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01. Fossil fuel from internal combustion engine vehicles causes 

greenhouse gas emissions 

02. EVs produce no carbon emissions, have efficient motors and better 

performance

03. Availability of reliable power sources to charge EVs

04. Unavailability of efficient and reliable chargers hinders the adoption of EVs 

at a faster rate
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01. Power flow can be unidirectional or 

bidirectional

02. Unidirectional performs only G2V operation

03. Bidirectional performs G2V, V2H, V2G, V2X

04. Bidirectional injects power back for frequency 

control, load levelling and peak shaving 
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01. The two main types are off-board and on-board 

02. The off-board chargers are DC fast chargers

03. They are installed in the charging stations outside the vehicle

04. Off-board chargers have a high infrastructure cost
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01. Onboard chargers get their AC supply mainly from the grid

02. Onboard chargers are bulky, slow and low power density chargers

03. Installation done inside the vehicle

04. Renewable energy companies see potential in wave energy integration.
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01. Main levels of EV Charging: Levels 
I, II and III

02. Determined based on its location, 
charging time, and power ratings

03. Level I charges with 120 Vrms supply

04. Charging time, power and current 
ratings of 4-11 hours, 1.4kW and 12A, 
respectively
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01. Level II could have a single-phase or 
three-phase supply of 240 Vrms

02. Charging time, power and current 
ratings of 1-4 hours, 4kW and 17A, 
respectively

03. Level III charger is a DC fast charger 

04. Power rating above 50kW

05. Takes approximately 0.2 – 0.5 hours to 
fully charge
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01. Determined based on their 
design criteria: Isolated and 
Non-Isolated

02. Isolated integrated OBCs use 
galvanic isolation

03. Non-isolated use either a 
multiphase or three-phase 

02. Multiphase integrated OBCs 
share power electronic 
components

02. Three-phase integrated OBCs 
grouped single-stage and two-
stage
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01. Single-stage has a simplified topology converting AC-DC in only 
one stage to charge

02. Reduces the overall weight, but has motor torque generation 
problems in charging mode

03. Two-stage integrated OBCs have two distinct stages 

04. The first stage is the AC-DC rectification stage 

05. The second stage is a DC-DC conversion stage to charge the 
battery
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01. A three-phase current source 
converter-based integrated OBC 
design [1]

02. Uses an LC filter, PMSM and a 
current-source converter to charge the 
battery

03. Implementation of a dual-inverter 
system to reduce current ripples 

04. Major drawback of the design is the 
unbalanced grid current 
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01. A parallel configuration-
based integrated OBC is 
designed to address the current 
balancing problem [2]

02. Adopts RYB/YRB wiring 
configuration to get rid of the 
unbalanced current

03. The design has a major 
challenge related to its 
cumbersomeness 
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01. Another integrated OBC 
consists of traction inverters, a 
motor and an active front end 
for a two-stage conversion [3]

02. Vehicle motor’s leakage 
inductance used as the magnetic 
component

03. The implementation of the 
active frontend increases the 
system size
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01. A very simple design comprising 
a single-phase inverter, a PMSM, an 
active power filter and a quasi-z-
source inverter [4]

02. The design is compact due to the 
smaller passive components used in 
the quasi-z-source inverter

03. Design has an improved current 
ripple

04. Design has issues relating to size
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01. A different design uses only a 
PMSM and the traction converter 
to solve the size issue [5]

02. The charger can handle high-
power levels of charging with 
minimal losses

03. Major drawbacks include in-rush 
current problems and high voltage 
stress on the switches.
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01. Charging via motor may generate undesired torque.

02. Traditional topologies suffer from high current ripple, poor power 
factor, and control complexity.

03. Need to ensure zero torque generation during charging, high 
efficiency and power factor.

04. Complexity of charging designs

05. High in-rush current
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01. What if we could use the 
vehicle’s drivetrain system to do 
the charging?

02. Uses PMSM stator windings as 
coupled inductors with the inverter 
as the full converter.

03. Comprises a PMSM, an inverter 
and a single-pole double-throw 
switch (R).

04. Has zero torque, high power 
factor, minimized hardware, and 
reduced current ripples.
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01. No AC supply from the grid

02. Battery is the primary power 
source to drive the vehicle’s motors

03. Switch R closes at m, and path n is 
opened

04. All switches of the inverter are 
activated by Space Vector PWM 
signals
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01. AC to DC rectification stage to 
regulate DC link voltage

02. Switch R connected at point n 

03. Switches 𝑆3 and 𝑆4 stay in the OFF 
position

04. Switches 𝑆1, 𝑆2, 𝑆4 𝑎𝑛𝑑 𝑆5 operate 
according to the charging operational 
mode
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01. The charger operates based on 
an interleaved buck converter

02. The operational modes are 
categorized into four distinct modes

03. Sequential order for duty cycle less 
than 0.5 is I, II, III and II

04. For a duty cycle greater than 0.5, 
the sequential order is IV, I, IV and III
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01. 𝑆6 is OFF throughout the charging 
operation

02. 𝑆1 and 𝑆2 form the interleaving 
network 

03. Two distinct steady-state operations: 
0 <  𝐷 <  0.5, for 𝑉𝑜  <  2𝑣𝑖𝑛  <  2𝑉𝑜 and 0.5 <

 𝐷 <  1, for 𝑉𝑜 > 2𝑣𝑖𝑛

04. A mode repeats in the charging cycle 
depending on the duty cycle

a. Less than 0.5 b. Greater than 0.5
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01. 

