the speed of the electric motor is high, and the flow rate of the produced fluid is declining,
it could be an indicator of a fluid pound or gas lock in the rod pump downhole. It could also point
to sand production at the producing interval or issues in reservoir production.

« Early-onset of flow assurance problems such as wax and paraffin formation could also be
detected by tracking and monitoring the behavior of the voltage and current drawn by the
electric motor and mapping trends, which could be further corroborated with flow rate and
cross-referenced with downhole temperature and pressure gauges.

* When the 10T devices are mounted on an actual 3D models and data acquired logged
appropriately, these sensor trends could be aggregated into historical data and analyzed for
prediction of failure or monitoring production performance.



Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump m

System Description : Choice of Renewable Energy System UNIVERSITY
Table 7 Comparing 100% Solar with 100% (Solar + Wind)

» Electricity cost constitutes a significant part of the overheads i i
incurred in producing wells and with these wells sufficiently remote c°“t'“‘“°“5 P“f“p'“g Intermittent Pumping with
from the electric grid, onsite generation of 100 % renewable energy Criteria W't.h Hybrid Solar PV and Battery
presents a promising opportunity to invest in onsite renewable Generation (Solar PV, System
energy [15]. Wind, Battery Storage)
_ _ _ Unmet Load 0 kWh/yr 4.55 kWh/yr
» This study presents a comprehensive methodology for the design, Canacit
dynamic modelling, simulation, and control of a solar-powered pacity 0.56 kWh/yr 11.70 kWh/yr
sucker rod oil pump Storage
Net Present §145,150.50 $64,969
« It combines load modelling of the sucker rod pump using Cost (NPC)
SolidWorks with design, dynamic modelling, simulation, and control Levelized
of the solar microgrid in Matlab’s Simscape and Simulink. Cost of $0.51/kWh $0.425/kWh
Energy
Operating
« This approach combines the solar photovoltaic system, battery Cost $3056.04/yr $1318/yr
charge control system, battery energy storage system, step-up
transformer, and the squirrel cage induction motor, which serves as Least unmet load and | Chosen configuration due to
the electric motor prime mover Conclusion | capacity storage but significantly reduced cost
higher costs despite unmet load trade-off
» The surface pump model is first developed in SolidWorks and then

converted to Simscape, the rating of the pump is then implemented
as a load in the solar-powered electrical microgrid.



Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump

System Description cont’d

As global energy demand continues to increase, the oil and gas
industry ironically continues to suspend, orphan, and abandon oil
wells at an alarming rate due to technical, policy, and environmental
reasons [16].

The increasing demand to reduce the energy footprint of producing
wells is compounded by the leakage of methane and other potent
greenhouse gases from idle and inactive wells [17].

The Canadian province of Alberta has historically been one of the
largest oil producers in Canada. Still, the province’s upstream oil and
gas sector reportedly contributed substantial methane emissions,
accounting for approximately 70% of Alberta's emissions in 2014
[18].

Registered wells ~ 470,000 wells [19]
Inactive wells ~ 155,000 wells [20]
Suspended wells ~ 81,000 wells [20]

Clean-up in Canada is estimated to reach $1.1 billion by 2025 [21]

1\|1|!l|1 IOI :I Ill
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N Surface Location of Inactive Petroleum Wells in Alberta

Abandoned Wells

74,428 81,182

From AER Shapefile Retrieved Mar 12, 2019

0 50 100 200 300 400
N Kilometers

Suspended Wells

Legend

Surface Location of Wells

Cities

Primary Roads

Fig 42 Surface location of inactive petroleum wells in Alberta, Canada [8].
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Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump m
Methodology for Modelling sucker rod pump in SolidWorks and Simscape : Subsurface + Surface System Sl i

Balanced 3 Phase Gear Box Surface Collection,
3 Phase - Squirrel cage - and Gear - Sucker Rod | > Se_p_aration.
Electrical induction Reducer Pump Piping and
« The surface pump model is first developed in Sueel o Sveem Sveem Storage
SolidWorks and then converted to Simscape, Power Supply S orime Mover - Transmission System
. . . Translational L
the rating of the pump is then |rr_1plemt_anted as a Recnifgggiﬁng Subsuface | - |Praduced Fuids:
load in the solar-powered electrical microgrid. Bt I
System

