

Grid Impact of Wind Energy on Isolated and Remote Power System

Graduate Student Seminar : Master of Engineering July 31, 2009

Sheikh Mominul Islam si6028@mun.ca Faculty of Engineering & Applied Science Electrical Engineering

PARTING SAME

Outline

- Introduction
- Motivation
- Wind-Diesel System in Cartwright, Labrador
 - Model Formulation
 - Simulation Results
- Grid connected wind farm in St. Anthony, Newfoundland
 - Sizing of Wind Farm
 - Simulation Results
- Conclusion
- Future Recommendations

Introduction

Why Wind Energy?

- Clean source of renewable energy
- Efficient and reliable
- Cost competitive to other fuel sources in large scale production
- Great resource to generate energy in remote locations
- No damaging affect on the environment

Available Wind Energy in the World

Source: National Aeronautics and Space Administration (NASA)

- Vast amount of wind energy is available in the world
- NL lies in one of the highest wind energy region

Introduction Cont.

Global Wind Energy Scenario

Source: World Wind Energy Association

- The Increased growth rate in 2008 is about 29%
- Total energy produced from all wind turbines is about 250TWh
- Only 1.5% of global energy consumption demand are met

Introduction Cont.

Global Wind Energy Scenario

• Canada ranks 11th in the world with a total wind power capacity of 2,775 MW in 2008

Wind Energy Scenario in Canada

Source: Natural Resources Canada

- Only 1% of Canada's electricity demand met by presently installed wind capacity
- Plenty of wind energy potential is still unexplored.

Introduction Cont.

Wind Energy Scenario in Canada

Source: Canadian Wind Energy Association

- 87 wind farms with 1,400 wind turbines are currently operating in Canada
- Total installed capacity of 2,775MW enough to power 840,000 homes in Canada

Motivation

Source: Global Wind Energy Council

- A minimum combined of 12,000 MW installed wind power capacity by 2015
- Wind Vision 2025 Powering Canada's Future plan argues that Canada must ensure wind energy supplies 20% of the country's electricity demand by 2025,

Scope of the Research

- Most of the researches were done to control of wind-diesel system, flicker emission, wind diesel storage system, power quality from a wind farm etc.
- No research has been done the simulation of a community size wind-diesel system to study voltage and frequency fluctuations
- None studied the impact of wind power addition on local load in a community connected to the grid through a long transmission line.

Scope of the Research

- Two remote communities in Newfoundland and Labrador are identified to carry out the research
- Cartwright is in Labrador, which is an isolated community and is now being supplied by a diesel plant.
- St. Anthony in Newfoundland where the community is now supplied by a central power grid through a long transmission line.
- The objective is to identify the potential wind resource and to determine the voltage and frequency variation

- Cartwright is an isolated community in Southern Labrador
- Community's main source of income is fishery
- Diesel plant is the main source of generation of electricity
- Cartwright Four diesel generators with the total capacity of 2150kW are operating to supply electricity
 - The total diesel consumption by this diesel plant is about 1.2 million liters per year
 - A wind-diesel hybrid system can help to reduce the overall electricity generation cost.

Wind Energy Resources in Cartwright

Annual average wind speed is 5.02m/s at 10m anemometer height.

Load demand in Cartwright

- Daily load profile varies from about 300kW to 550kW
- During summer load demand goes to its peak point about 850kW

Wind-Diesel System in Cartwright, Labrador cont.

