Design, Optimization and Analysis of a Solar Water Pumping System for Pakistan

Presented by: Usman Ashraf

Supervised by: Dr. M. Tariq Iqbal

Outline

- Introduction
- Literature Review
- Research Objectives
- Design and analysis of a solar water pumping system in HOMER
- Dynamic analysis of the proposed solar water pumping system in MATLAB/Simulink
- Design and analysis of a Solar Water Pumping System with Water Tank in HOMER
- Supervisory Control and Data Acquisition (SCADA) for a Solar Water Pumping System
- Conclusion
- Research Contributions
- Future Work
- Publications
- References

Introduction

Overview of Agricultural Scenario of Pakistan

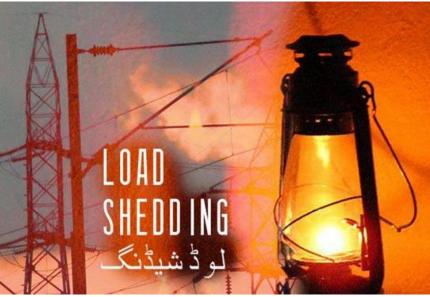
- Pakistan is primarily an agricultural economy
- Agriculture contributes about 22.2% of its overall GDP
- ▶ It employs around 42.3% of its overall labor strength

Overview of Water Resources of Pakistan

- ▶ Water availability was around 5000m³ per capita in the 1950s
- ▶ It has shrunk to around 1000m³ per capita currently
- ▶ By 2025, the water shortfall is expected to reach 150.8 Million acre-feet

Water Pumps installation in Pakistan

Water Pumps installation is considered a suitable solution to combat increasing shortage of water

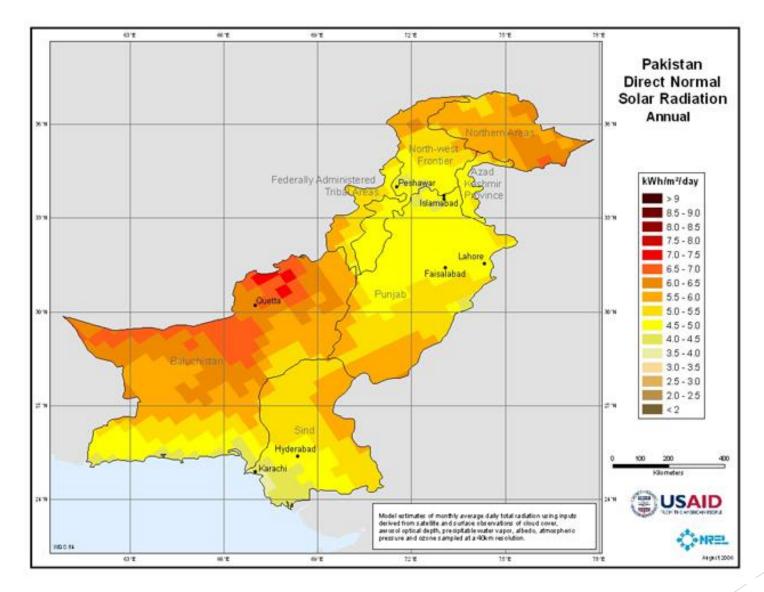


Electricity Scenario of Pakistan

- The country's scenario is not ideal as a shortfall of 5,000MW is faced by the country
- ► Tilt is towards fossil fuels for powering water pumping systems

Fossil Fuels Dependence and Pakistan

- > Pakistan is not rich in fossil fuels and is primarily not an oil-producing country
- It imports 346,400 barrels of oil on daily basis, which costs a staggering 10.7 billion US dollars to the economy
- Its increased dependence on imported fossil fuel for electricity production has increased the circular debt to 1.2 trillion Pakistani rupees during the period of last five years




Solar Potential of Pakistan

- There is a massive potential for renewable energy in Pakistan, which is around 167.7 GW
- Among renewable energies, the potential for photovoltaics in particular is immense in the country
- Pakistan is one of the wealthiest countries in terms of its solar potential, which is up to 100,000MW
- The average solar insolation for the country is about 5.5kWh/m²/day

Solar Potential of Pakistan

Types of Solar Water Pumping Systems

Literature Surveyed Regarding Solar Water Pumping System design and economic analysis

Paper Reviewed	Comments
P. Chaudhary	Discussed different components, parameters and control methodologies related to a solar water pumping system
A. Allouhi	Discussed sizing and economics of a solar water pumping system
R. Sharma	Discussed optimized design of a solar water pumping system
M. T. Chaichan	Discussed four different designs of solar water pumping system and found PV based solar water pumping system to be the most feasible solution
H. A. Kazem	Discussed designing of a solar water pumping system in Oman
S. Biswas	Discussed a solar water pumping design in HOMER for Bangladeshi conditions
F. Alkarrami	Designed solar water pumping systems using HOMER Pro, HOMER Beta, and iHOGA software and found HOMER Pro as the best option

Literature Review regarding mathematical modeling of different components of a Solar Water Pumping systems in MATLAB/Simulink