) Fig. 43 Beam pump system operation and process workflow.
« The model seamlessly integrates the J pump sy P P

mechanical and electrical systems with 100%
renewable energy to power the sucker rod

Import
pump system. Block Parameter Data File
EXpOI'[ (M
+ the SolidWorks assembly is developed and then Multbody Descipion File {
exported to an XML file and the corresponding i \4
geometry files using the plugin ; Simscape Multibody Model
Assembly < (SLX)
(CAD)
» The XML file is then imported into
MATLAB/Slmullnk to create a Simscape 4 PartGeomety Fies
multibody model (STEP| STL)
Fig 44 CAD Simulation of Surface Unit. Fig 45 Converting CAD to Simscape Model [15].
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Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump
Surface System Modelling : Squirrel cage induction Motor in Simscape

The induction motor was modeled first in
Simscape electrical and then modeled
again to simulate integration with the
overall circuit in Simscape Power systems

The initial parametrization of the
induction motor has been included in
Figure 47 based on a previous work by the
authors in

Modeling option
* Main
Electrical connection
Rated apparent power
Rated voltage
Rated electrical frequency
» Number of pole pairs
Configurability
Parameterization unit
Squirrel cage
Zero sequence
Initialization option
* Impedances
Stator resistance, Rs
Stator leakage reactance, Xls

Referred rotor resistance, Rr’

Referred rotor leakage reactance, XIr'

Magnetizing reactance, Xm

Stator zero-sequence reactance, X0

Mo thermal port

Expanded three-phase ports

444 kW
460 W
60 Hz
3

Compile-time

5l

Single squirrel cage

Include

Set targets for flux variables
0.25 Chm

04 Chm
014 Chm

041 Chm

17 Chm

04 Chm

Fig 46 Equivalent Circuit Parameters

Jpu
/ — \
al
. ////// \Q\\\\
@ Va ———— —_—
N S w to Gear Box
@. Vb \\\\ %
b2
({/\) Ve c2 T
I Induction Machine
. ) Squirrel Cage

—— Electrical Reference

Fig 47 Three-Phase Electric Motor in Simscape.
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Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump m
Surface System Modelling : Surface Pump Model MEMORIA

UNIVERSITY
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Fig 48 Gearbox and Gear reducer system
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Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump
Subsurface System Modelling : Downhole Pump

Force on Rod String
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Fig 51 Model of Submerged Pump Barrel Assembly

Downhole Pump parameters

During the upstroke, the standing valve opens as the plunger moves up, creating a pressure differential
that allows fluid to enter the pump barrel from the reservoir. Simultaneously, the traveling valve closes,
allowing the fluid above it to be lifted towards the surface. On the downstroke, the standing valve closes
to prevent fluid from flowing back into the reservoir. The traveling valve opens, allowing fluid to pass
through the plunger, positioning it for the next upstroke[14] .

This operation closely mirrors the actual functioning of sucker rod pumps as described in the literature

Sucker rod
Traveling valve _,

Plunger

Pump

barrel =%}

ifeit
. J’ L
valve

Standing }::::i:

-

(a)

(b)

(c)

(d)

Fig 52a The pump stroke cycle of the downhole pump.

Load

SV Opens ——A

TV Closes --1t

Gross Stroke

Pump Stroke

I
iRod Stretchi

Fig 52b Load/displacement dynamics.

Displacement
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Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump
Surface System Modeling : Solar System Components

DC AC
Induction
Intermittent pumping with solar PV and battery system will be the chosen Inverter Motor Load
configuration for further design in this research _@
Solar PV Array g - -
Because considering production from inactive oil wells (suspended and idle), the WY
unmet load for the solar PV and battery system can be suitably accommodated in the @_ Conext XW 5548 4.44KWV peak
pumping schedule as a trade-off to the significantly reduced cost in comparison to the s o0 Battery Bank
solar PV, wind and battery storage system. ’
Hence the solar PV and battery system would be adopted for powering the remote oil SAGHM T2V, 2194N

well. . -
Fig 53 Schematic diagram of the proposed system.

