DESIGN, ANALYSIS, SIMULATION, AND CONTROL OF A COST-OPTIMIZED HYBRID POWER SYSTEM FOR URBAN PAKISTAN

Presented by:

Muhammad Kashif

Supervisor:

Dr. Tariq Iqbal

Co-supervisor:

Dr. Mohsin Jamil

ENGINEERING GRADUATE SEMINAR

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

(FACULTY OF ENGINEERING AND APPLIED SCIENCE)

JULY 2025

PRESENTATION OUTLINE

- Introduction
- Research Objectives
- Optimal Sizing and Techno-Economic Analysis (HOMER Pro)
- Dynamic Modeling and Simulation
- Control Strategies
- Key Results and Conclusion
- Future Work
- List of Publications
- Acknowledgements
- References

Background

- Global energy demand rising; IEA projects 1000 TWh annual growth.
- Rising global energy prices and supply chain disruptions impact developing economies.
- Pakistan faces severe energy shortages due to growing demand and limited local resources.
- Heavy reliance on imported fossil fuels worsens with exchange rate volatility.
- Subsidy removals and additional taxes have sharply increased electricity costs.
- Frequent, severe floods cause widespread economic damage and displacement..
- Power outages of up to 12 hours daily disrupt life and economic activity.
- Independent Power Projects (IPPs) increase electricity costs for citizens through capacity payments even when the requirement is low.

Why Renewable Energy?

- Burning fossil fuels releases greenhouse gases and causes environmental damage leading to global warming and exreme weather events. e.g severe floods
- Frequent, severe floods in Pakistan cause widespread economic damage and displacement, highlighting the urgent need for sustainable energy solutions.
- Fossil fuel reserves are **finite**. If we do not reduce cosumption, the may deplete in our life span.
- Air pollution from fossil fuels results in adverse health impacts such as respiratory problems and lead to increased healthcare costs.

key takeaway: Transitioning to renewable energy is imperative for a cleaner, sustainable, and more secure future

Pakistan's Solar Potential

- Pakistan benefits from favorable climatic conditions, with an average of 8 to 9 hours of sunlight per day.
- The country's solar radiation levels range between 4 and 7 kWh/m²/day, making it highly suitable for solar energy deployment.

Types of PV Systems

∘ Grid-Tied (On-Grid) Systems:

- > Connected directly to the utility grid.
- > Supply electricity to properties and export surplus via net metering.
- > Do not operate during grid outages unless paired with batteries.
- > Recent change in net-metering policies.

o Off-Grid Systems:

- > Operate independently of the grid using battery banks for energy storage.
- > Ideal for remote/rural areas with no grid access.
- > Require higher initial costs and battery maintenance.

• Hybrid Systems:

- > Combine solar with other energy sources (e.g., diesel generators, wind).
- > Include battery storage for enhanced reliability.
- Ensure uninterrupted power during low solar availability or grid outages.

The Current State of **Solar Energy & PV Technology**

- The 'Our World in Data' website report presents solar energy production data up to 2022, highlighting China as the global leader solar energy production.
- NREL data highlights the advancement solar panel efficiency from 1975 to 2023, with the highest achieved efficiency of 47.6% in multi-junction solar cells.

RESEARCH OBJECTIVES

- Address Pakistan's energy crisis marked by frequent load shedding, rising costs, and heavy reliance on imported fossil fuels.
- Design a cost-effective, grid-independent hybrid energy system tailored for urban residential neighborhoods.
- Conduct techno-economic optimization using HOMER Pro to identify the most feasible system configuration under local constraints.
- Perform dynamic modeling and simulation in MATLAB/Simulink to analyze system stability, load-following capability, and response to variable operating conditions.
- Develop advanced control strategies for intelligent load sharing, efficient battery management, and diesel generator coordination to ensure reliable and autonomous operation.

LITERATURE REVIEW

THERING SOUTH
THE RING AND ADDRESS OF THE PARTY OF THE PAR

Reviewed Paper	Description		
Ozogbuda & Iqbal (2021)	Designed a DC microgrid for a Nigerian community using HOMER Pro. Optimized PV-battery system for nine houses with varying loads and analyzed system performance under different solar conditions.		
Al-Wakeel (2020)	Studied Iraq's reliance on neighborhood diesel generators due to unreliable grids. Highlighted environmental and economic issues and proposed rooftop solar PV as a sustainable alternative.		
Muskan & Channi (2023)	Designed a PV-diesel hybrid system in India using HOMER Pro, achieving LCOE of \$0.428/kWh.		
Shang et al. (2020)	Proposed an improved MPPT strategy with faster response under varying irradiance in MATLAB.		
Aziz et al. (2022)	Developed a PV-diesel-battery system in Iraq with improved dispatch, reducing NPC and emissions.		

