

Modeling and Comparison of Dynamics of AC and DC Coupled Remote Hybrid Power Systems

Presenter: Tanjila Haque

Supervisor : Dr. Tariq Iqbal

Faculty of Engineering and Applied Science Memorial University of Newfoundland, St.John's, Canada

18th July 2011

- Many community around the world use diesel generator based stand-alone power system
- Rising fuel costs and environmental concerns make the use of renewable energy in stand alone systems increasingly attractive.
- In this research an AC based and an DC based hybrid power system are designed and analyzed.
- A comparison is made based on steady-state and dynamic analysis
- In some case DC coupled hybrid system is better than AC coupled hybrid system.

in the second of more the part of the second the

- Design an AC and a DC coupled Hybrid power system
- Optimal sizing of system components
- Steady- state analysis
- Simulink/Matlab models
- Dynamic and Transient analysis
- Comparison of AC and DC coupled hybrid power system

HYBRID POWER SYSTEM

- A system consisting of two or more energy sources used together to provide increased system efficiency and a well balanced energy supply.
- May be a combination of renewable sources (solar, hydro, wind, biomass) and non-renewable sources (fossil fuels).

Energy Planning

Load profile

- Load of small community of about 160-180 residents is considered
- Daily demands- 2500 kWh
- Peak load 207 kW
- Load factor 0.503

RENEWABLE RESOURCES Constraints of the service of t

- Based on data collected from (<u>www.climate.weatheroffice.gc.ca</u>) Wind speeds at an elevation of 50 m above sea level and scaled for 10 m height.
- Average annual wind speed 6.041m/s
- Averages higher in winter months than summer months
- Correlates with higher loads in winter months

- Based on data collected from NASA
- Solar radiation values are exported for latitude of 47° on monthly basis.
- Average solar energy 3.15kWh/m²-d.
- Averages are higher in May, June and July.

h di man bila	Llearness	Daily Radiation
Month	Index	(kWh/m2/d)
January	0.433	1.280
February	0.479	2.110
March	0.501	3.310
April	0.465	4.180
Мау	0.439	4.740
June	0.444	5.140
July	0.437	4.880
August	0.455	4.390
September	0.447	3.310
October	0.426	2.150
November	0.388	1.270
December	0.402	1.020
Average:	0.448	3.153

System Components

- Photovolatic System
- Wind turbines
- Diesel Generators
- Battery Bank
- Converter

>Type of Load

- 30% AC and 70% DC load
- 100% AC load

WESNHYBRID SYSTEM DESIGN – Photovolatic System

- 175W, 24 V Solar panel
- Can withstand high loads such as heavy accumulations of snow and ice.
- Deliver maximum power output even under reduced light conditions.
- Price for one panel \$830

Rated power	SW175
Peak power	175W
Peak power voltage	35.8V
Peak power current	4.89A
Open circuit voltage	44.4V
Short circuit current	5.30A
Fuse Rating	15A

10

Size (kW)	Capital (\$)	Replacer	nent (\$)	
4.725	22410		17928	
	{}}	{]	}	
Properties				
Output currer	nt 🔿 AC	⊙ DC		
Lifetime (year	s)	25	{}	
Derating fact	or (%)	80	$\{\}$	
b crating race	51 (*0)			
Slope (degree	es)	47	{}	
Azimuth (deg	rees W of S)	0	{}}	
Ground reflect	tance (%)	20	{}	

HYBRID SYSTEM DESIGN -Wind Turbine

60

50

40

30

20

10

n

-10

6 8 10 12 14 16 18 Wind Speed (m/s)

Output Power ()kW

- FD13-50/12 ; cut-in wind speed
 3m/s, cut-out 25 m/s
- Economically feasible at average speeds of 5 m/s
- 3 blade upwind turbine, PMG generator
- 50 KW rated power
- 13m diameter, 25m hub height

HYBRID SYSTEM DESIGN –Diesel Generators

- Two different size (75 kW and 150 kW)
- Life time 35000hrs and 40000hrs respectively

- Surrette 12-Cs-11-Ps lead acid, deep cycle battery
- 12V battery, 54 in series for a 648V bus
- Nominal Capacity 503Ah (6.04 kWh)
- Optimal converter size based on HOMER simulation were 60 kW and 120kW

Quantity	Capital (\$)	Replacement (\$)	0&M (\$/yr)	Strings	200
1	1070	856	30.00	0	G 150
				2	8 100
	{}	{}	{}	3	50 50
dvanced — Batter	ries per string	54 (64	48 V bus)		0 50 100 150 200 Quantity — Capital — Replacement
🔲 Minim	um battery lif	e (yr) 4	<u></u> }		
					12