Paper Reviewed	Comments
N. Yadav, T. R. Teregulov, and X. H. Nguyen	Mathematical modeling of PV Panel was discussed in MATLAB/Simulink
M. Assaf and H. Guldemir	Mathematical modeling of Buck-Boost converter was discussed in MATLAB/Simulink
Wen-Yeau Chang, M. Zhang and Low Wen Yao	Mathematical equations for a battery bank were discussed in first two papers and mathematical modeling for a battery in MATLAB/Simulink was discussed in the 3 rd paper
T. Bhattacharjee and S. Umashankar	Mathematical modeling of an inverter was discussed in MATLAB/Simulink
A. A. Ansari and S. Shah	Mathematical modeling of an induction motor was discussed in MATLAB/Simulink

Literature Review regarding SCADA system for Solar Water Pumping Systems

Paper Reviewed	Comments
M. Zamanlou	Discussed an Economical SCADA system for a solar water pumping system for Iranian conditions
M. Rijo	Discussed a SCADA system for monitoring of different parameters for a Portuguese Canal
J. G. Natividad	Discussed a SCADA system for a solar drying and water pumping system
F. J. Gimeno-Sales	Discussed a SCADA system for monitoring of a 2.4kW solar water pumping system
A. I. Abdelkerim	Discussed a LABVIEW based SCADA system for a solar powered irrigation system

Research Objectives

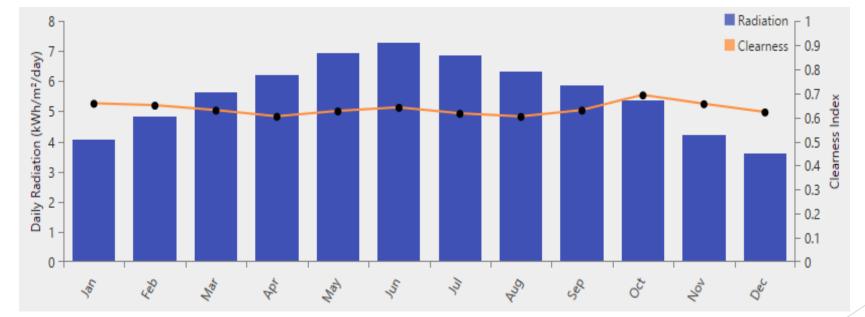
Research Objectives

- Design a solar water pumping system with a battery bank for a selected site in Pakistan using HOMER, which can be taken as a case study for future scenarios
- Perform dynamic analysis for the designed solar water pumping system in MATLAB/Simulink to validate the designed system in HOMER
- Design a solar water pumping system with a water tank for the same selected site using HOMER
- Comparison of the two designed solar water pumping systems and evaluate which one of the two designed systems is more feasible for Pakistani conditions
- Design an Emoncms based SCADA system that can store and reflect environmental, hydro and electrical parameters related to a solar water pumping system

Design and Analysis of a Solar Water Pumping System in HOMER

Site Selection

- Mustafa Research Farms
- Iocated at Wasti Jiuan Shah Tehsil Sadiqabad, Rahim Yar Khan, Pakistan
- ▶ It covers an area of around 239.6 acres of land
- The crop cultivated on this land is Rhodes Grass



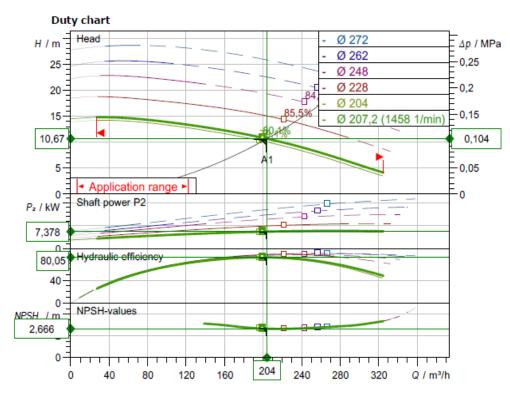
Solar Insolation of the Selected Site

- Data for solar insolation was extracted from the National Renewable Energy Laboratory as its database is attached with HOMER
- ▶ The GHI (Global Horizontal Index) varies from 3.6 to 7.26 kWh/m²/day

▶ The clearness index varies in the range of 0.601 to 0.69

Data obtained from the selected site

- Water level = 25ft = 7.62m
- Dynamic head = 35ft = 10.668m
- Water flow requirement = 2 cusec (cubic feet/sec) = $204m^3/hr = 898.2$ gpm


Motor Operation for the selected site

Months	Days of Full Operation (24 x 7)	Days of idle operation				
January	First 7 days of the month	Next 24 days of the month				
February	First 10 days of the month	Next 18 days of the month				
March	First 11 days of the month	Next 20 days of the month				
April	First 14 days of the month	Next 16 days of the month				
May	First 17 days of the month	Next 14 days of the month				
June	First 20 days of the month	Next 10 days of the month				
July	First 22 days of the month	Next 9 days of the month				
August	First 24 days of the month	Next 7 days of the month				
September	First 18 days of the month	Next 12 days of the month				
October	First 14 days of the month	Next 17 days of the month				
November	First 10 days of the month	Next 20 days of the month				
December First 0 days of the month		Next 31 days of the month				