Site Location

- Study site: Urban neighborhood in Karachi with seven closely located houses.
- Geographical coordinates: 24.9199°N,
 67.1455°E.
- Flat rooftops, free from shading, ideal for solar PV systems.

Weather and Solar Potential at Site

- Average solar irradiance: 5.45-5.6
 kWh/m²/day, peaking in May and lowest in December.
- Average temperature: 19°C in January and 29.7°C in June, with summer highs reaching 40–45°C.

THE RING AND THE PARTY OF THE P

Electric Load Profile in the Neighborhood

- Energy loads for seven houses range from 15-45 kWh/day, with House 1 (baseline) consuming 30 kWh/day due to varied occupant lifestyles and usage patterns.
- Peak demand occurs during May— September, driven by air conditioning use, with higher daytime consumption from non-essential activities to align with solar availability.

Proposed System Block Diagram

- Key components: PV systems, batteries, converters, shared diesel generator.
- Each house equipped with its own PV system and connected to the diesel generator via a DC bus.
- Separate meters installed in each house to monitor diesel generator usage.
- Diesel generator provides backup during low solar or high demand periods.

The same

System Design

- This hybrid energy system consists of individual solar power system for each house, battery storage, and a shared diesel generator.
- Key components include solar PV panels (CS6U-340M), a battery storage unit (SAGM 12V 135), a 10 kVA diesel generator (DG), and a SolaX10 inverter

System Design and Sensitivty Analysis

- Seven off-grid PV systems sized for 15 to 45 kWh/day loads, supported by a shared 2 kW diesel generator for battery charging.
- Sensitivity analysis: Assessed performance under ±10% solar irradiance variations to account for weather fluctuations.
- Cycle Charging (CC) dispatch chosen for efficiency and reduced generator runtime vs. Load Following (LF).