•AC (Alternating current) coupled system:

System Architecture:

Wind Turbine	: Five FD13-50/12
Diesel Generator	: One 75kW and one 150kW
PV	: 33 kW
Converter	: 120kW
Battery	: 108 (12CS11PS)

•DC (Direct current) coupled system:

System Architecture:

Wind Turbine	: Five FD13-50/12
Diesel Generator	: One 75kW and one 150kW

: 4.725 kW

PV

Converter : 60kW

Battery : 108 (12CS11PS)

•AC coupled system with 30% AC & 70 % DC Load :

•DC coupled system with 30% AC & 70 % DC Load :

¶ÅैÒै॑॑॑ऀ॑॑॑ऀ॑ऀ॑ℤ <mark>ҝ</mark> Ѡ	XLS	D75 (kW)	D150 (kW)	12CS 1	Conv. (kW)	Initial Capital	Operating Cost (\$/yr)	Total NPC	COE (\$/kWh)	Ren. Frac.	Diesel (L)	D75 (hrs)	D150 (hrs)
🖣 🎪 👌 🖨 🗖 🖉 4.725	5	75	150	108	60	\$ 1,567,970	174,044	\$ 3,792,835	0.326	0.60	122,102	4,576	1,421
🖣 🛦 🖒 🖄 🛛 18	5	75	150		60	\$ 1,519,640	222,455	\$ 4,363,359	0.375	0.60	167,464	2,173	4,807

15

HYBRID SYSTEM DESIGN – Simulation Results AC coupled system with 100% AC Load

Sensitivity Results Optimization	n Results	;												
Sensitivity variables														
Global Solar (kWh/m²/d) 3.15 💌 Wind Speed (m/s) 6.04 💌 Diesel Price (\$/L) 1.2 💌														
Double click on a system below for simulation results.											egorized			
PV XLS D75 D150 12 CS 1 Conv. Initial Operating Total COE Ren. Diesel D75 D150 (kW) (kW) (kW) (kW) (kW) Copy Copy NPC (\$/kWh) Frac. (L) (hrs) (hrs)														
7 点 ひ ひ 回 図 4.725 7 点 ひ ひ 回 図 4.725 4.725	4 4	75 75	150 150	108	180 s 180 s	\$ 1,372,970 \$ 1,257,410	182,424 229,212	\$ 3,704,959 \$ 4,187,509	0.318 0.359	0.55 0.54	121,925 162,441	4,892 3,425	1,346 4,102	
		ınl	പ	SV	ste	m w	vith [·]	1000	/_ Δ		ا م	he		
	.00	ιΡι	Cu	Jy			vicii .	100 /	07		LUC	JU		
Sensitivity Results Optimization	on Resul	ts												
Sensitivity variables														
Global Solar (kWh/m²/d) 3.15	j 🔻	Wind 9	Speed (m	/s) 6.04	•	Diesel Price (\$	\$/L) 1.2	•						
Double click on a system below	v for simu	lation re	esults.											Categ
┦ ໍ່≜``````` 🗇 🗹 🙌	XLS	D75 (kW)	D150 (kW)	12 CS 1	Conv. (kW)	Initial Capital	Operating Cost (\$/y) Total r) NPC	C (\$/}	OE F (Wh) F	len. D rac.	iesel (L)	D75 (hrs)	D150 (hrs)
ዋ 🎄 🖱 🖄 🖻 🗖 4.725	4	75	150	108	180	\$ 1,372,97	70 187,0	54 \$ 3,764	,154 0	.323 ().54 1.	25,659	4,877	1,432
ዋ 🎄 🖧 🖾 🖉 4.725	4	75	150		180	\$ 1,257,41	0 235,5	64 \$ 4,268	,711 0	.366 ().53 1	67,467	3,321	4,273
GAN ANALAN	MK	Gal	A Marce	SAMP.	(A)	NH A	ALLAN	W KA	(ha)	(all	Cal	What is	SAM	(A)

AC coupled system:

DC coupled system:

System Components	Electrical production o System	f DC	Electrical production of AC System			
1	(kWh/yr)	%	(kWh/yr)	%		
PV array	5,213	0	36,657	3		
Wind turbines	730,987	60	730,987	57		
75kW Diesel	311,734	25	314,417	25		
150kW Diesel	177,782	15	195,454	15		
Total	1,225,716	100	1,277,515	100		