Load Selection based on site Data

- ▶ The brand selected for the water pump/motor is Wilo.
- ▶ It has an online tool which was used to evaluate the pump size
- The required data (flow rate and total dynamic head of the motor) was incorporated in the online tool
- ▶ The motor rating came out to be 11kW, which is equivalent to 15hp
- Selected pump was Atmos GIGA-N 125/200-11/4

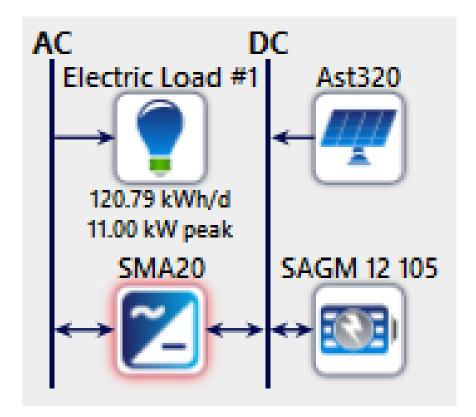
Selection Criteria for Pump

Pump curves in accordance with ISO 9906: 2012 3B

nequested data	
Flow	204,00 m³/h
Head	10,67 m
Media	Water 100 %
Fluid temperature	20,00 °C
Density	998,20 kg/m ³
Kin. viscosity	1,00 mm²/s
Hydraulic data (Duty point)	
Flow	204,00 m³/h
Head	10,67 m
Shaft power P2	7,38 kW
Hydraulic efficiency	80,05 %
NPSH	2,67 m
Impeller size	207,2
Product data	
Glanded standard pump	
Atmos GIGA-N 125/250-11/4	
Max. operating pressure	1,6 MPa
Fluid temperature	-20 °C + 140 °C
Max. ambient temperature	40 °C
Minimum efficiency index (MEI)	≥ 0,4
Motordata per Motor/Pump	
Motor efficiency level	IE3
Mains connection	3~ 400 V / 50 Hz
Permitted voltage tolerance	±10 %
Max. speed	1470 1/min
Rated power P2	11,00 kW
Rated current	20,90 A
Power factor	0,77

24

Selected Pump details


Motor data

Mains connection: 3~400V/50 Hz Voltage tolerance: ±10 % Motor efficiency class: IE3 Rated power: 11 kW Rated speed: 1470 1/min Rated current: 20,9 A Power factor: 0,77 Motor efficiency: 91,1 % Motor efficiency: 91,8 % Motor efficiency: 91,6 % Protection class: IP55 Insulation class: F

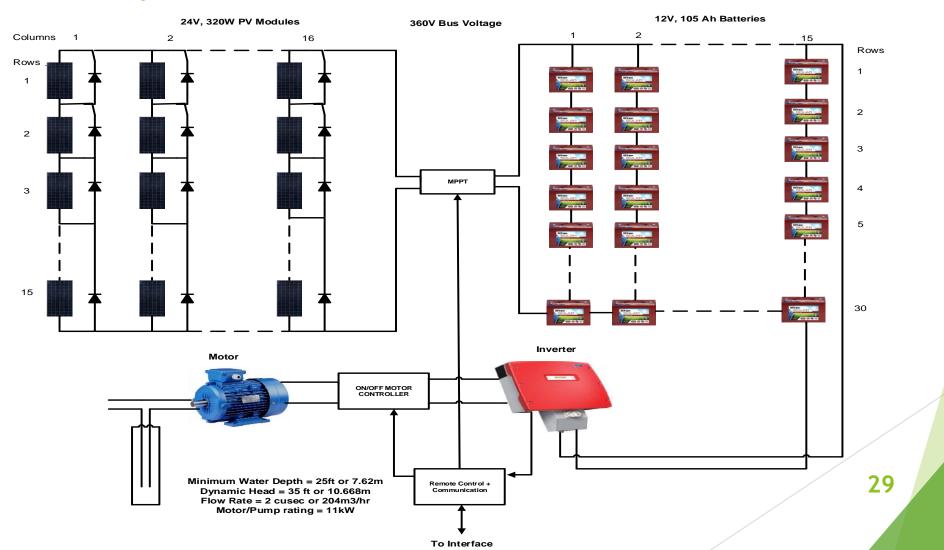
Installation dimensions

Pipe connection on the suction side: DN 150 , PN16 Pipe connection on the pressure side: DN 125, PN16

Schematic of the Proposed Solar Water Pumping system in HOMER

Simulation Result for Sizing of Proposed Solar Water Pumping System in HOMER

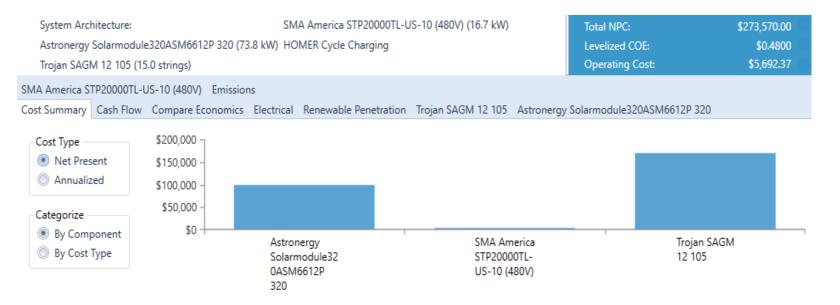
- ► The PV panel network (Astronergy ASM6612P-320 solar panels) \rightarrow 73.8kW
- ► The battery-bank based on Trojan SAGM 12 105 \rightarrow 450
- ► The inverter requirement \rightarrow 16.7kW ; SMA Sunny Tripower 20000TL-30


