

Design and Simulation of a DC Microgrid System for a Remote Community in Nigeria

BY JAPHET CHIKANKA OZOGBUDA

Faculty of Engineering & Applied Science Memorial University of Newfoundland, Canada.

Supervisor: Prof. M. Tariq Iqbal

OUTLINE

- Introduction
- Objective of the Study
- System Sizing and Analysis in Homer Pro for an off grid System
- System components
- Economic And Sensitivity Analysis of Proposed system PV system
- Dynamic Modelling, Simulation and Results
- Summary & Conclusion

INTRODUCTION

- Nigeria is one of west Africa country with about 206 million population
- Greater population of Nigerians does not have access to Electricity. Hence the need for alternative energy.
- Most remote communities are cut off from the electricity grid
- The selected site is situated in Edo State, Nigeria. The community has 9 houses which are not more than 100m apart

INTRODUCTION

- The average daily direct
 radiation reach about
 4.65kWh/m²/day in Southern
 region of the country.
- With this high potential of solar that can be utilized as alternative source to supply part of the energy needs in Nigeria

Solar irradiation in Nigeria

LITERATURE REVIEW

Author	Paper Reviewed
A. Chauhan	A review on Integrated Renewable Energy System based power generation for stand-alone applications
A. Desai	Exploring Technical and Economic Feasibility of a Stand-Alone Solar PV based DC distribution system over an AC for use in houses
A Rajeev	Design of an Off-grid PV system for the rural community
C.B. Muzaffar	Design and analysis of off grid solar system for DC load of a house in Pakistan
A.U Rehman	Design and control of an off-grid solar system for a rural house in Pakistan
Nunu Mazibane	Design of an off-grid PV system for Mapetja rural village.
S. Sini	Techno-economic feasibility analysis of a solar off-grid system for a residential load in an under-developed colony

LITERATURE REVIEW

Author(s)	Paper reviewed
W. Chengshan	Research on several problems of distributed generation energy supply system
L. Huang	Stability analysis of DC microgrid considering the action characteristic of relay protection
M. Ahamed	Modelling and simulation of a solar PV and battery used DC microgrid system
Z. Guorong	Influence of bus voltage on DC load in DC microgrid
M. Tianyi	Modelling and Stability Analysis of microgrid with Multi-converter
Palit and S. Malhotra	Energizing rural india using microgrids

On Google maps the selected site has the following co-ordinates: Latitude: 6° 17'22.2"N, Longitude: 5° 59'31.8"E (6.28949409312645, 5.992154342254569).

ENERGY CONSUMPTION

Daily energy consumption for a house in remote Edo State, Nigeria

Appliance	Quantity	Power Rating (W)	Total Wattage (W)	Duration (Hours)	Total Energy (kWh)
Ceiling fans	2	60	120	7	0.84
Television	1	50	50	5	0.25
Deep Chest freezer	1	140	140	10	1.4
Water Pump	1	750	750	0.2	0.15
LED bulb	7	8	56	6	0.34
Double arm streetlight	2	70	140	3	0.42
Total load:			1.26kW		3.4kWh

- All system components were
- selected using Homer Pro.
- The figure shows all
- components in a block
- diagram. Which consists of
- 4, 325W PV module, 4, 12V,
- 350Ahr, 4.8kW generator
- and 1.6kW inverter.

Homer block diagram of all selected components

Using a 48V bus, system is made up of a 1.23kW PV comprised of 4 modules each of 325W (2 series and 2 parallel).

> MPPT

- The DC DC buck converter
- Permanent magnet synchronous generator for charging the battery when the voltage of the battery goes below 49V due to inconsistency in solar resources.

SYSTEM SIZING AND ANALYSIS FOR AN OFF-GRID RESIDENCE

The scaled annual average solar irradiation is 4.63kWh/m²/day

The monthly average solar irradiance of the selected site

SYSTEM SIZING AND ANALYSIS FOR AN OFF-GRID RESIDENCE

Monthly Electric Production

SYSTEM SIZING AND ANALYSIS FOR AN OFF-GRID RESIDENCE

- Solar PV is the prime supply for powering the load and charging the battery
- The battery only operates as backup
- The battery is mostly a source of power supply at night or at rainy or cloudy days
- The emergency generator only operates if both cannot meet the load demand.