The system comprises a 27.3kW Solar PV array, and battery bank, comprising 64

units of deep cycle batteries, of 16 strings and 4 batteries per string. 48V DC bus
( ) ook o)
A system converter rated 4.49 kW, and a load dispatch of cycle charging is MPPT nvert Step Up 3 Phase
implemented, implying that the primary load (electric motor) receives supply first and Vpv Controller MVETST™| Transformer E:f oe
the excess generation goes to charge the battery bank. ﬁ_/
Ipv ,D
)
Table 8 Solar microgrid source. Sotar PV [ Buc R ﬁ SLl:{(:)Izler
—> orage
- Array R Converter . s Pump
Component Name Size [: \ ) ystem —
PV Jinko eagle PERC60 27.3 kW
Storage Deep cycle batteries, SAGM 64 units Fig. 54 Block Diagram of proposed Solar PV microgrid.
(12 V, 219Ah) (16 strings)
. ) R | A
System converter Schneider (Conext XW + 548) 4.49 KW R VERE T

Dispatch Cycle charging 39




Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump
Surface System Modelling : Solar Irradiance and Temperature Data

Environmental conditions such as solar irradiance and ambient temperature for summer and winter are obtained
from data repositories and included in the modelling and analysis of the overall system performance demonstrating

stable Operatlon' Table 10 Average Solar Irradiance and Temperature Data

for summer at Medicine Hat [33] [35].

Table 9 Average Solar Irradiance and Temperature

. . Time (Hrs) Irr (W/m?) Temp (Deg. C)
Data for winter at Medicine Hat [33] [34].

| 0 10
- — 2 138 10
Time (Hrs) Irr (W/m®) Temp (Deg. C) 3 785 10
4 1513 12
] 0 -7 5 2236 15
2 0 _8 6 2904 19
3 162 -8 ; 3900 23
4 752 —8 9 4160 25
5 1239 —7 10 4234 25
6 1548 —6 11 4117 25

7.
7 1657 —6 E 3354 27
8 1558 = 14 2760 27
9 1260 -6 15 2075 27
10 781 " 16 1347 27

. ¢ .
1 s ] o :
V| V]l O K | A

UNIVERSITY
Open-source Canadian Weather Energy and Engineering Climate (CWEC) data [34] for Average Hourly Irradiance

Hourly historical data report per month is also available from the Environment and Climate Change Canada website [35][36] 40



Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump
Surface System Modelling : Hourly Solar Irradiance and Temperature Data

Irr (W/m*2)

Irr (Wim*2)

5

G

7F

B

-9- i i i i i j

& - ,E e 10 12 2 4 6 8 10 12 14 16 18
Time (sec) Time (sec)
Fig 55a Sample Winter Data (January). Fig 55b Sample Summer Data (June).

Sample average daily solar irradiance and temperature data for Medicine Hat for winter and summer respectively.

» scaling the data accordingly for 1 h = 1 s for simulation, we can infer that there is significantly m
higher average hourly irradiance and correspondingly higher temperatures for the chosen  UNivEersiTy
location in the summer months than in winter. "



Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump

Surface System Modelling : Solar PV System Parameters
Table 11 Solar PV System Parameters

System parameters Ratings  Unit
Module peak power of a single module (F,,)  300.25 W
Module open circuit voltage (V) 40.1 \Y%
Module short circuit current (/) 9.72 A
Module voltage at MPP (V,,,,) 32,6 V
Module current at MPP (Z,,,) 9.21 A
Array peak power (F,,) 27.6 kW
Array open circuit voltage (V,) 80.2 \'
Array short circuit current (/ ) 447.12 A
Array voltage at MPP (V,,,) 65.2 \Y
Array current at MPP (1) 423.66 A
Solar Array Configuration
- Solar Module 46 parallel strings x 2 modules per string

String 1

Fig 56a Solar PV array configuration.

String 2 String 3 String 46

Prpp = ( NypX Iypn) X (NgX Vi) = (46 X 9.21) X (2 X 32.6) =~ 27.6kW

= Total Number of modules X Maximum Power per module

Parameters  Advanced

Array data Display I-V and P-V characteristics of ...