Simulation Result for Sizing of Proposed Solar Water Pumping System in HOMER

Simulation Results

Astronergy Solar	System Architecture: SMA America STP20000TL-US-10 (480V) (16.7 kW) Astronergy Solarmodule320ASM6612P 320 (73.8 kW) HOMER Cycle Charging Trojan SAGM 12 105 (15.0 strings))	Total NPC: Levelized C Operating (\$273,570.00 \$0.4800 \$5,692.37
SMA America STP200 Cost Summary Cash	000TL-US-10	(480V) Emis		al Renew	vable Penetration 1	Trojan SAG	GM 12 105	Astronergy Sc			320	
Production Astronergy Solarm Total	odule320ASN	M6612P 320	kWh/yr 126,095 126,095		Consumption AC Primary Load DC Primary Load Deferrable Load Total		% 100 0 0 100		Quantity Excess Ele Unmet Ele Capacity S	ectricity ectric Load	1.27 (60.7 0.00290 0.0966
					Monthly E	Electric Pro	oduction			le Fraction ew. Penetrat	100	% %
Ast320 14 12 10 4 8 6 4 2 0	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

28


Overall proposed solar water pumping system with a battery bank

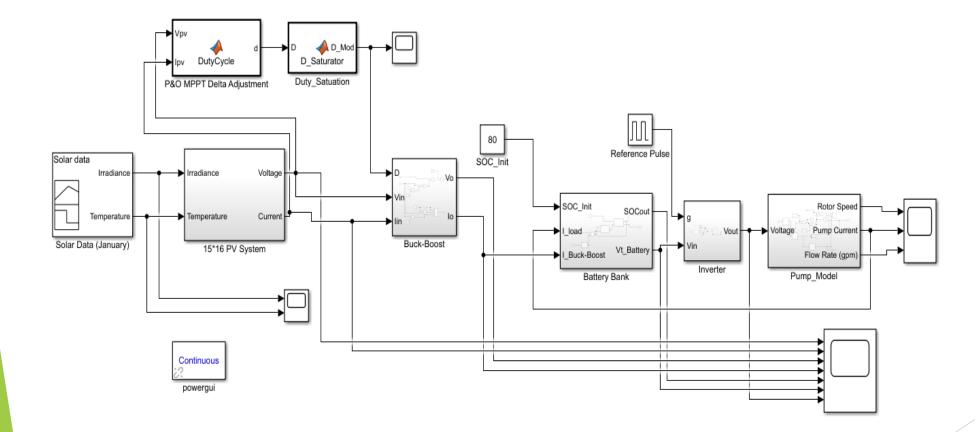
Cash Summary for Proposed Solar Water Pumping System in HOMER

- ► Total net present cost of the overall system \rightarrow \$273,570
- Levelized cost of energy \rightarrow \$0.48
- ► Operating cost \rightarrow \$5,692.37 per year

Cash Summary for Proposed Solar Water Pumping System in HOMER

Component	Capital (\$)	Replacement (\$)	0&M (\$)	Fuel (\$)	Salvage (\$)	Total (\$)	
Astronergy Solarmodule320ASM6612P 320	\$39,713.02	\$0.00	\$59,663.29	\$0.00	\$0.00	\$99,376.31	
SMA America STP20000TL-US-10 (480V)	\$2,768.84	\$1,174.75	\$0.00	\$0.00	(\$221.10)	\$3,722.49	
Trojan SAGM 12 105	\$157,500.00	\$31,119.79	\$0.00	\$0.00	(\$18,148.56)	\$170,471.23	
System	\$199,981.86	\$32,294.53	\$59,663.29	\$0.00	(\$18,369.66)	\$273,570.03	

Cash Flow for Proposed Solar Water Pumping System in HOMER


- ► As per cash flow over the life cycle of 25 years for the proposed system
- ► The initial investment \rightarrow \$199,981.86
- ► Annual investment required \rightarrow \$4,615.22
- ► In the 21st year investment \rightarrow \$99,000
- ► At the end of 25th year; salvage value \rightarrow \$76,681.52