ECONOMIC ANALYSIS OF PROPOSED PV SYSTEM

• (••)	₽ F	HOMER Pro Microgrid Analysis Tool [system_sizing.homer]* x64 3.13.8 (Pro Edition) Search													c	کر 🗕 ۱) X
FILE			1	LOAD	COMPONENT	S RESOUR	CES PROJEC	T HELP									
Home	De	sign	Results View	Electric #1	Electric #2 De	ferrable Therm	al #1 Thermal #	2 Hydrogen								Ca	alculate
									RES	SULTS							
Su	mmar	nmary Tables Graphs Calculation Report															
	Compare Economics O Column Choices														25		
Expo	ort						Left Double (Op Click on a particu	otimization R ular system to se	esults ee its detailed Simulation Res	ults.				Catego	orized 🔘 (Overall
	-	B	CS6X-325P (kW)	Gen50 (kW)	Dis12V 🏹	Converter (kW)	Dispatch 🏹	NPC (\$) ♥	COE (\$) ♥	Operating cost (\$/yr)	Initial capital 🕅 (\$)	Ren Frac 🕕 🟹 (%)	Total Fuel V (L/yr)	IRR (%) ▼	Simple Payback (yr)	Hours 🟹	Produ (kV
1	1		4.30	4.80	8	1.77	LF	\$12,084	\$0.227	\$441.05	\$6,383	92.6	103	97	1.0	126	302
1	'		8.01		12	1.66	CC	\$14,630	\$0.275	\$386.16	\$9,637	100	0	63	1.6		
	6		2	4.80	4	1.99	LF	\$25,888	\$0.487	\$1,824	\$2,313	0	1,737	244	0.41	2,135	5,124
1	6		12.5	4.80		0.969	СС	\$62,821	\$1.18	\$4,265	\$7,686	0	4,836	24	4.1	5,944	14,26
	-			4.80			СС	\$78,076	\$1.47	\$6,002	\$486.96	0	7,127			8,760	21,02

ECONOMIC ANALYSIS OF PROPOSED PV SYSTEM

The diesel generator only system is more expensive than the PV hybrid system

Simulation Results													×
System Archited	ture:				Discover	r 12V	RE-3000TF	(2.00 string	s)		Total NPC:		\$12,084.45
CanadianSolar N	MaxPower	r CS6X-3	325P (4	1.30 k	W) System (Conv	erter (1.77	kW)			Levelized CO	DE:	\$0.2273
Generic Small G	ienset (siz	e-your-	own) (4.80 k	W) HOMER	Load	d Following				Operating C	ost:	\$441.05
CanadianSolar Max	Power CS6	5X-325P	Syst	em C	onverter En	nissi	ons						
Cost Summary Cas	sh Flow	Compar	re Ecor	nomic	s Electrical	Fu	el Summary	Generic S	Small Genset (si	ze-your-own)	Renewable Penetra	ation Discover 12VRE-3	3000TF
You may choose a	different	t base ca	ase usi	ing th	e Compare l	Econ	omics butte	on on the R	esults Summar	y Table.			
					Archi	itectu	ure				Cost		
	▲ 🧧	•		2	CS6X-325P (kW)	۷	Gen50 (kW)	Dis12V 🏹	Converter (kW)	NPC (\$) € ₹	Initial capital (\$)		
Base system							4.80			\$78,076	\$486.96		
Current system	- M	r 🕋	33	\simeq	4.30		4.80	8	1.77	\$12,084	\$6,383		
	•						_				•		
		Metri	c		Value								
	Present	worth (\$)		\$65,991								
	Annual	worth (S	\$/yr)		\$5,105								
	Return o	on inves	tment	(%)	90.3						Charts		
	Internal	rate of	return	(%)	97.3								
	Simple	payback	c (yr)		1.03								
	Discoun	nted pay	back (yr)	1.10								
Simulation Report												Time Series Plot	🕑 Other