Sensitivity								Architecture					Cost				DG 10k	VA		SA	AGM 12V 135
Home Load Scaled Average V (kWh/d)	Solar Scaled Average (kWh/m²/day)	Δ	·	£	EB	~	CS6U-340M V	DG 10kVA (kW)	SAGM 12V 135 Y	Dispatch 🔻	NPC O T	LCOE (\$/kWh)	Operating cost (\$/yr)	CAPEX (\$)	Hours 🔻	Production (kWh)	Fuel V	O&M Cost (\$/yr)	Fuel Cost (\$/yr)	Autonomy (hr)	Annual Throughput (kWh/yr)
15.0	4.23		win.	£	EB	Z	11.6	2.00	8	CC	\$15,488	\$0.300	\$598.35	\$7,752	27.0	35.5	11.5	21.6	21.3	17.2	2,031
15.0	4.70		4	Ē		Z	7.61	2.00	12	CC	\$15,563	\$0.296	\$553.54	\$8,407	48.0	68.5	21.9	38.4	40.7	25.8	2,115
15.0	5.17		4	£	EB	Z	7.41	2.00	8	CC	\$14,807	\$0.287	\$612.86	\$6,884	66.0	92.5	29.6	52.8	55.1	17.2	2,078
20.0	4.23		w.	£	83	~	12.3	2.00	12	cc	\$20,263	\$0.294	\$813.90	\$9,742	78.0	87.0	28.9	62.4	53.7	19.3	2,752
20.0	4.70		win	Ē	839	~	8.72	2.00	12	CC	\$20,438	\$0.298	\$886.94	\$8,972	154	183	60.1	123	112	19.3	2,778
20.0	5.17		win.	Ē	23	~	9.02	2.00	12	CC	\$19,637	\$0.288	\$820.93	\$9,025	113	129	42.8	90.4	79.5	19.3	2,760
25.0	4.23		w.	Ē		Z	16.7	2.00	12	CC	\$25,444	\$0.282	\$1,102	\$11,198	99.0	136	43.6	79.2	81.1	15.5	3,507
25.0	4.70		"	Ē	E3	Z	15.0	2.00	16	cc	\$24,792	\$0.276	\$967.47	\$12,285	54.0	67.0	21.8	43.2	40.6	20.6	3,531
25.0	5.17		w.	Ē		Z	14.1	2.00	16	CC	\$24,500	\$0.271	\$958.34	\$12,111	56.0	66.1	21.8	44.8	40.5	20.6	3,548
30.0	4.23		win.	Ē	839	~	16.6	2.00	20	CC	\$28,952	\$0.283	\$1,138	\$14,242	77.0	94.1	30.8	61.6	57.3	21.5	4,155
30.0	4.70		win.	£		Z	18.3	2.00	16	CC	\$28,392	\$0.275	\$1,176	\$13,185	65.0	82.0	26.7	52.0	49.6	17.2	4,127
30.0	5.17		<u>"</u>	Ē	83	~	18.3	2.00	16	CC	\$28,005	\$0.274	\$1,150	\$13,140	57.0	67.0	22.1	45.6	41.0	17.2	4,082
35.0	4.23		win	=	E3	Z	18.4	2.00	20	cc	\$33,940	\$0.283	\$1,463	\$15,032	157	204	66.0	126	123	18.4	4,867
35.0	4.70		win.	Ē	E3		19.1	2.00	20	CC	\$32,653	\$0.272	\$1,353	\$15,165	86.0	115	37.1	68.8	69.1	18.4	4,839
35.0	5.17		win.	Ē	EB	Z	18.5	2.00	20	CC	\$32,115	\$0.269	\$1,322	\$15,020	83.0	98.6	32.4	66.4	60.3	18.4	4,800
40.0	4.23		"	Ē	839	Z	29.5	2.00	20	CC	\$38,983	\$0.285	\$1,648	\$17,678	86.0	115	37.2	68.8	69.1	16.1	5,420
40.0	4.70		w.	Ē		\mathbf{z}	28.8	2.00	24	CC	\$39,278	\$0.286	\$1,567	\$19,015	72.0	84.8	27.9	57.6	51.9	19.3	5,419
40.0	5.17		w.	Ē	83	Z	17.9	2.00	20	CC	\$37,690	\$0.272	\$1,727	\$15,366	224	286	92.8	179	173	16.1	5,561
45,0	4.23		W	=		Z	35.2	2.00	20	CC	\$43,841	\$0.285	\$1,902	\$19,251	106	118	39.2	84.8	72.9	14.3	6,047
45.0	4.70		4	Ē	83	Z	29.3	2.00	20	CC	\$42,761	\$0.278	\$1,913	\$18,037	158	187	61.5	126	114	14.3	6,105
45.0	5.17		w.	=	83	Z	29.6	2.00	20	CC	\$41,840	\$0.273	\$1,839	\$18,068	112	130	42.8	89.6	79.5	14.3	6,087

Specifications of system components

PV Module Specifications

Parameter	Values
Model	CS6U-340M
Manufacturer	Canadian Solar
Panel Type	Monocrystalline
Nominal Maximum Power(<i>Pmax</i>)	340 W
Operating Voltage (Vmp)	37.8V
Operating Current (Imp)	8.87 A
Operating Temperature	-40°C ~ +85°C
Cell Arrangement	72 cells(6x12)
Module Efficiency	17.49 %
Junction box rating	IP 67
Weight	22.4 kg

Battery Specifications

Parameter	Values
Model	CS6U-340M
Manufacturer	Canadian Solar
Panel Type	Monocrystalline
Nominal Maximum Power(<i>Pmax</i>)	340 W
Operating Voltage (Vmp)	37.8V
Operating Current (Imp)	8.87 A
Operating Temperature	-40°C ~ +85°C
Cell Arrangement	72 cells(6x12)
Module Efficiency	17.49 %
Junction box rating	IP 67
Weight	22.4 kg

Diesel Generator Specifications

Parameter	Values
Fuel Type	Diesel
Minimum Load Ratio	25 %
Life of operation	12 Years
Capacity Factor	1.9 %
Governor Type	Mechanical
Engine Compression Ratio	23:1
Displacement	1.1 litre
Mean Electrical Efficiency	32.9 %

Specifications of system components

DG Fuel Consumption

Parameter	Values
Net fuel consumption	81.6 L
Fuel consumption per day(avg)	.22 L
Specific fuel consumption	0.309 L/kWh
Fuel curve intercept	0.5 L/hr
Fuel curve slope	0.273 L/hr/kW
Lower heating value	43.2 MJ/kg
Density	820 kg/m3