Parallel strings |46 | ; array @ 1000 W/m2 & specified temperatures v

T_cell (deg. €) [4525 ] [45,25] |

Series-connected modules per string |2 | : Plot

Module data Model parameters

Module: |Jinko Solar Co._ Ltd JKM300M-60 %
Light-generated current IL (A) 9.7474

Maximum Power (W) 300.246
Cells per module (Neell) |50 Diode saturation current 10 (&) 4.7373e-11
Open circuit voltage Voc (V) 40.1
Short-circuit current Isc (A) 9.72 Diode ideality factor 0.99895
Voltage at maximum power point Vmp (V) 32.6
Current at maximum power point Imp (A) 9.21 Shunt restsiance Rsh (ohms) [SEEE
Temperature coefficient of Voc (%/deg.C) -0.308

Series resistance Rs (ohms) 0.31013
Temperature coefficient of Isc (%/deq.C) (0.065

Fig 56b Solar PV array design specifications for modelling.

llyllll‘ll.lill‘ll
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= 46 parallel strings X 2 modules per string X 300.246 W = 27.6kW



Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump
Surface System Modelling : DC-Dc Buck Converter Parameters

Table 12 DC-Dc Buck Converter Parameters % s D
System parameters Ratings  Unit | [~ | ==
oL m MOSFET Current | Buck Inductance (L) l—;
Input voltage at MPPT (V,,,) 66 V l ﬂ O vy 1oy N W URCE
Frequency (f) 5 kHz i " — oot
Buck inductance (LBm-k) 17.32 ].lH BuckCapadwncemﬂnag& ' ‘.v 1 voul
Buck capacitance (Cgyci) 4740 uF T ZE[; Dioce o
Output capacitance (C,y ) 5924 .48 uF I ; g |
Output voltage for bus (V) 48 \

Fig 57 Equivalent circuit of Buck Converter for charge control

and MPPT implementation.
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Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump

Surface System Modelling : MPPT Algorithm

Start Perturb and
Observe Algorithm

_( Measure
L V(k) and I(k)
¥

P(K) = V(k) x I(K), P(k-1) = V(k-1) x I(k-1)
and AP = P(k) - P(k-1)

Yes
! No No
Decrease Increase Decrease
Module Module Module
Voltage Voltage Voltage

I I oo

Yes

Increase
Module

Voltage

"
Update History
LV(k-1 )=V(k) and P(k-1) = P(k)

Fig 58a Flow chart and representation of Perturb and Observe (P&OQO) algorithm for MPPT.

Charge Controller with Maximum Power Point Transfer (MPPT)

Initial value for D output (Dinit) 0.5

Upper limit for D {Dmax) 0.85

MPPT Controller
using Perturbe
& Observe technigue

Lower limit for D {Dmin) 0.05

Increment value used L
to increase/decrease
(DeltaD)

I

Enabla
MFFPT b

Py

O PH{ Pulse

-

Fig 58b Perturb and Observe algorithm with MPPT Strategy in Simscape.
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Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump
Surface System Modelling : Battery Energy Storage System Parameters

Table 13 BESS parameters.

Parameters  Discharge

(4 b/string) TP LeacrAdd

Battery bank data Ratings Unit
Number 64
Strings in parallel 16 Strings
Bus voltage 48 \Y
Nominal capacity 168 kWh
Usable nominal capacity 118 kWh
Energy in 3860 kWh/yr
Energy Out 3294 kWh/yr

Nominal voltage (V) |48

Rated capacity (Ah) |3504

Battery Energy Storage System

<Voltage (V)>

Initial state-of-charge (%)

Battery response time (s)

Fig 59a Design Specifications of BESS.

75

le-4

Ly -232

> 48.95

)
Battery Bank SOC
o P
L =
— <SOC (%)> >
? m <Current (A)>

Battery Stats

Current

Voltage

Fig 59b Equivalent circuit of Battery Energy

Storage System.
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Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump

Surface System Modelling : Power conditioning system parameters

Table 14 Power conditioning system parameters

3 Phase Inverter System

S : " Units |81 v
Power conditioning system parameters ~ Ratings ~ Unit |
Nominal power and frequency [ Pn(VA), fn(Hz) ] ‘[ 7e3,60] [7000,60] ‘ o F T
Primary voltage (V) 30 V' \Wining 1 parameters [ V2 PhPhims), Ri(Oh) , L1H) ] 124000025714 2.7284e-05) | . j 1 —
Secondary voltage (1)) 60 Vv IS g T
inding 2 parameters rms) , m), . : : b 8 sp— | oa b
Frequency (‘f) ” 0 Hy Winding 2 parameters [ V2 Ph-Ph(Vrms) , R2(Ohm) , L2(H) ] [460 0.060457 0.0064147] | JLI}S %%

