A Micro Seafloor Marine Current Energy Conversion System

MD. NAHIDUL ISLAM KHAN MASTER OF ENGINEERING FACULTY OF ENGINEERING & APPLIED SCIENCE

Presentation Outline

- Background
- Marine Energy Systems
- Savonius Turbine
- Scaling Laws
- Energy Conversion System
- Conclusion

Renewable Energy Systems

	Renewable	Low	Low	Minimal	Predictable	Minimal	Modular
	resource	capitel	running	environmental		visual impact	
		cost	cost	impoct			
Fossil	X	4	×	×	4	×	×
Nuclear	x	- ✓	×	×		×	×
Wind		x	¥	7	x	×	¥
Solar	1	×	1	✓	×	×	- ✓
Hydro	1	¥		×	. v	×	×
Wave	1	×	- ✓	4	x	1	1
Marine Current	1	×	1	✓	✓	√	4

Thesis Objectives

• Design and development of an efficient turbine

• System sizing based on seafloor marine current data

• Design and development of energy storage system

• System testing in deep-sea conditions

Study of Atlantic Ocean Current

Annual Energy Estimation

Depth	Average	Maximum	Extractab	Maximum	Extractable
(m)	Flow Speed (cm/s)	available power density (W/m ²)	le Power with a turbine (W/m ²)	available energy density in a year (Whr/m ²)	energy density in a year (Whr/m ²)
20	14.6070	1.5583	0.2337	152195.0	23169.0
45	13.2005	1.1501	0.1725	44045.0	5954.0
84	11.2233	0.7069	0.1060	109590.0	15906.0
Near Bottom	7.0555	0.1756	0.0263	98465.0	14268.0

State of the Art Systems

Savonius Rotor

Comparison of Prototypes

At water current of 0.8 m/s

Comparison of Prototypes

At water current of 0.8m/s

Dimensional Analysis

 $C_P = \frac{P}{\rho D^5 N^3}$

$$C_P = \frac{P}{\frac{1}{2}\rho AV^3}$$

 $\frac{V}{ND}$ C_Q :

 $U \alpha R$

Wave Tank Result

Wind Tunnel Result

Wave Tank and Wind Tunnel Comparison

Energy Conversion System

MPPT Algorithm

Energy Conversion System Setup

Experimental Result

Thesis Contribution

Conclusion

Future Work

Acknowledgements

Supervisors Dr.M.Tariq Iqbal Dr.Michael Hinchey

Others Dr.Vlastimil Masek Paul Bishop Brian Pretty

Publications

- 'Sea-Floor Power Generation System', presented at 17th IEEE NECEC Conference, November 8, 2007, St. Johns, NL.
- 'Submerged Water Current Turbine', going to be presented at Ocean'08 MTS/IEEE Quebec Conference.
- 'Performance of Savonius Rotor as Water Current Turbine' submitted in Journal of Ocean Technology.
- 'Scaling Laws of Water Current Turbine' submitted in Journal of Ocean Engineering.