DG Expected Emissions

Parameter	Values
Carbon Monoxide	16.34 g/L
Unburned Hydrocarbons	0.72 g/L
Particulate matter	0.098 g/L
Fuel sulfur converted to PTM	2.2 %
Nitrogen Oxides	15.359 g/L

Electrical Generation Analysis

Cost Summary

Cash Flow

Dynamic Modeling and Simulation of Proposed System in MATLAB/Simulink

PV CHARACTERSTICS

- House 1 was selected for the simulation with a daily energy requirement of 15 kWh.
- Canadian Solar CS6U-340M modules are used with 17.49% efficiency, Operating Current (Imp) of 8.97 A, and Operating Voltage (Vmp) 37.9V.

I-V and P-V curves of the PV Array

MPPT ALGORITHM

- Ensures maximum power extraction from the PV array by continuously adjusting to the optimal operating point based on irradiance and temperature.
- The Incremental Conductance (INC) algorithm was chosen; it dynamically adjusts the duty cycle of the DC-DC converter based on real-time changes in power and voltage.
- Reduces power loss and improves system efficiency by consistently operating near the Maximum Power Point (MPP).

BUCK CONVERTER

THE RING AND A ADMINISTRATION OF THE PARTY O

- The buck converter steps down the PV array voltage to meet the system's DC link voltage requirement of 48V.
- The duty cycle of the IGBT switch is dynamically adjusted through MPPT controller to control the voltage, with an LC filter ensuring smooth and stable output.
- The converter's design calculations yield an inductor value of 2.2 mH and a capacitor value of 19.55 μF, optimized for stable and efficient operation in the system.

DC - DC Buck Converter

COMPLETE SYSTEM MODEL IN MATLAB SIMULINK

220 V, 50 Hz

Control Strategies for Shared Diesel Generator in Hybrid Power System

DIESEL GENERATOR MODELING AND DYNAMICS

- A four-pole, 50Hz synchronous generator is rigidly coupled to a diesel engine via a mechanical shaft, ensuring synchronized mechanical and electrical angular displacement.
- Diesel engine converts fuel energy into mechanical torque; engine inertia mitigates torque pulsations and provides a kinetic energy buffer for transient stability.
- Generator excitation current of 32A produces a rotating magnetic field at 1500 rpm, inducing three-phase voltages for real and reactive power supply.
- Active power regulated by fuel input control; reactive power controlled through excitation current to field winding.
- Dynamic response shaped by direct-axis (Xd) and quadrature-axis (Xq) reactances and their time constants (T'd0, T"q0), critical for voltage stability and damping.

DIESEL GENERATOR MODELING AND DYNAMICS

• The model simulates mechanical and electrical dynamics, enabling studies on start-up, load changes, fault conditions, and control strategy optimization.

CONTROL STRATEGY FOR AC LOAD SUPPLY

- Diesel generator supplies AC loads during low PV output periods such as nighttime or extended cloudy days.
- Load sharing prevents overloading by alternating power delivery between two groups of houses using a time-sharing scheme.
- Three-phase output dynamically routed via SPDT switches:
- 1. Phase A alternates between Houses 1 and 4
- 2. Phase B alternates between Houses 2 and 5
- 3. Phase C alternates between Houses 3 and 6 (with House 7 combined with House 6).
- Only half of the total neighborhood load is connected at any time, keeping generator current within safe limits.
- Household loads modeled as equivalent impedance networks with resistive and inductive branches i.e approx. 2kW per house at 220 V, PF ≈ 0.95.

CONTROL STRATEGY FOR AC LOAD SUPPLY

• Output waveforms confirm stable operation and generator current below rated capacity under this strategy.

CONTROL STRATEGY FOR BATTERY CHARGING

- Operates during low solar periods (nighttime, extended cloudy days) to recharge all seven battery banks.
- Diesel generator's three-phase AC output is rectified using a six-pulse diode bridge, then stepped down to 48 V DC via a buck converter.
- Buck converter uses IGBT switches and PWM control at 10 kHz, regulated by a PI controller to maintain stable 48 V DC output.
- All battery banks connected in parallel to the regulated DC bus for simultaneous charging with ideal load sharing in the simulation.
- Centralized AC-DC conversion enables efficient multi-bank charging, outperforming sequential charging methods in both time and energy efficiency.

CONTROL STRATEGY FOR FOR BATTERY CHARGING

• Ensures batteries are replenished to maintain off-grid autonomy during periods of insufficient photovoltaic generation.