RMS line'to'liﬂe \"Oltage vL-L(rms) 3 384 \/  Magnetization resistance Rm (Ohm) ‘64.286 ‘ : H Bp H ’_., Thm&PhaB: :h ree_Pha; b
Nominal power 7 kVA  Magnetization inductance Lm () (017052 E r umw'a”dgec ‘ oo -1 Measuremer:

Modulation index, m (assumed) l Saturation characteristic [ i1(A) , phit(V.s); i2, phi2; ... ] 724 0.07797;190.52 0.098762] ‘ g

‘ BUS Stats1

Fig 60a An equivalent circuit of a power conditioning

system for the induction motor load. Fig 60b Equivalent circuit of a power conditioning

system
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Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump
Surface System Modelling : Load Parameters

4. Mechanical Input Waveform - O

File Tools View Simulation Help

© -

BOP® =-Aa-E-FA-

Table 15 Nameplate 3-phase induction motor parameters

1.05F
1k

0.95
09
0.85

0.8

0.75

0.7
0.65

06

0.551

* Motor parameters  Ratings  Unit
Line-to-line voltage 460
Full load current 10
Peak load 4.44
Rated power 73 hp
Full load speed 1110 rpm
Full load torque 354 Ib-ft
Efficiency 83.5 %
Power factor 0.835
Safety factor .15

0

1
2 4 6 8 10 12 14 16
Time (Sec)

Fig 61 The waveform of mechanical torque
requirement of Squirrel cage motor

The full motor parameters and nameplate data are

presented in Table 15

nnnnnnnnnnnnnnnnnn

2l

Fig 62 Equivalent circuit of the squirrel cage

Induction motor prime mover.
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Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump

Analysis of Results

Using June as a sample summer month in Medicine Hat, it is shown to have longer daytime hours and higher levels of solar

irradiance, with warmer temperatures.

In comparison with January taken as a sample winter month which is observed to have shorter hours and lower levels of

solar irradiance, at lower temperatures

0 2 4 6 8 10 12
Time (Sec)

PV Voltage » PV Voltage
-~ T T T T T T T T T 1 T T T T T
s~ 1 2
- ____—F.-‘-‘—-’-—\'\ el
@ 60" T T T T T T T T 1 @ w/—— ‘\‘\!
=) o
%40 g 0r ‘ ' l
Q
> 20 >
= =
g0 oo ; . i ; ;
10" PV Power 10" PV Power
e T T T T T ~6 T T T T T
2 10} 2 )
@ )
g5 g2
> >0
o 0 EL-2 1 1 L
- PV Current PV Current
< 2000F g0
& S '
5 400} : -
£ 1000 e
= 5 200 I [
o 0 0 ! !
>
E 0 oL-200¢ i i i i i
6 8 10 12

14 16 18

=
ra H
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Fig 63a Summer

Fig 63 Solar PV voltage, current, and power

Time (Sec)

Fig 63b Winter
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Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump m

Analysis of Results

UNIVERSITY

» The current, voltage and power of the battery energy storage system are steady, predictable and consistent with the
expected behavior for steady state operation. Considering state of charge, in summer, it increases gradually from ~75% to
~90% over 19 s, while winter shows similar upward trend from ~75% to ~85% over 12 s.

<S0C (%)>
|

«10° <Current (A)>
T T

Current (A)
[ =T

<Voltage (V)>
T T

3

2

40

Voltage (V)

S

I I I I | 1 1 | Il

«107 <Battery Power>

2 f I T T f T T T T
g
]
3
o
o

0 2 4 6 8 10 12 14 16 18

Time (Sec)

Fig 64a Summer
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I
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1 I

Current (A)
[ =) o

<Vollage (V)>
1

x107 Battery Power
+ +

(W)

Power
R~ R )

1 1 1 1 1

=
[
'S

6 8 10 12
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Fig 64b Winter

Fig 64 Solar PV voltage, current, and power
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Fig 64c. Battery parameters (higher resolution)

Battery state of charge (SOC%), current, voltage, and power

for battery energy storage system.
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Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump
Analysis of Results

The pulsating direct current (DC) power supply (from the solar PV system and the battery backup) is converted to alternating current
(AC) by the three-phase inverter system and the sinusoidal line voltages and line currents received by the three-phase squirrel cage
induction motor are given in Figure 68a,b, respectively.