NSERC CRSNG

18

•100 % AC Load

•30 % AC and 70% DC load

Component	AC Based System	DC Based System		Component	AC Based System	DC Based System	
PV	4.725 kW	4.725 kW		PV	33 kW	4.725 kW	
W.T	4 * 50 kW	4 * 50 kW		W.T	5 * 50 kW	5 * 50 kW	
D-75 kW	1* 75 kW	1* 75 kW		D-75 kW	1* 75 kW	1* 75 kW	
D-150 kW	1 * 150kW	1 * 150kW		D-150 kW	1 * 150kW	1 * 150kW	
Battery	108 number	108 number		Battery	108 number	108 number	
Converter	180 kW	180 kW	N.	Converter	120 kW	60 kW	

100 % AC Load

30 % AC and 70% DC load

Cost Type	AC Based System	DC Based System	Cost Type	AC Based System	DC Based System
Initial Capital cost(\$)	13,72,970	13,72,970	Initial Capital cost(\$)	17,38,260	15,67,970
Operating cost (\$/Y)	182,424	187,054	Operating cost (\$/Y)	180,033	174,044
Total NPC (\$)	3,704,959	3,764,154	Total NPC (\$)	4,039,688	3,792,835
COE (%/kWh)	0.318	0.323	COE (%/kWh)	0.346	0.326

Comparison: Based on Diesel Use and Corresponding Emission

100 % AC Load

30 % AC and 70% DC load

	AC System	DC System		AC System	DC System
Diesel (L)	121,925	125,659	Diesel (L)	127,057	122,102
Pollutant	Emission (Kg/Yr)	Emission (Kg/Yr)	Pollutant	Emission (Kg/Yr)	Emission (Kg/Yr)
CO2	321,070	330,901	CO2	334,583	321,536
CO	793	817	CO	826	794
UHCs	87.8	90.5	UHCs	91.5	87.9
PM	59.7	61.6	PM	62.3	59.8
SO2	645	665	SO2	672	646
NOx	7,072	7,288	NOx	7,369	7,082

100 % AC Load

30 % AC and 70% DC load

	AC System	DC System		AC System	DC System
Renewable Fractions	55 %	54 %	Renewable Fractions	60 %	60 %

Model of PMG based WECS for DC System

Model of PMG based WECS for AC System

Model of induction generator based WECS for AC system.

Two Diode Solar Cell Model

Modeling of Solar panel

Discharge model *i** > 0

$$f_1(it, i^*, i, Exp) = E_0 - K \frac{Q}{Q - it} \cdot i^* - K \frac{Q}{Q - it} \cdot it + Laplace^{-1} \left(\frac{Exp(s)}{Sel(s)} \cdot 0 \right)$$

Charge model $i^* < 0$

Transient Analysis of AC Coupled Transient Analysis of AC Coupled Hybrid Power System

CS1: Simulation With Fixed Wind Speed Variable Load

✤Load 350/400/350

kW

↔Wind Speed 15 m/s

✤No change in WT

power

DGs respond with

main load variation

• Effect of change of load on voltage and Frequency

CS2: Simulation With Fixed Load

✤Load 300kW✤Wind Speed 15/10/14m/s

WTs respond to wind speed change

When wind generation drop, DGs met up additional load

Effect on Frequency

CS2: Simulation With Fixed Load

Effect of change of Wind Speed on voltage and Frequency

39

CS2: Simulation With Fixed Load Variable Wind Speed (cont.)

Load 200kW
 Wind Speed 7/9 m/s
 WTs respond to wind
 speed change
 When wind generation
 rises, Diesel generation
 drop automatically.

CS2: Simulation With Fixed Load Variable Wind Speed (cont.)

Effect of change of Wind Speed on voltage and Frequency

Effect on Voltage

CS2: Simulation With Fixed Load Variable Wind Speed (cont.)

42

P WT 1(kw P WT 2(kW P DG 150 (kW) P DG 75(kW) P_PV(kW)

✤Load 350kW

♦Wind Speed 14/15 m/s

WTs respond to wind speed change

When wind generation rises, Diesel generation drop automatically.

CS2: Simulation With Fixed Load Variable Wind Speed (cont.)

Effect of change of Wind Speed on voltage and Frequency

No Significant Effect on Voltage

Solution With Diesel Generat and Photovoltaic System(cont.)

Load 200kW
Zero Wind Speed
Load is met by DGS and PV.