Cash Flow for Proposed Solar Water Pumping System in HOMER

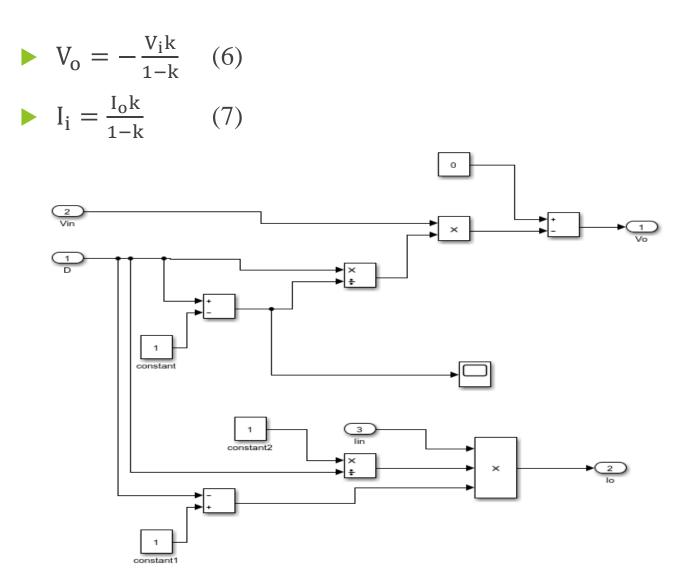
Dynamic Modeling of Designed Solar Water Pumping System in MATLAB/Simulink

Dynamic Model in MATLAB/Simulink

PV Panel Modeling

Equations Modeled in Subsystem

$$I_{ph} = \left[I_{sc} + k_i . (T - 298) . \frac{G}{1000} \right]$$
 (1)


$$I_0 = I_{rs} \cdot \left[\frac{T}{T_n}\right]^3 \cdot exp\left[\frac{q \cdot E_{g0} \cdot \left(\frac{1}{T_n} - \frac{1}{T}\right)}{n \cdot k}\right]$$
(2)

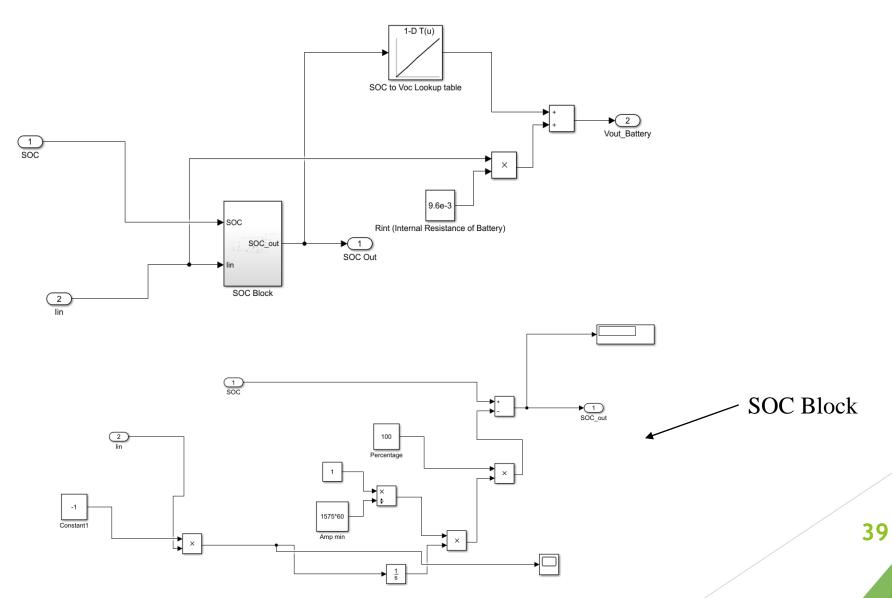
$$I_{rs} = \frac{I_{sc}}{e\left(\frac{q.V_{oc}}{n.N_s.k.T}\right) - 1}$$
(3)

$$\blacktriangleright I_{sh} = \left[\frac{V + I.R_s}{R_{sh}}\right] \tag{4}$$

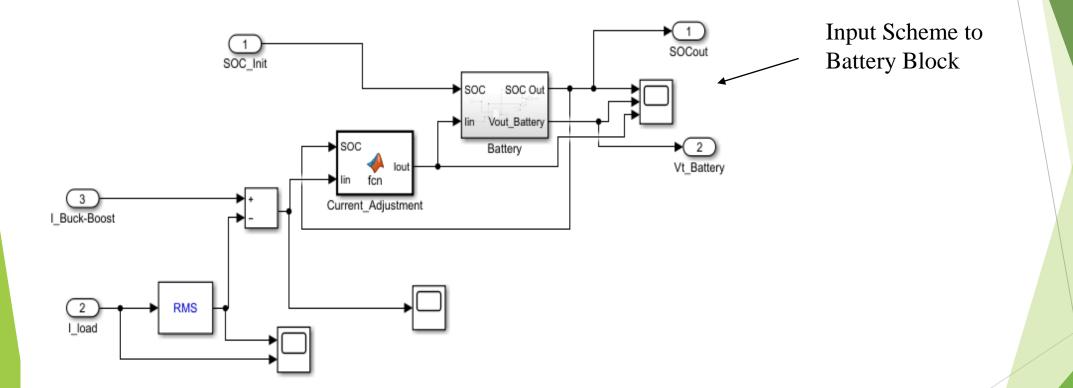
$$I = I_{ph} - I_0 \left[exp \left[\frac{q.(V+1.R_s)}{n.k.N_s.T} \right] - 1 \right] - I_{sh}$$
(5)