Cost comparison between base and current system

FILE		LOAD		СОМР	ONE	NTS RESOURC	CES PRO	JECT HE	LP											
Home Design	n Results View	Electric	:#1 E	Electric	: #2	Deferrable Therm	al #1 Therm	al #2 Hydrog	Jen								Calcula			
									RE	SULTS										
Summary	Tables	Gr	Graphs										Calculation	Report						
Export	Export All		Sensitivity Cases Left Click on a sensitivity case to see its Optimization Results.										conomics	Column Choice	es					
Ser	nsitivity			Architecture Cost							Cost			Architecture Cost S						
CS6X-325P Derating V (%)	Electric Load #1 Scaled Average (kWh/d)	<u> </u>	′ 💼)	2	CS6X-325P V (kW)	Gen50 (kW)	Dis12V 🍸	Converter T (kW)	Dispatch 🍸	NPC 🕕 🏹	COE (\$)	Operating cost 🕕 🏹 (\$/yr)	Initial capital 🕎 (\$)	Ren Frac 🕕 😽	Total Fuel (L/yr)	🕻 Hou			
77.0	11.3	M	/ 💼		2	4.84	4.80	8	1.73	LF	\$12,555	\$0.236	\$453.95	\$6,687	92.2	108	133			
88.0	11.3		1		~	4.29	4.80	8	1.78	LF	\$12,092	\$0.227	\$442.37	\$6,374	92.5	104	128			
99.0	11.3	M	/ 💼		~	4.18	4.80	8	1.81	LF	\$11,718	\$0.220	\$418.05	\$6,314	94.5	77.3	95.0			
77.0	13.5	1	/ 💼		~	5.50	4.80	8	1.79	LF	\$14,701	\$0.230	\$590.61	\$7,066	88.7	189	232			
88.0	13.5	M	/ 💼		~	5.35	4.80	8	1.80	LF	\$14,149	\$0.222	\$554.33	\$6,983	91.2	146	180			
99.0	13.5	1	/ 💼		~	4.76	4.80	8	1.78	LF	\$13,691	\$0.215	\$545.15	\$6,644	91.2	146	180			
77.0	9.02	- Marine - M	/ 💼		~	4.09	4.80	4	1.86	LF	\$10,399	\$0.244	\$446.36	\$4,629	84.9	168	207			
88.0	9.02	1	/ 💼		~	3.54	4.80	4	1.87	LF	\$10,006	\$0.235	\$439.98	\$4,319	84.7	171	210			
99.0	9.02	4	<u> </u>		2	3.78	4.80	4	1.89	LF	\$9,685	\$0.228	\$404.35	\$4,457	88.9	124	152			

- Sensitivity analysis is used to determine the adaptation of the system
- > For this design, Sensitivity analysis was performed on Solar PV variation of

10% and load input variation of 20%

- Environmental factor such as cloudy weather, suspended dust could affect the efficiency of the PV
- > Optimization result shows best configuration for optimal cost for the house in

these conditions

DYNAMIC SIMULATION AND RESULT

PV-battery-generator hybrid system in Simulink

•••••

DYNAMIC SIMULATION AND RESULT

Battery SOC and Voltage at half load and 50% SOC

Generator Power at half load

DYNAMIC SIMULATION AND RESULT

Battery SOC and Voltage at full load and 98% SOC

Generator Power

SUMMARY

The performance of the system is evaluated under various conditions in MATLAB/SIMULINK. During this search, it became clear that the proposed stand-alone PV hybrid system with battery and emergency backup generator is stable, and it can fully meet the needs of the house load.

On Google maps the selected site has the following co-ordinates: (6.182863, 5.933505) Latitude:6°10'58.3"N Longitude: 5°56'00.6"E.