𝑣𝑎 = 𝑅𝑖𝑎 + 𝐿𝑒𝑞
𝑑𝑖𝑎

𝑑𝑡 

𝑣𝑏 = 𝑅𝑖𝑏 +  𝐿𝑒𝑞
𝑑𝑖𝑏

𝑑𝑡 

𝑣𝑐 = 𝑅𝑖𝑐 + 𝐿𝑒𝑞
𝑑𝑖𝑐

𝑑𝑡 

02. 

𝑣𝑑 = 𝑅𝑠𝑖𝑑 + 𝐿𝑑
𝑑𝑖𝑑

𝑑𝑡 
− 𝑁𝜔𝑖𝑞𝐿𝑞  

𝑣𝑞 = 𝑅𝑠𝑖𝑞 + 𝐿𝑞
𝑑𝑖𝑞

𝑑𝑡 
+ 𝑁𝜔(𝑖𝑑𝐿𝑞 + Ф𝑚)

𝑣𝑜 = 𝑅𝑠𝑖𝑜 + 𝐿𝑜
𝑑𝑖𝑜

𝑑𝑡 

03. 𝑇𝑟 =
3

2
𝑁(𝑖𝑞(𝑖𝑑𝐿𝑑 + Ф𝑚) − 𝑖𝑑𝑖𝑞𝐿𝑞) 
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01. The 𝑖𝑞  current impacts the 
torque generated

02. The 𝑖𝑞  current is controlled 
using Field Oriented Control as 
shown in the diagram

03. The 𝑖𝑞 current is set to zero to 
generate zero torque

04. 𝜏 =
3

2
𝑁 𝑖𝑞 𝑖𝑑𝐿𝑑 + 𝜓𝑚 − 𝑖𝑑𝑖𝑞𝐿𝑞 = 0
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01. High ripple stresses the battery and 
electrolytic capacitor

02. Ripples increase EMI, reduce charger 
lifespan

03. Winding ripples partially cancel out 
at the output

04. Lower motor winding ripple means 
smaller filter size, reducing losses
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01. Switches S1 , 𝑆2, S4 and 𝑆5 are selected based on their voltage and 
current stress (𝑉𝐷𝐶 & Τ𝐼𝑜 2)

02. Switches S6 and S3 based on 𝑉𝑜 𝑎𝑛𝑑 𝑉𝐷𝐶 − 𝑉𝑜, respectively

03. Input and output capacitors: 𝐶1=
𝐷𝐼𝑜

𝑓𝑙∆𝑉𝐷𝐶
 ; 𝐶2 =

𝑃𝑚𝑎𝑥

2△𝑉𝑜𝑢𝑡 .𝜔 .𝑉𝑜 

04. Equivalent inductance and resistance: 𝐿𝑒𝑞=
𝑉𝐷𝐶.(1−𝐷)

𝑖𝑜𝑟𝑖𝑝
.𝑓𝑠 

; 𝑅 ≤

𝑃𝑚𝑎𝑥 1−𝜂

𝜂.𝐷2𝐼𝑜
2  
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a. Output Voltage b. Output Current c. Motor Winding Current 

d. Back emf in charging mode e. Motor Torque f. Driving mode back EMF before 
and after charging 25



01. Made up of an AC power supply, an 
inverter, a diode bridge rectifier, an ACS712 
current sensor

02. Also has a voltage divider network, a 
PMSM, two capacitors and a 
TMS320F280049C microcontroller. 

03. Motor parameters: 3kW rated power, 4 
pole pairs, 0.5-ohm resistance, 2mH 
equivalent inductance

04. Data acquisition via Oscilloscope
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a. Winding currents and output voltage(Zoomed out) b. Winding currents and output voltage (Zoomed in) 

c. Switches voltage stress (Zoomed out) d. Switches voltage stress (Zoomed in) 
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28
c. Step change and its effect d. Output current ripple comparison

a. Switches voltage stress and output current b. Input and diode voltages



01. Switching losses resulting from the ON and OFF turning of the 
switches 

02. Conduction Losses resulting from the motor windings and the switches

03. Core Losses resulting from only the motor windings

04. Efficiency of 94% at rated power 
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01. Fewer components used. 

02. High power density

03. Comparison made to assess the 
power density of integrated and non-
integrated 

04. Comparison made to assess the 
topology with other existing chargers 
for light, medium and heavy-duty EVs
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01. What if we could use the vehicle’s 
drivetrain system to do the charging?