;;‘ ' Il it it vj
LT
DR | e

02 03 04 05 06 . . 0.
Time (Sec) Time (Sec)
Fig 65a Sinusoidal Load Voltage Viyg Fig. 65b Sinusoidal Load current Izyg m
Vi VIO R | A

UNIVERSITY
Fig 65 Similar Sinusoidal load current and voltage lzyg, Vryg fOr summer and winter
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Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump
AnaIySIS Of ReSUItS Real Power (W) %104 Reactive Power (VAR)

4000 / 7 1.3 | . /-\ \ /'\
3000 \\ I.r'rlf \ . ;‘; \‘ ' \

2 2000 \ / : 1.25 ! ]
- N~/ N~ / )
N A4 12 V

1000 1 | -
=2000 I I 1 — i
2 3 8 10 12 0 2 4 6 8 10 12
Time (Sec) Time (Sec)
Fig 66a Real power demand Fig 66b Reactive power demand
Fig 66 Similar real and reactive power demand for winter
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Fig. 67a. Real power demand Fig. 67b. Reactive power demand

Fig 67 Similar real and reactive power demand for summer
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Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump
Analysis of Results

Per Unit (pu)

@
o 054
0.92

Torque pu

Conn2

Y > Connt > Connt

al

Connt

D Connt Conn3 Connd }——

Conn4 Conn2

inm=cel

TD Conn2 da

Conn4 |——

Conn3

b2
3 Phase Electrical Supply Source Subsystem

b H

. 6 10
Time (Sec)

Fig 68 Similar Torque and Speed characteristics

for summer and winter

[—1

2 Gearbox and Gear Reducer  Surface pumping unit and Rod stringSubsystem Subsurface pump and downhole tubing
“ Subsystem Subsystem

Induction Machine
Squirrel Cage

Fig 69 Schematic diagram of integrated sub-systems
in model-based simulation.
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Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump :

Surface System Modelling : Equivalent Circuit

| Design, Modelling and Control of a Sucker Rod Pump Drilven Oil well |
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Design, Dynamic Modelling, Simulation, and Control of a Solar-powered Sucker Rod Oil Pump
Conclusion and Summary of Results

«  Provides a complete picture of the system's behavior, allowing for the identification of opportunities for
efficiency optimization at each subsystem.

«  Decouples the microgrid into subsystems, supporting efficiency enhancements and performance improvement
across the entire system from power source to load.

«  Supports adaptation to various environmental and operating conditions, so potential issues can be identified
and addressed before prototyping and real-world implementation.

* Incorporates load modeling from SolidWorks and Simscape into the Simulink model, providing a more
realistic representation of the actual system, and leading to more reliable simulation results.

« The interdisciplinary approach combines mechanical (SolidWorks) and electrical (Simscape) models which is
crucial for designing effective control algorithms for the sucker rod pump.
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Final Conclusion of Research Work : Summary m
V| VIO K| A

InChapter2 UNIVERSITY

s An integrated approach is adopted for optimal sizing of the sucker rod pump artificial lift system combining two (2) artificial lift
simulators that are integrated for automated sizing.

s Asucker-rod artificial lift system is optimally sized for a case study oil well, to obtain the minimum API rating of the pumping unit,
sustain the target production rate, and determine the corresponding minimum prime mover required to drive the pump sustainably.

In Chapter 3

s Feasibility study is successfully completed for the remote oil well, various pumping modes are identified and combined with different
renewable energy configurations to identify the optimal scenario based on certain key performance indicators.

¢+ The research recommends solar photovoltaic, wind turbine, and battery storage (with the least unmet load) for continuous pumping
scenario, and solar photovoltaic and battery storage (with the least system cost) but with slightly higher unmet load for intermittent
pumping.

In Chapter 4

¢ The Internet of things data transmission and communication system of the sucker rod pump was implemented using a low-cost open-

source approach.

Various sensors are deployed to measure key sucker rod pump parameters and relay to the local terminal units.

Terminal units are used for transmitting and aggregating sensor data to the master terminal unit on the local server.

Data monitoring, logging and transmission was implemented for remote control of the electric motors and sensors deployed to track the

sucker rod pump performance which drives the low-flow rate oil well.