Site photo

ENERGY CONSUMPTION

Daily energy consumption for a house in remote Edo State, Nigeria

Appliances	Quantity	Wattage (W)	Total Wattage (W)	Daily usage (hours)	Energy (Wh/day)
LED bulb	3	18	54	10	540
Fan	2	10	20	9	180
Radio/cell phone	1	5	5	8	40
Television	1	30	30	8	240
Total:			109		1000

Design of a DC microgrid system for a remote community using a 48V bus system

>Optimization of the system for economic feasibility using Homer Pro

> Dynamic simulation of the System to determine Stability and power quality

- Annual energy consumption estimated using Homer Pro
- The daily average energy consumption is 1kwh/day

Daily Profile

System Architecture: Generic flat plate PV PowerStar (1.00 strin	HO (0.417 kW) gs)	MER Cycle	e Charging			Scaled	l Avera <u>c</u>	ge (0.60 kWh/d)	Tota Leve Ope	l NPC: Iized COE: rating Cost:			\$2,406.62 \$0.8508 \$108.49
Cost Summary Cash Flo	ow Compare E	conomics	Electrical	Renewable	e Penetration P	owerStar	Gene	ric flat plate PV	Emissic	ons			
Production Generic flat pl Total	kWh/yr ate PV 569 569	% 100 100			onsumption C Primary Load C Primary Load Deferrable Load	kWh/yr 0 219 0 219	% 0 100 0 100		Qu Ex Un Ca	uantity ccess Electricity nmet Electric Load apacity Shortage	kW 321 0.1 0.2	h/yr % 1 56 82 0. 08 0.	5.4 0833 0949
									Qu Re Ma	antity newable Fraction ax. Renew. Penetra	tion	Value 100 4,806	Units % %
PV 0.06	_				Monthly Elec	tric Prod	uction						
0.05 - 0.04 - 0.03 - 0.02 - 0.01 - 0 -													

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Electrical output

Jan

Feb

Mar

Apr

May

> Solar PV is the prime supply for powering the load and charging the

battery

- The battery only operates as backup
- The battery is mostly a source of power supply at night or at rainy or cloudy days
- Excess energy produced from a PV is feed back into the microgrid

block diagram showing load distribution of households in the community

- > The Figure above shows Load distribution of the 9 households in the community
- Each house has a PV system, battery bank
- > Each house has a Switch to connect/disconnect to or from the microgrid.
- > House 1 having an energy consumption of 1kWh/day is used as a reference
- ➤ Using house 1 as reference, a load variation of 10%, is used for load

distribution from house 1 to house 9.

All system components

were selected using

Homer Pro. The figure

shows all components in

a block diagram. Which

consists 100W PV

module, 12V, 45Ahr.

Homer Pro system block diagram

System component in a House

- House appliances such as lights, fans, refrigerators run on either 48V, 12V or 5V.
- DC-DC converters are used to convert bus voltages to house load voltage
- The System comprises of a 100W Solar Panel, battery of 12V, 45Ahr all connected to the 48V bus
- There is no inverter in the system
- Maximum Power Point Tracking (MPPT) ensures the PV reaches delivers maximum power

EXAMPLE OF DC APPLIANCES

12v Large Ceiling Fan

48V DC Refrigerator

ECONOMIC ANALYSIS OF PROPOSED PV SYSTEM

Sensitivity				Architecture				Cost	Syst	em	P	V	540Wh		
Electric Load #1 Scaled Average (kWh/d)	M	.	PV (kW)	7 540Wh	Dispatch 🍸	NPC (US\$)	COE (US\$) 🛈 🏹	Operating cost (US\$/yr)	Initial capital 🔻 (US\$)	Ren Frac 🕕 🏹 (%)	Total Fuel 🔻 (L/yr)	Capital Cost (US\$)	Production (kWh/yr)	Autonomy 🍸 (hr)	Annual Through (kWh/yr)
0.600	I		0.417	4	CC	\$2,407	\$0.851	\$108.49	\$1 ,004	100	0	304	569	51.8	131
0.700	Ţ		0.323	8	CC	\$3,780	\$1.15	\$165.90	\$1 ,636	100	0	236	440	88.9	160
0.800	Ţ		0.396	8	CC	\$3,928	\$1.04	\$173.22	\$1 ,689	100	0	289	540	77.8	182
0.900	I		0.863	4	CC	\$3,310	\$0.780	\$153.13	\$1 ,330	100	0	630	1,178	34.6	191
1.10	ų		1.21	4	CC	\$4,015	\$0.774	\$188.00	\$1,585	100	0	885	1,654	28.3	231
1.20	Ţ		0.827	8	CC	\$4,799	\$0.848	\$216.29	\$2,003	100	0	603	1,128	51.8	263
1.30	I		0.958	8	CC	\$5,066	\$0.827	\$229.47	\$2,100	100	0	700	1,308	47.9	283
1.40	Ţ		0.759	12	CC	\$6,226	\$0.943	\$276.33	\$2,654	100	0	554	1,036	66.7	314
1.00	Ţ		0.576	8	CC	\$4,293	\$0.911	\$191.27	\$1,821	100	0	421	787	62.2	223