UNIVERSIT

Existing power system in Cartwright

- Grid voltage level of 4.16kV is used to supply electricity to the community
- Two diesel generators can run at one time
- Diesel generators require a major overhaul after 15000hrs of operation
- The major load on diesel plant is fish plant
- Diesel plant has its own diesel storage tank which is maintained by local oil supplier
- Most of the residents of this community heat up their houses by using wood or furnace oil
- Total electricity production was 3953885kWhr in 2006

UNIVERS

Wind Energy Conversion system

Wind turbine Model

Mechanical power output from a wind turbine

$$P = \frac{1}{2} C_p(\lambda, \alpha) \rho v^3 A \text{ (W)}$$

 $\overline{(\lambda + 0.089)}$

Tip speed ratio of a wind turbine can be expressed as

Power Co-efficient of wind turbine can be given by

$$Cp = \frac{1}{2} \times \left(\frac{116}{\lambda_{p}} - 0.4 \times (a - 5) \right) \exp^{\frac{-16.5}{\lambda_{p}}}$$

1

 $-\frac{0.035}{a^3+1}$

Mechanical torque output from wind turbine T_{i}

$$T_t = \frac{P_t}{\omega_t}$$

Induction Machine Model

Induction Machine Model

q-axis stator voltage
$$\mathbf{v}_{qs} = \mathbf{R}_{s}\mathbf{i}_{qs} + \frac{\mathbf{\omega}}{\mathbf{\omega}_{b}}\mathbf{\varphi}_{ds} + \frac{\mathbf{p}}{\mathbf{\omega}_{b}}\mathbf{\varphi}_{qs}$$

$$\mathbf{v}_{ds} = \mathbf{R}_{s} \mathbf{i}_{ds} - \frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{b}} \boldsymbol{\varphi}_{qs} + \frac{\mathbf{p}}{\boldsymbol{\omega}_{b}} \boldsymbol{\varphi}_{ds}$$

q-axis rotor voltage

$$\mathbf{v}_{qr}^{\prime} = \mathbf{R}_{r}^{\prime} \mathbf{i}_{qr}^{\prime} + \left(\frac{\boldsymbol{\omega} - \boldsymbol{\omega}_{r}}{\boldsymbol{\omega}_{b}}\right) \boldsymbol{\varphi}_{dr}^{\prime} + \frac{\mathbf{p}}{\boldsymbol{\omega}_{b}} \boldsymbol{\varphi}_{qr}^{\prime}$$

d-axis rotor voltage

$$\mathbf{v}_{\mathrm{dr}}^{\prime} = \mathbf{R}_{\mathrm{r}}^{\prime} \mathbf{i}_{\mathrm{dr}}^{\prime} - \left(\frac{\mathbf{\omega} - \mathbf{\omega}_{\mathrm{r}}}{\mathbf{\omega}_{\mathrm{b}}}\right) \mathbf{\varphi}_{\mathrm{qr}}^{\prime} + \frac{\mathbf{p}}{\mathbf{\omega}_{\mathrm{b}}} \mathbf{\varphi}_{\mathrm{dr}}^{\prime}$$

Induction Machine Model

q-axis stator flux $\varphi_{qs} = \omega_b \int v_{qs} - \frac{\omega}{\omega} \varphi_{ds} + \frac{R_s}{X_{ls}} (\varphi_{mq} - \varphi_{qs}) dt$ d-axis stator flux $\boldsymbol{\varphi}_{ds} = \omega_{b} \int \left| v_{ds} + \frac{\omega}{\omega_{b}} \boldsymbol{\varphi}_{qs} + \frac{R_{s}}{X_{ls}} (\boldsymbol{\varphi}_{md} - \boldsymbol{\varphi}_{ds}) \right| dt$ q-axis rotor flux $\mathbf{q}_{qr} = \mathbf{q}_{b} \int \mathbf{v}_{qr}' - \frac{\mathbf{\omega} - \mathbf{\omega}_{r}}{\mathbf{\omega}} \mathbf{q}_{dr}' + \frac{\mathbf{R}_{r}'}{\mathbf{X}_{r}'} (\mathbf{q}_{mq} - \mathbf{q}_{qr}') dt$ d-axis rotor flux $\mathbf{q}_{dr} = \mathbf{a}_{b} \int \mathbf{v}_{dr}' + \frac{\mathbf{a} - \mathbf{a}_{r}}{\mathbf{a}_{b}} \mathbf{q}_{qr}' + \frac{\mathbf{R}_{r}'}{\mathbf{X}_{tr}'} (\mathbf{q}_{md} - \mathbf{q}_{dr}') dt$ q-axis mutual flux $\boldsymbol{\varphi}_{mq} = X_{t} \left(\frac{\boldsymbol{\varphi}_{qs}}{X_{1s}} + \frac{\boldsymbol{\varphi}_{qr}'}{X_{1s}'} \right)$ d-axis mutual flux $\boldsymbol{\varphi}_{md} = X_t \left(\frac{\boldsymbol{\varphi}_{ds}}{X_1} + \frac{\boldsymbol{\varphi}_{dr}'}{X_1'} \right)$