Buck-Boost Modeling

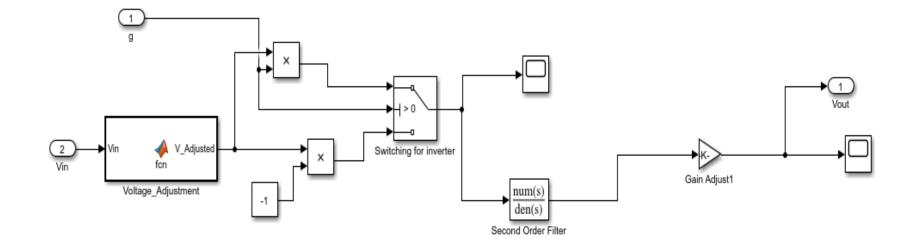
Battery Bank Modeling


- State of Charge for Battery Bank
- ► SOC(t) = SOC_(t=0) $-\frac{1}{3600} \int_0^{t(Sec)} I_B dt$ (SOC Equation for Discharging)
- ► SOC(t) = SOC_(t=0) + $\frac{1}{3600} \int_0^{t(Sec)} I_B dt$ (SOC Equation for Charging)

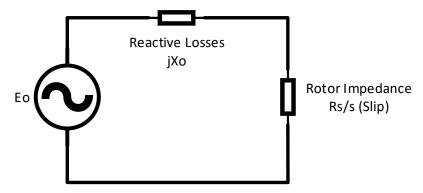
Maximum Charge Current (A) 20% of C20	21x15=315A
Absorption Voltage (2.40 V/cell)	14.4x30=432V
Float Voltage (2.25 V/cell)	13.5x30=405V


INTERNAL RESISTANCE (mΩ)	4.8x30/15=9.6 m ohm
CAPACITY A AMP-HOURS (AH)	105x15=1575

SOC %	Cell V	V open Circuit	
100	2.14	12.84x30	385.2
75	2.09	12.54x30	376.2
50	2.04	12.24x30	367.2
25	1.99	11.94x30	358.2
0	1.94	11.64x30	349.2