System design for each house in the community

ECONOMIC ANALYSIS OF PROPOSED PV SYSTEM

- Homer Pro performs economic analysis to determine the feasibility of implementing a system based on financial constraints.
- Result shows detailed breakdown of cost both installation and operation of the system which includes capital, Replacement, O&M cost, e.t.c.
- The total cost of all the components gives the Net Present Cost (NPC) of the system per household.
- For the house with a Load of 0.6kWh/d, result shows an NPC of \$2,407, Capital cost of \$1,004, O&M cost of \$108.49

Export	Export All		Sensitivity Cases Compare Economics Column Choices. Left Click on a sensitivity case to see its Optimization Results. Column Choices. Column Choices.												Choices
Sens	itivity			А	rchitecture		Cost				Syste	em	PV		ſ
Electric Load #1 Scaled Average (kWh/d)	Solar Scaled Average (kWh/m²/day)	"	(1)	PV (kW) 🝸	540Wh 🍸	Dispatch 🍸	NPC (US\$)	COE (US\$) 🗘 🏹	Operating cost (US\$/yr)	Initial capital (US\$)	Ren Frac i 🏹 (%)	Total Fuel V	Capital Cost 🟹 (US\$)	Production (kWh/yr)	Autonon (hr)
0.600	4.14	III		0.469	4	CC	\$2,512	\$0.888	\$113.69	\$1,042	100	0	342	571	51.8
0.600	4.63	1		0.417	4	CC	\$2,407	\$0.851	\$108.49	\$1,004	100	0	304	569	51.8
0.600	5.00	I		0.385	4	CC	\$2,343	\$0.828	\$105.34	\$981.18	100	0	281	568	51.8
0.700	4.14	1		0.364	8	CC	\$3,865	\$1.17	\$170.07	\$1,666	100	0	266	444	88.9
0.700	4.63	I		0.323	8	CC	\$3,780	\$1.15	\$165.90	\$1,636	100	0	236	440	88.9
0.700	5.00	1		0.299	8	CC	\$3,732	\$1.13	\$163.50	\$1,618	100	0	218	440	88.9
0.800	4.14	I		0.437	8	CC	\$4,011	\$1.06	\$177.31	\$1,719	100	0	319	532	77.8
0.800	4.63	1		0.396	8	CC	\$3,928	\$1.04	\$173.22	\$1,689	100	0	289	540	77.8
0.800	5.00	.		0.364	8	CC	\$3,865	\$1.02	\$170.07	\$1,666	100	0	266	537	77.8
0.900	4.14	.		0.530	8	CC	\$4,199	\$0.990	\$186.62	\$1,787	100	0	387	645	69.1
0.900	4.63	.		0.863	4	CC	\$3,310	\$0.780	\$153.13	\$1,330	100	0	630	1,178	34.6
0.900	5.00	1		0.450	8	CC	\$4,037	\$0.951	\$178.59	\$1,728	100	0	328	663	<mark>69.1</mark>
1.10	4.14	.		0.777	8	CC	\$4,699	\$0.906	\$211.32	\$1,967	100	0	567	946	56.6
1.10	4.63	I		1.21	4	CC	\$4,015	\$0.774	\$188.00	\$1,585	100	0	885	1,654	28.3
1.10	5.00	I		0.650	8	СС	\$4,443	\$0.857	\$198.68	\$1,875	100	0	475	959	56.6