In Chapter 5

¢ Design, dynamic modeling, simulation, and control of a sucker rod-powered oil well was completed in Matlab/simulink

¢ The Sucker rod pump was first modelled in Solidworks and then transferred to simscape where the microgrid design was integrated with
the sucker rod pump load model.

s The dynamic modelling and simulation is integrated with historical average daily solar irradiance and temperature data to demonstrate that
the 100% solar energy microgrid design was capable of sustainably driving the sucker rod pump for reliable operation.

X/ X/ X/
0‘0 0‘0 0‘0



Conclusion : Research Contributions m
V| VIO R 1A

Based on the research objectives provided, the research has the following 5 key research outcomes/contributions: UNIVERSITY

Sucker Rod Pump Design Simulator Integration: Development of an integrated methodology for optimal sizing of beam-pumped
artificial lift systems for remote oil wells, combining parametric investigations and petroleum production system simulations.

Feasibility Study of Intermittent versus Continuous Production: Optimization of the design and sizing of hybrid renewable energy
systems (solar, wind, battery storage) to power a remote oil well, evaluating the technical performance of intermittent vs continuous
production.

Feasibility Study of 100% (Solar + Battery) Versus 100% (Solar + Wind + Battery): Evaluation of the feasibility and benefits of
adopting renewable energy-based approaches for continuous and intermittent oil production, considering factors like unmet load,
storage capacity, net present cost, and levelized cost of energy, evaluating economic performance of intermittent vs continuous
production,

Open-Source technology: Design and implementation of a cost-effective, open-source loT-based SCADA system for remote
monitoring and control of a low-flowrate oil well, using serial communication in Arduino Uno and firmata in Arduino Mega
microcontrollers as terminal units, enabling real-time data visualization, secure remote access, and integration of multiple sensors and
transducers.

Load and System Modelling: Design, Dynamic Modelling, Simulation and Control of a 100% renewable energy-powered microgrid
for remote oil wells, assessing its stability and performance under various environmental and operating conditions.

56



T Wi
Future Work MEMORIA

)
0.0

)
0.0

X3

*

X3

*

)
’0

) )
0’0 0’0 L)

)
0’0

R/
0’0

R/
‘0

L)

R/
‘0

L)

R/
0’0
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Expanding the scope of the integrated sizing approach for sucker rod pumps to beyond beam pumps to other artificial lift methods, to include a wider range

of well conditions and production scenarios.
Incorporating feature engineering and advanced machine learning algorithms to optimize the parameter selection process and further reduce iteration time.
Adopting machine learning to reduce the iteration time and accuracy required for optimal sizing of sucker rod pump-powered oil wells.
Comparing the energy efficiency and economic benefits of this approach across different oil fields, geological formations and geographical contexts.
Investigating the technical and economic feasibility of a 100 % wind-powered oil well, comparing the use of hydraulic versus electric power from wind
turbines to drive oil wells.
Investigating the design, modelling, simulation and control of a 100% solar and wind energy powered oil well with various artificial lift configurations
Exploring the technical and economic feasibility of grid-tied solar and wind energy systems in oil well oil, accounting for the carbon footprint of renewable
energy integration and estimating the scope 1 and scope 2 emissions abated in MtCO2e.
Integrating advanced energy storage technologies, such as flow batteries or hydrogen fuel cells, into the microgrid and investigating to improve system
reliability and reduce costs.
Conducting field trials in diverse geographical locations and well conditions.
Transitioning the Node-RED application to a cloud-native platform, to enhance robustness, reliability and cyber-physical resilience.
Implementing email alerts and notifications to enhance real-time monitoring capabilities.
Mounting the transducers and sensors on a 3D model of a sucker-rod pump and integrating artificial intelligence and machine learning algorithms to
develop a calibrated digital twin.
Adoption of machine learning-powered algorithms for maximum power point tracking to effectively track maximum power from the solar PV arrays, using
historical and real-time measured data.
Investigating the dynamic modeling, simulation and control of other renewable energy sources, such as wind or geothermal, to create a more robust and
diversified power supply for the oil well.
Development of advanced control systems to drive the performance of the induction motor prime mover.
Design and deployment of special motors and more sophisticated energy storage systems, possibly exploring emerging technologies like flywheels, flow
batteries or hydrogen for energy savings in sucker rod pump driven oil wells.
Scaling up the model to simultaneously simulate and optimize multiple interconnected induction motors prime movers powering several oil wells as in a
typical conventional an oilfield system.
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