Induction Machine Model

q-axis stator current	$i_{qs} = \frac{1}{X_{ls}} \left(\varphi_{qs} - \varphi_{mq} \right)$
d-axis stator current	$\dot{i}_{ds} = \frac{1}{X_{ls}} \left(\varphi_{ds} - \varphi_{md} \right)$
q-axis rotor current	$i_{qr} = \frac{1}{X_{br}} \left(\varphi_{qr} - \varphi_{mq} \right)$
d-axis rotor current	$i_{dr} = \frac{1}{X_{br}} \left(\varphi_{dr} - \varphi_{md} \right)$
Electromagnetic torque	$T_{g} = \frac{3P}{4\omega_{b}} \left(\varphi_{ds} i_{qs} - \varphi_{qr} i_{dr} \right)$

Transformer Model

- It is assumed that the windings have zero resistance
- The core reluctance is neglected

Transformer Model

Primary winding induced voltage

Secondary winding induced voltage

Primary winding induced flux

Primary winding induced flux

Primary winding current

Secondary winding current

$$V_{1} = i_{1}R_{1} + \frac{1}{\omega_{b}}\frac{d\varphi_{1}}{dt}$$

$$V_{2}' = i_{2}'R_{2}' + \frac{1}{\omega_{b}}\frac{d\varphi_{2}'}{dt}$$

$$\varphi_{1} = \omega_{b}\int \left[V_{1} - R_{1}\left(\frac{\varphi_{1} - \varphi_{m}}{X_{l_{1}}}\right)\right]dt$$

$$\varphi_{2} = \omega_{b}\int \left[V_{2}' - R_{2}'\left(\frac{\varphi_{2}' - \varphi_{m}}{X_{l_{2}}'}\right)\right]dt$$

$$i_{1} = \frac{\varphi_{1} - \varphi_{m}}{X_{l_{1}}}$$

$$i_{1} = \frac{\varphi_{1} - \varphi_{m}}{X_{l_{1}}}$$

d *a*.

1

Wind-Diesel System in Cartwright, Labrador cont.