- Sensitivity analysis is used to determine the robustness of a design
- For this design, Sensitivity analysis was performed on Solar irradiation using

a range of 4.14kWh/m²/day to 5kWh/m²/day

- Due to climate change solar irradiation could increase or decrease which conversely affecting PV efficiency
- Optimization result shows best configuration for optimal cost for each house

in these conditions

Optimization surface plot with NPC and COE superimposed for remote Edo community for 4.145kWh/m²/day solar scaled average

Optimization surface plot with NPC and COE superimposed for remote Edo community for 5.00kWh/m2/day solar scaled average

DYNAMIC SIMULATION AND RESULTS

Design of communal microgrid system in Simulink

Design connection of House 2 to Microgrid

AND

DYNAMIC

RESULT

Power, Current of voltage of house 1.

The SOC of the battery and voltage.

•••••

DYNAMIC SIMULATION AND RESULT

Power, current and load voltage of House 2.

Battery Voltage and SOC of house 2

CONCLUSION

- > A 48V DC bus system were used for the communal microgrid
- Modelling, sizing, and optimization for an off-grid PV-battery microgrid with DC load have been presented.
- > A detailed economic and sensitivity analysis was done.
- The performance of the system is evaluated under various conditions in MATLAB/SIMULINK.
- During this search, it became clear that the proposed off grid PV-battery is stable, demonstrated power sharing , and can fully meet the needs of the community load.

RESEARCH CONTRIBUTIONS

> A complete sizing and design of off grid PV system to supply power to remote

areas in Edo State, Nigeria

- DC microgrid Power sharing system for remote community
- ➤ Use of DC bus system instead of AC
- > Detailed economic and sensitivity analysis for various conditions
- Dynamic modelling of DC microgrid to show system stability and power sharing

FUTURE WORK

>Addition of low cost open-source SCADA system for small scale renewable energy system.

Application of wind energy system especially in Northern Nigeria where there is high wind energy and solar resources

DC Microgrid renewable energy system for Northern Nigeria in areas with spatial residential/communities.

>Large Scale Grid-tied Hybrid system implementation in Nigeria.

>Implementation of Solar farms and Solar water pumps for communities in Northern Nigeria for agricultural and ranching purposes for improved agricultural experience and development in the agricultural sector.

PUBLICATIONS

J.C. Ozogbuda and M.T. Iqbal "Dynamic Simulation of a Standalone Photovoltaic Hybrid System of a Remote house in Nigeria". <u>2021 IEEE 12th Annual Information Technology, Electronics and Mobile</u> <u>Communication Conference (IEMCON)</u>. <u>10.1109/IEMCON53756.2021.9623160</u>

➢J.C. Ozogbuda and M.T. Iqbal "Dynamic Simulation of an Off Grid Photovoltaic System with backup battery and generator for a Remote house in Nigeria". 30th IEEE NECEC conference Nov. 18, 2021.

➤J. C. Ozogbuda and M. T. Iqbal "Design of a DC Microgrid System for a Remote Community in Nigeria" (Vol 5, No 6, 2021) <u>https://doi.org/10.24018/ejece.2021.5.6.376</u>.

➢J. C. Ozogbuda and M. T. Iqbal "Sizing and Analysis of an Off-Grid Photovoltaic System for a House in Remote Nigeria", *European Journal of Electrical Engineering and Computer Science* Vol.8 No.1. 2022.

ACKNOWLEDGMENTS

➢My gratitude goes to the Almighty GOD for his guidance, favour and blessings throughout my life journey and educational pursuit

➤I express sincere appreciation to my supervisor, Dr. M. Tariq Iqbal for his unparalleled support, supervision and encouragement throughout the research

I am thankful to my family, and friends for their encouragement, sacrifice and support.

➤Thanks also goes to Soltech Nigeria Limited for providing graduate funding in support of my research.

THANK YOU