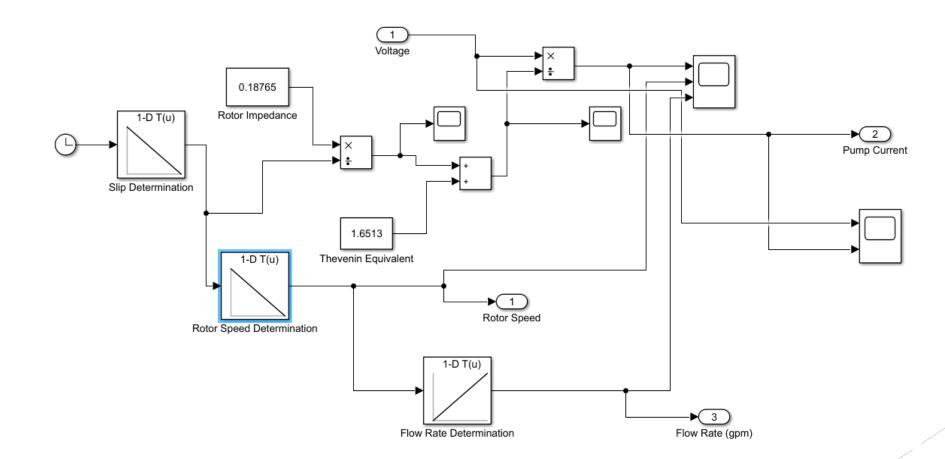

Battery Bank Modeling

Battery Bank Modeling

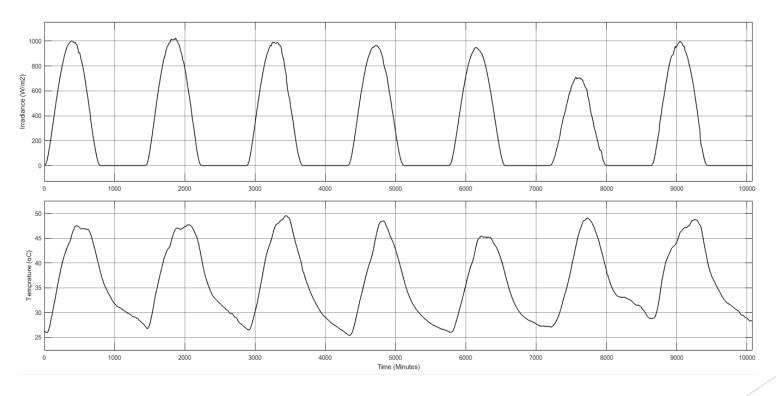


Inverter Modeling

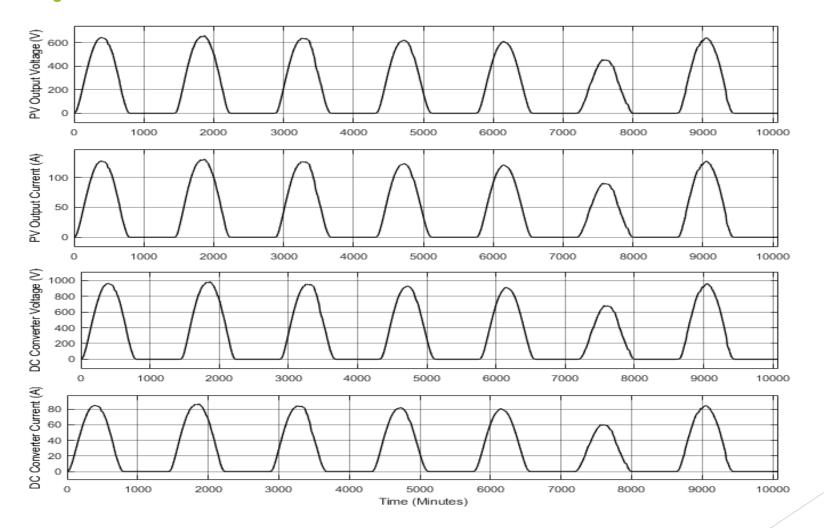
Motor/Pump Modeling


► For modeling equivalent diagram for Induction motor was used

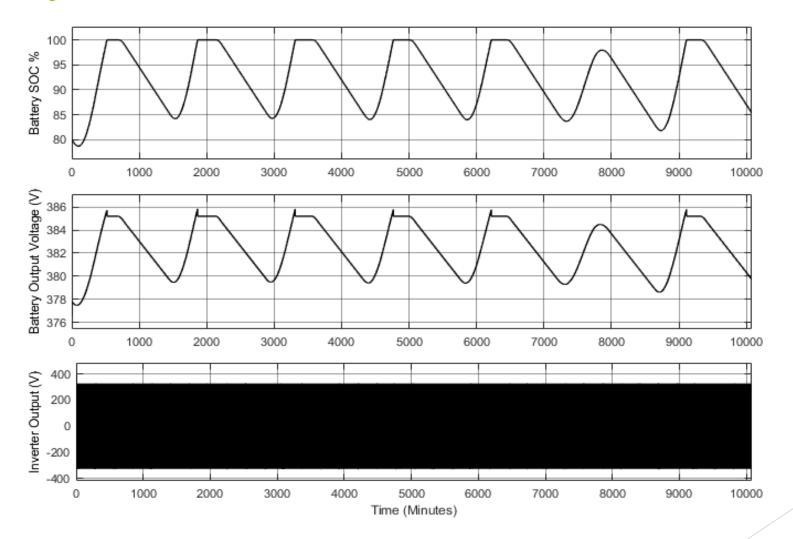
$$\blacktriangleright E_0 = I(jX_0 + \frac{R_s}{s})$$

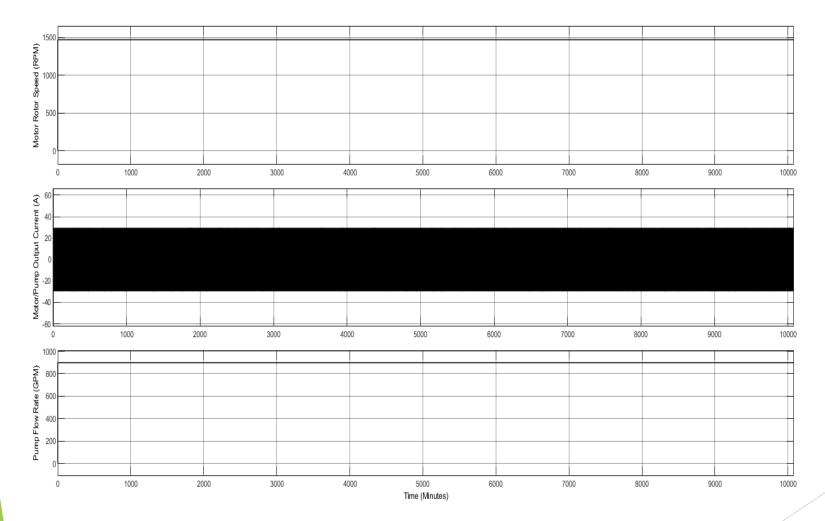

- Design Assumptions
- Inrush current was taken to be 6 times rated peak current (29.6 x 6 = 177.6)
- ► The inrush current settles after 25 seconds
- After computations
- ► Rs \rightarrow 0.18976
- ► $jX_o \rightarrow 1.6513$

Motor/Pump Modeling in MATLAB/Simulink



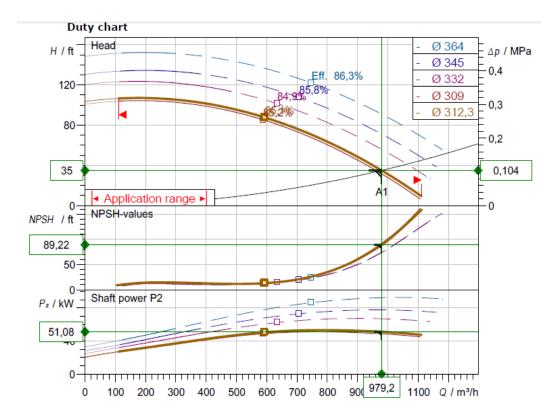
Input Solar Irradiation and Temperature


- ▶ Data for 1st 7 days of April was taken
- ► The irradiance varied from 0 to 1021 W/m²
- ► The temperature varied from 25 to 49.5°C