2

$$\begin{aligned} q-axis stator flux \quad \varphi_{qs}^{r} &= \omega_{b} \int \left[\mathbf{v}_{qs}^{r} - \frac{\omega_{r}}{\omega_{b}} \varphi_{ds}^{r} + \frac{R_{s}}{X_{ls}} \left(\varphi_{mq}^{r} - \varphi_{qs}^{r} \right) \right] \mathrm{d}t \\ \mathrm{d}\text{-}axis stator flux \quad \varphi_{ds}^{\prime r} &= \omega_{b} \int \left[\mathbf{v}_{ds}^{r} + \frac{\omega_{r}}{\omega_{b}} \varphi_{qs}^{r} + \frac{R_{s}}{X_{ls}} \left(\varphi_{md}^{r} - \varphi_{ds}^{r} \right) \right] \mathrm{d}t \\ \mathrm{q}\text{-}axis damping winding 1 flux \quad \varphi_{kq1}^{\prime r} &= \omega_{b} \int \left[\mathbf{v}_{kq1}^{\prime r} + \frac{R_{kq1}^{\prime}}{X_{lkq1}} \left(\varphi_{mq}^{r} - \varphi_{kq1}^{\prime r} \right) \right] \mathrm{d}t \\ \mathrm{q}\text{-}axis damping winding 2 flux \quad \varphi_{kq2}^{\prime r} &= \omega_{b} \int \left[\mathbf{v}_{kq2}^{\prime r} + \frac{R_{kq2}^{\prime}}{X_{lkq2}} \left(\varphi_{mq}^{r} - \varphi_{kq2}^{\prime r} \right) \right] \mathrm{d}t \\ \mathrm{d}\text{-}axis field winding flux \quad \varphi_{fd}^{\prime r} &= \omega_{b} \int \left[\frac{R_{fd}^{\prime r}}{X_{md}} e_{xfd}^{\prime r} + \frac{R_{kq2}^{\prime }}{X_{lfd}} \left(\varphi_{md}^{r} - \varphi_{fd}^{\prime r} \right) \right] \mathrm{d}t \\ \varphi_{kd}^{\prime r} &= \omega_{b} \int \left[\frac{R_{fd}^{\prime r}}{X_{md}} e_{xfd}^{\prime r} + \frac{R_{kd}^{\prime }}{X_{lfd}} \left(\varphi_{md}^{r} - \varphi_{fd}^{\prime r} \right) \right] \mathrm{d}t \end{aligned}$$

d-axis dam

 $\boldsymbol{\varphi}_{mq}^{r} = \boldsymbol{X}_{aq} \left(\frac{\boldsymbol{\varphi}_{qs}^{r}}{\boldsymbol{X}_{ls}} + \frac{\boldsymbol{\varphi}_{kq1}^{\prime r}}{\boldsymbol{X}_{lkq1}^{\prime}} + \frac{\boldsymbol{\varphi}_{kq2}^{\prime r}}{\boldsymbol{X}_{lkq2}^{\prime}} \right)$ q-axis mutual flux $\boldsymbol{\varphi}_{md}^{r} = \boldsymbol{X}_{ad} \left(\frac{\boldsymbol{\varphi}_{a}^{r}}{\boldsymbol{X}_{la}} + \frac{\boldsymbol{\varphi}_{fd}^{\prime r}}{\boldsymbol{X}_{la}^{\prime}} + \frac{\boldsymbol{\varphi}_{lkd}^{\prime r}}{\boldsymbol{X}_{la}^{\prime}} \right)$ d-axis mutual flux $i_{qs}^{r} = -\frac{1}{X} \left(\varphi_{qs}^{r} - \varphi_{mq}^{r} \right)$ q-axis stator current $i_{ds}^{r} = -\frac{1}{X} \left(\varphi_{ds}^{r} - \varphi_{md}^{r} \right)$ d-axis stator current $i_{kq1}^{\prime r} = -\frac{1}{X^{\prime}} \left(\varphi_{kq1}^{\prime r} - \varphi_{mq}^{r} \right)$ q-axis damping 1 winding current q-axis damping 2 winding current $i_{kq2}^{\prime r} = -\frac{1}{X^{\prime}} \left(\varphi_{kq2}^{\prime r} - \varphi_{mq}^{r} \right)$

d-axis field current $i_{fd}^{\prime r} = -\frac{1}{X_{lfd}^{\prime}} \left(\varphi_{fd}^{\prime r} - \varphi_{md}^{r} \right)$ d-axis current in damper winding $\mathbf{i}'_{\mathbf{k}}$

$$X_{kd}^{\prime r}=-rac{1}{X_{lkd}^{\prime }}igg(arphi_{kd}^{\prime r}-arphi_{md}^{r}igg)$$

Electromagnetic torque 1

$$T_{g} = \frac{3P}{4\omega_{b}} \left(\varphi_{ds} i_{qs} - \varphi_{qr} i_{dr} \right)$$