- Diesel generator supplies 9.65 A RMS per phase for 2kW loads (resistive 6.81 A, inductive 2.84 A).
- Time-sharing alternates power between two house groups, preventing overload.
- Generator speed remains stable at 1500 rpm with minor transient droops promptly corrected.
- Current waveforms sinusoidal and distortion-free, confirming steady-state operation.

Load current waveforms for House 1, 2 & 3

Load current waveforms for House 4, 5 & 6

- Voltage regulated at ~220 V RMS (311 V peak-to-peak), within ±10% of nominal for Pakistani appliances.
- Minor voltage dips during switching are rapidly corrected by the excitation system and generator inertia.
- Slight phase shift from inductive loads does not impact power quality.

Load Voltage waveforms for House 4, 5 & 6

- Centralized 48 V DC bus provides balanced, simultaneous charging of all battery banks.
- Initial high charge rates decrease as batteries approach full capacity, reflecting constant-voltage charging.
- Smooth and stable charge waveforms confirm effective voltage regulation and system autonomy.

CONCLUSION

- This thesis presents a hybrid PV-battery-diesel system designed for urban neighborhoods in Karachi to address energy shortages, grid unreliability, and rising electricity costs.
- Techno-economic analysis using HOMER Pro identified an optimal system configuration, achieving an LCOE of \$0.2959/kWh and a 25-year NPC of \$15,562.55 while reducing greenhouse gas emissions.
- Dynamic modeling and simulation in MATLAB/Simulink validated system stability, with robust voltage and frequency control under variable solar and load conditions.
- Advanced control strategies were implemented for time-shared load management and centralized battery charging, ensuring efficient resource utilization and preventing generator overloading.
- The proposed system offers a scalable, cost-effective, and sustainable solution for urban energy resilience, supporting Pakistan's transition toward clean and reliable power systems.

FUTURE WORK

- Advanced PV and Storage Technologies: Explore high-efficiency panels such as bifacial, heterojunction, and perovskite, along with next-generation batteries including lithium-ion, sodium-ion, and flow batteries to enhance performance and reduce lifecycle costs.
 - Enhanced Control Strategies: Develop Model Predictive Control, artificial intelligence, and machine learning-based controllers for adaptive operation and efficient resource utilization.
 - **IoT and SCADA Integration:** Design real-time monitoring and control platforms with smart alerts via SMS or email and automated fault detection to improve system resilience.
 - Optimization Under Uncertainty: Apply stochastic and multi-objective optimization techniques to manage variability in weather and household energy demand effectively.
 - Hardware Demonstration: Conduct hardware-in-the-loop testing and field trials to validate control strategies in practical operating conditions.

LIST OF PUBLICATIONS

- Kashif, M.; Iqbal, M. T.; Jamil, M., Optimal Design of an Off-Grid Solar Energy System Integrated With a Diesel Generator for Urban Areas in Pakistan, J. Electron. Electric. Eng. 2024, 3, 445–459.
 - Kashif, M.; Iqbal, M. T.; Jamil, M., "Dynamic Modeling and Simulation of an Isolated Hybrid Power System Designed for Urban Areas in Pakistan, Presented at the 33rd IEEE NECEC Conference, 2024, St. John's, NL.
- Kashif, M.; Iqbal, M. T.; Jamil, M., "Control Strategies for a Shared Diesel Generator in an Off-Grid Hybrid Power System for Urban Areas in Pakistan", European Journal of Electrical Engineering and Computer Science (Accepted, July 2025).
- Kashif, M.; Iqbal, M. T.; Jamil, M, "A Case Study: Design, Analysis, and Cost Effectiveness of a Residential 20kW Grid-Connected Photovoltaic System", Presented at the 32nd IEEE NECEC Conference, 2023, St. John's, NL.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to:

- Allah Almighty for His endless blessings and strength throughout my Master's journey.
- My thesis supervisor Dr. Tariq Iqbal for his exceptional guidance, encouragement, and support
- Dr. Mohsin Jamil for his valuable suggestions and collaboration as a co-author.
- My family for their love, patience, and sacrifices—especially my wife, father, elder brother, and friends for their unwavering support and prayers.

Thank you!

If you have any queries, please contact me at

mkashif22@mun.ca

Muhammad Kashif Faculty of Engineering and Applied Science Memorial University of Newfoundland mkashif22@mun.ca