02. Dual-purpose use of PMSM as 
interleaved coupled inductors

03. Comprises a single-phase AC input, 
diode bridge, and interleaved boost PFC.

04. Has zero torque, high power factor, 
minimized hardware, and reduced 
current ripples.
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01. AC to DC rectification stage for 
PFC and DC link voltage regulation

02. Switch R is opened throughout the 
operation 

03. Switch 𝑆1 stays ON, while 𝑆4 goes 
OFF completely

04.Switches 𝑆2, 𝑆3, 𝑆5, 𝑆6  operate 
according to the charging operational 
mode
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a. Mode I b. Mode II 

c. Mode III d. Mode IV 33



01. 𝑆1 is ON while 𝑆4 is OFF throughout the 
charging operation

02. 𝑆5 and 𝑆6 form the interleaving 
network 

03. Two distinct steady-state operations: 
0 <  𝐷 <  0.5, for 𝑉𝑜  <  2𝑣𝑖𝑛  <  2𝑉𝑜 and 0.5 <  𝐷 <

 1, for 𝑉𝑜 > 2𝑣𝑖𝑛

04. A mode repeats in the charging cycle 
depending on the duty cycle
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01. Modeling is based on electrical, 
back-emf, torque and mechanical 
models. 

02. Assumptions are made to model 
the PMSM as a coupled inductor 

03. Mathematical analysis done in d-q 
frame for accuracy and simplification

04. Direct and quadrature axes 
inductance are the same for a round 
rotor
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01. The control of the PFC boost 
charger configuration regulates 
output voltage 

02. Control consists of voltage and 
current loops 

03. Three PI blocks compensate for 
the errors from the compensation

04. S1 is turned ON, while S2, S3 and 
S4 are turned OFF
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01. Maximum and minimum input current ripple for 0 < 𝐷 ≤

0.5 

𝐼𝑖𝑛min = 𝑉𝑖𝑛
1

1−2𝐷+𝐷2 𝑅𝐿
 −

𝐷 1−2𝐷

6 1−𝐷 𝐿𝑒𝑞

1

𝑓𝑠

𝐼𝑖𝑛𝑚𝑎𝑥 = 𝑉𝑖𝑛
1

1−2𝐷+𝐷2 𝑅𝐿
+

𝐷 1−2𝐷

6 1−𝐷 𝐿𝑒𝑞

1

𝑓𝑠
 

02. Maximum and minimum input current ripple for 0.5 <

𝐷 ≤ 1 

𝐼𝑖𝑛𝑚𝑖𝑛 =  𝑉𝑖𝑛
1

1−2𝐷+𝐷2 𝑅𝐿
 −

2𝐷−1

6𝐿𝑒𝑞

1

𝑓𝑠

𝐼𝑖𝑛𝑚𝑎𝑥 =  𝑉𝑖𝑛
1

1−2𝐷+𝐷2 𝑅𝐿
+

2𝐷−1

6𝐿𝑒𝑞

1

𝑓𝑠
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01. Made Ripple present for D greater than 
0.5 and less than 0.5

02. At 0.5, only two modes occur, and 
output current ripple is zero

a. Duty cycle equal to 0.5l 

b. Duty cycle less than 0.5

c. Duty cycle greater than 0.5
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a. In-rush current in an 
existing model 

b. No in-rush current in the 
proposed model c. Winding currents

d. Winding currents zoomed in e. Output voltage f. Torque
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01. Made up of an AC power supply, an 
inverter, a diode bridge rectifier, an 
ACS712 current sensor

02. Also has a voltage divider network, a 
PMSM, two capacitors and a 
TMS320F280049C microcontroller. 

03. Data acquisition via Oscilloscope

40



a. PFC b. Input voltage step change c. Voltage stress on switches 
(zoomed out)

d. Voltage stress on switches 
(zoomed in)

e. Motor winding current (zoomed out) f. Motor winding current (zoomed in)
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a. Input Current Ripple Comparison (zoomed out)  b. Input Current Ripple Comparison (zoomed in)

c. Switch Voltage stress and diode voltage
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01. Switching losses resulting from the ON 
and OFF turning of the switches 

02. Conduction Losses resulting from the 
motor windings and the switches

03. Core Losses resulting from only the motor 
windings

04. Efficiency and THD of 93.9% and 3.5% 

43



01. A magnetically coupled integrated onboard EV charger has been 
presented 

02. Configuration of the charger does not require rewinding of motor windings

03. Charger has no in-rush current, torque generation, and bulkiness issues

04. Comprehensive analysis, simulation, and experiments done to prove the 
stability, robustness and high-power density of the charger
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01. Integration of both the output and input current ripple into the same 
OBC topology. 

02. Extension of the charger’s functionality to do V2H, V2G and V2X

03. Extension of the proposed charger to vehicles with more than one motor

04. Solve the industry-wide pain point
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