Synchronous rotor speed

$$\omega_r = -\frac{\omega_b}{2J} \int (T_g - T_m) dt$$

Model Formulation Transmission Line Model

Model Formulation Transmission Line Model

Propagation Constant $\gamma = \frac{R}{2} \sqrt{\frac{C}{I}} + s \sqrt{LC}$ Transmission line characteristic impedance $Z_c = \sqrt{\frac{(R+sL)}{(G+sC)}}$ Sending end current $I_s = \frac{1}{L} \int (e - V_s - R_s I_s) dt$ Receiving end current $I_R = \frac{1}{L_r} \int (V_R - R_L I_R) dt$ Sending end voltage $V_s = Z_c I_s + 2V_{bs}$ Receiving end voltage $V_{R} = 2V_{fR} - I_{fR}Z_{c}$

Simulation

□ Simulation time 20 seconds

Fixed load was considered

□ The model is solved with 'Variable Step/ode-45(Domand-Prince)' method

□ The relative and absolute tolerance was taken as 1e-3 and 1e-6 respectively

Simulation

Topographical location of Cartwright

Satellite image of wind turbine placement

Simulation results

Simulation results

Wind turbine distances (km)	Voltage fluctuation at grid (V)	Voltage fluctuation at wind turbine (V)	Frequency Hz
6.5	12.178	16.149	1.1
8	8.103	11.1	0.97
10	5.71	9.65	0.85
13	4.95	8.22	0.801

• The frequency variation in a small wind-diesel hybrid power system is allowed to change within $\pm 3\%$

• The voltage variation is allowed to change within +10%

Grid connected wind farm in St. Anthony, Newfoundland

Introduction

- St. Anthony is a town with a population of 2730 on the northern peninsula of Newfoundland
- The economy is based mainly on three sectors, namely the fishery, institutions and retail/service industries

• A 6000kW diesel generating plant is installed to supply power to the town in case of emergency

• The electrical power is delivered from the Newfoundland central grid through a 248km transmission line

Introduction

Ranking	Community	Score
1	Cape Norman	155
2	Cook's Harbour	150
3	St. Anthony	145
4	L' Anse aux Meadows	130
5	Ship cove	115
6	St. Carrol's	110
7	White cape	110
8	Goose cove#2	105
9	Cape raven	105
10	Goose cove#1	100

Source: Fenco Newfoundland Limited

Introduction

• Annual average wind speed is about 8.85m/s at 32.9m height.

Scaling the St. Anthony wind data, seasonal mean wind speed value for Cape Norman is calculated

Period	Months	Mean Wind Speed
Winter	December/January/February (DJF)	11.81 m/s
Spring	March/April/May (MAM)	9.83 m/s
Summer	June/July/August (JJA)	7.15 m/s
Fall	September/October/November (SON)	9.12 m/s
Annual		9.46 m/s

The annual average wind speed for Cape Norman is 9.46m/s at 30m elevation.

Scaled wind speed data at Cape Norman

Geographical location of St. Anthony

Proposed hybrid system

1本	WES30	Grid (kW)	Initial Capital	Operating Cost (\$/yr)	Total NPC	COE (\$/kWh)	Ren. Frac.
个人	21	14400	\$ 14,332,499	6,081,211	\$ 79,248,056	0.093	0.27
不本	20	14400	\$13,649,999	6,169,798	\$ 79,511,208	0.094	0.26
不春	19	14400	\$12,967,500	6,258,384	\$ 79,774,344	0.094	0.24
不春	17	14400	\$ 11,602,500	6,435,557	\$ 80,300,632	0.095	0.22
不本	15	14400	\$10,237,500	6,612,725	\$ 80,826,856	0.095	0.19
不本	14	14400	\$ 9,555,000	6,701,311	\$ 81,090,000	0.096	0.18