WESNET Simulation With Diesel Generators and Photovoltaic System(cont.)

Effect on voltage and Frequency

No Effect on Voltage as expected

and a the state and the state of the state of the

No Effect on Frequency as expected

Solution With Diesel Generat WESNet and Photovoltaic System(cont.)

Load 175/225/175kW
Zero Wind Speed
Diesel generation
follows the load

WESNET Simulation With Diesel Generator **CREATE** and Photovoltaic System

Effect on voltage and Frequency

Transient Analysis of DC Coupled Transient Analysis of DC Coupled Hybrid Power System

CS1: Simulation With Fixed Wind Speed Variable Load

✤Load 550/600/550

kW

- ♦Wind Speed 15 m/s
- ✤No change in WT

power

DGs respond withmain load variationPower quality of PV

is better than AC

CS2: Simulation With Fixed Load

✤Load 300kW✤Wind Speed 15/10/14m/s

WTs respond to wind speed change

When wind generation drop, DGs met up additional load

CS2: Simulation With Fixed Load Variable Wind Speed (cont.)

5

DC_P_WT_1(kW) DC_P_WT_2(kW) DC_P_DG_150(kW) DC_P_DG_75(kW) DC P PV(kW)

5

Load 200kW ♦ Wind Speed 7/9 m/s

♦WTs respond to wind

speed change

When wind generation rises, Diesel generation drop automatically.

Load 350kW
Wind Speed 14/15 m/s
WTs respond to wind
speed change

When wind generation
 rises, Diesel generation
 drop automatically.

DC_P_VT_1kw) DC_P_VT_1kw) DC_P_VT_2kw) DC_P_VT_2kw) DC_P_DG_150(kw) DC_P_DG_75kw) DC_P_VK/					DC_P_L	.oad(kW)				
DC_P_VT_1IAW) DC_P_VT_1IAW) DC_P_VT_2AW) DC_P_VT_2AW) DC_P_DG_150(AW) DC_P_DG_150(AW) DC_P_DG_75(AW) DC_P_DC_75(AW) DC	¹⁰ - <u></u>									
) <mark>N</mark>			: 					:	
DC_P_VT_1IkW) DC_P_VT_2IkW) DC_P_VT_2IkW) DC_P_VT_2IkW) DC_P_D6_150 (kW) DC_P_D6_150 (kW) DC_P_D6_75(kW) DC_P_D6_75(kW) DC_P_PK(kN) DC_P_PK	1			:	:				:	:
	,				DC_P_W	/T_1(kW)				
	<u>М. </u>	!	1	 :					:	
DC_P_VT_2(W) DC_P_DG_150 (kW) DC_P_DG_75(kW) DC_P_PG_75(kW) DC_P_PV(kW)	11/1/		<u>.</u>					•		
DC_P_WT_2(kw) DC_P_DG_150 (kw) DC_P_DG_75(kw) DC_P_DG_75(kw) DC_P_PV(kw) DC_PV()+·//									: : !
DC_P_DG_150 (kw) DC_P_DG_75 (kw) DC_P_DG_75 (kw) DC_P_PM(kw) DC_P_PM(kw) <td>00</td> <td></td> <td></td> <td></td> <td></td> <td>/T_2((Au/)</td> <td></td> <td></td> <td></td> <td></td>	00					/T_2((Au/)				
DC_P_D6_150 (kW) DC_P_D6_75(kW) DC_P_D6_75(kW) DC_P_V(kW) DC_P	Пь	1	I	I	00_1_%	1_2(KW)				
DC_P_DG_150 (kv) DC_P_DG_75(kv) DC_P_DG_75(kv) DC_P_PV(kv) DC_PDV(kv) DC_PDV(kv) DC_PDV(kv) DC_PDV(kv) DC_PDV(kv) DC_PDV(kv) DC_PDV(kv) DC_PDV(kv) DC_PDV(kv) DC_PDV(kv) DC_PDV(kv) DC_PDV(kv) DC_PDV(kv) DC_PDV(kv) DC_PDV(kv) DC_PDV(kv) DC_PDV(kv)	T/M~~									
DC_P_D6_150 (kW) DC_P_D6_75(kW) DC_P_D6_75(kW) DC_P_D6_75(kW) DC_P_PV(kW) DC_PV(kW)	0 +									
DC_P_DG_150(kW)										
	0 <mark></mark>				DC_P_DG	_150 (kW)				
DC_P_DG_75(kw) DC_P_DG_75(kw) DC_P_PC(kw) DC_P_PV(kw) DC_PPV(kw) DC_PPV(kw) DC_PPV(kw) DC_	Illan									
DC_P_DG_75(kW) DC_P_DG_75(kW) DC_P_V(kW) DC_P_PV(kW) DC_PPV(kW) DC_P_PV(kW) DC_P_PV(kW) DC_P_PV(kW) DC_P_PV(kW) DC_P_PV(kW) DC_PPV(kW	U =			(······································				
DC_P_DG_75(kw)			i						<u> </u>	ļ
DC_P_FV(kw) DC_P_FV(kw) 0 1 2 3 4 5 6 7 8 9)			1	DC_P_D	G_75(kW)		Γ	ļ	
DC_P_FV(kw) DC_P_FV(kw) 0 1 2 3 4 5 6 7 8 9	0+ ////~~~~		<u></u>	:						l
DC_P_FV(kW) DC_P_FV(kW) D0 0 1 2 3 4 5 6 7 8 9	0 + J.V		. <u>.</u>						<u>.</u>	
DC_P_FV(kW) 5 0 0 1 2 3 4 5 6 7 8 9		i	i	 	;) 	
	1				DC_P_I	PV(kW)				
	m									:
	5			·····					- 	
	0		:	1			:			: I
a sur way we want to be a sur	0	1	2	3	4 !	5 1	6	7	8	9
A 14 MARCHINE STATESTICS OF A DATA STATES	2 minuter	11118 14	1 March	MALKA	N. A.	(Adda)	K. K.C.	a) antas	by and by	alle