Homer optimized results

Electrical performance of proposed hybrid system

Wind turbine output

Period	Months	Power output	Energy output	Capacity factor
Winter	December/January/February (DJF)	109.77KW	240.42MWh/period	43.91%
Spring	March/April/May (MAM)	87.43KW	191.48MWh/period	34.97%
Summer	June/July/August (JJA)	61.65KW	135.03MWh/period	24.66%
Fall	September/October/November (SON)	69.7KW	152.66MWh/period	27.88%
Annual		80.97KW	709.36MWh/year	32.39%

Dynamic simulation of grid connected wind farm

Wind speed within the farm $U_x = U_o \times \left\{ 1 - \frac{1 - \sqrt{1 - C_T}}{\left(1 + 2K \frac{x}{D}\right)^2} \right\}$

Proposed hybrid system in SIMULINK

Simulation

□ Simulation time 20 seconds

□ Fixed load was considered

□ The model is solved with 'Variable Step/ode-45(Domand-Prince)' method

□ The relative and absolute tolerance was taken as 1e-3 and 1e-5 respectively

Simulation results

Period	Voltage Variation	Frequency Variation
Winter (DJF)	1975V (7.9%)	0.942Hz
Spring (MAM)	1860V (7.48%)	0.789Hz
Summer (JJA)	1620V (6.5%)	0.652Hz
Fall (SON)	1570V (6.28%)	0.608Hz

- Maximum voltage variation about 7.9% will occur during winter
- Minimum variation will occur during the fall, which is about 6.28%
- Frequency variation is within $\pm 3\%$

Conclusions

- Variation of voltage and frequency are within limits in both cases.
- A 250kW wind turbine can be installed in Cartwright, Labrador diesel power system.
- A 5.25MW grid connected wind farm can be installed in Cape Norman to serve the community in St. Anthony.

Recommendations

For wind-diesel system

- Study of harmonics that is generated by variable speed wind turbine's power electronics in an isolated wind-diesel grid is recommended
- Different types of long term and short term storage systems can be used with the proposed wind-diesel system to store excess electricity at minimum load.
- Dump load can be incorporated into the wind-diesel system to dissipate excess energy produced by wind turbine which can not be stored.
- Variable load can be considered.

Recommendations

For wind farm

- Variable speed wind turbine with voltage controller can be used to reduce voltage variation
- To reduce transmission loss HVDC system can be used to transmit power from wind farm to local power grid.
- Soft starters can be used to integrate wind farm with the power grid.
- Variable load can be considered.

Papers related to research

Conference papers

- M. T. Iqbal, S. Mominul Islam, and John E. Quaicoe, Grid Impact of a 5.25MW Wind Farm Near St. Anthony, Newfoundland, Accepted for presentation at CanWEA 2009 conference to be held in Toronto Ontario, September 20-23, 2009.
- Sheikh Mominul Islam, M. T. Iqbal, J. E. Quaicoe, Voltage fluctuations in a remote wind diesel hybrid power system, presented at ICECE 2008 on 20-22 December 2008 in Dhaka Bangladesh

Journal papers

- 1. Sheikh Mominul Islam, M. T. Iqbal and John E. Quaicoe, Grid Impact of a 5.25MW Wind Farm Near St. Anthony, Newfoundland, submitted to Wind Engineering Journal.
- 2. Sheikh Mominul Islam, M. T. Iqbal, Power Quality Estimation in a Remote Wind-Diesel Hybrid Power System in Cartwright, Labrador, submitted to Open Renewable Energy Journal

Acknowledgement

- Dr. M. T. Iqbal. And Dr. John E. Quaicoe
- Faculty of Engineering & Applied Science, MUN.
- School of Graduate Studies, MUN.
- NSERC

Other

- Md. Arifuzzaman
- Dr. Glyn George
- Dr. Benjamin Jeyasurya
- Ms Moya Crocker

Thank You

For your attention & presence

Questions/Comments