WESNet Simulation With Diesel Generator CREERCE and Photovoltaic System(cont.)

✤Load 200kW

Zero Wind Speed

Load is met up by DGS and PV.

	DC_P_Load(kW)									
	400		•							
	200						· · ·			
	0 DC P WT 11kW1									
	80 60			I						:
	20 +		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
	-20	1	1	İ					İ	
	40		.]	I	DC_P_W I	VT_2(kW) T	I		l	
	20 - 11		:							
DGS	0 -		. <u>;</u>	:	:	; 	 I		: I	;
	DC_P_DG_150 (kW)									
			 	:		 : :	:			
	100 + /		•	(} - - -			· · · · · · · · · · · · · · · · · · ·	}
	0					C 750410				
	100	1	1	<u> </u>	UC_F_U :	u_75(kw) !	<u>.</u>	[:	 :	
	50 + 1. 1. 1									
	o		: İ	: 		: I	: 		i	
					DC_P_	PV(kW)				
	10 - Mar									l
	5						(
	0	1	2	3 4	4 !	۱ 5 ا	۱ 6	1 7	1 8 :	9

WESNet Simulation With Diesel Generator CREENCE and Photovoltaic System (cont.)

- Economical and feasible components of the hybrid power system have been selected so that minimized system cost can be achieved.
- AC coupled and DC coupled hybrid systems have been designed using HOMER.
- Comparison has been made between these two system based on component required, system cost, use of renewable fraction, diesel used and corresponding emissions.

Rochnetter role Marine Val Brad a low

- Modeling of individual component has been done by using Matlab /Simulink.
- Individual models have been combined to form the complete system.
- Three different case studies have been considered for transient analysis.
- Finally it can be said that for remote hybrid power system based on DC coupling would be a better power system option

Future Works

- Longer duration Simulation
- Introduce precise control mechanisms in each sub block.
- Selecting a location with higher solar radiation resource.
- Build AC based system and DC based systems and compares their performance
- The power distribution of DC based system would be an interesting scope of further work.

Acknowledgment

- Dr. Tariq Iqbal
- National Science and Engineering Research Council (NSERC), Wind Energy strategic Network (WESNet), School of Graduate Studies (SGS) of Memorial University

Publications

- Tanjila Haque, M. T. Iqbal, "A Comparison of Dynamics and Control of AC and DC Coupled Hybrid Power Systems," presented at WESNet Workshop, February 24-25, Ryerson University, Toronto, ON, Canada 2011
- Tanjila Haque, M. T. Iqbal, "A Comparison of AC and DC Coupled Remote Hybrid Power Systems," presented at 19th IEEE-NECEC Conference 2010, St. John's, NL
- Tanjila Haque, M. T. Iqbal, "A Comparison of AC and DC Coupled Hybrid Power Systems," presented in WESNet Poster Presentation, CanWEA, 2010, Montreal, Quebec

Thanks