Simulation Results of the proposed designed system

Simulation Results of the proposed designed system

Simulation Results of the proposed designed system



Design and Analysis of a Solar Water Pumping System with Water Tank in HOMER

Load Determination

- Flow rate for 1 day \rightarrow 204m³/hr x 24 = 4896m³
- Considering motor running for 5 hours
- ▶ $4896/5 = 979.2 \text{ m}^3/\text{hr}$
- Using Wilo Online tool
- ► the size of the pump \rightarrow 55kW
- Selected Pump came as CronoNorm-NLG 250/360-55/4

Selection Criteria for Pump

Requested data	
Flow	979,20 m³/h
Head	35,00 ft
Media	Water 100 %
Fluid temperature	20,00 °C
Density	998,20 kg/m³
Kin. viscosity	1,00 mm²/s
Hydraulic data (Duty point)	
Flow	979,20 m³/h
Head	35,00 ft
Shaft power P2	51,08 kW
Hydraulic efficiency	55,33 %
NPSH	89,22 ft
Impeller size	312,3
Product data	
Glanded standard pump	
NLG 250/360-55/4	
Max. operating pressure	1,6 MPa
Fluid temperature	-20 °C + 120 °C
Max. ambient temperature	40 °C
Minimum efficiency index (MEI)	≥ 0,4
Motordata per Motor/Pump	
Motor efficiency level	IE3
Mains connection	3~ 400 V / 50 Hz
Permitted voltage tolerance	±10 %
Max. speed	1480 1/min
Rated power P2	55,00 kW
Rated current	98,60 A
Power factor	0,85

Data of Selected Pump

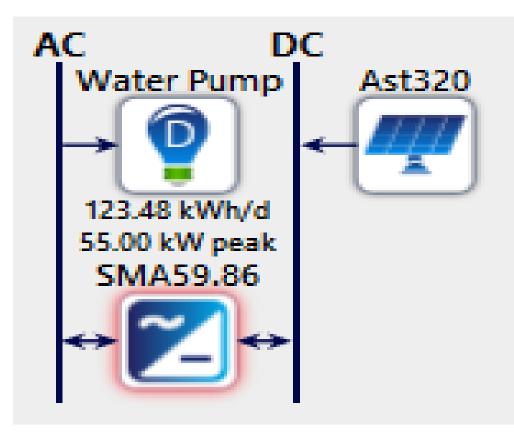
Operating data

Fluid media: Water 100 % Fluid temperature: 20,00 °C Fluid concentration: 100,00 % Requested flow: 979,20 m³/h Requested head: 35,00 ft Min. fluid temperature: -20 °C Max. fluid temperature: 120 °C Maximum operating pressure: 16 bar Max. ambient temperature: 40 °C Minimum efficiency index (MEI): ≥ 0,4

Motor data

Mains connection: 3~400V/50 Hz Voltage tolerance: ±10 % Motor efficiency class: IE3 Rated power: 55 kW Rated speed: 1480 1/min Rated current: 98,6 A Power factor: 0,85 Motor efficiency: 0,0 % Motor efficiency: 0,0 % Motor efficiency: 0,0 % Protection class: Insulation class: F

Installation dimensions


Pipe connection on the suction side: DN 300, PN16 Pipe connection on the pressure side: DN 250, PN16

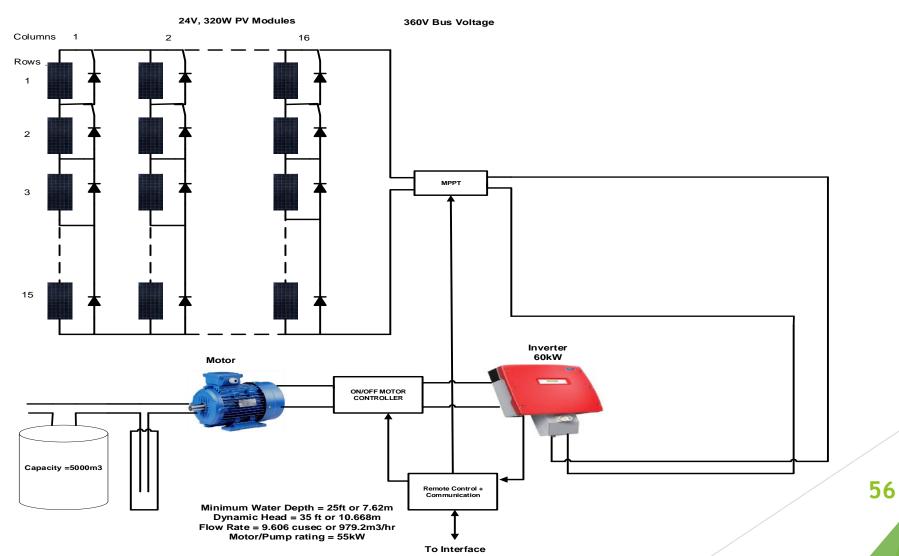
Sizing of the Proposed System using HOMER

- ► As the motor is running for 5 hours
- So a 55 x 5 = 275kWh is the storage capacity required

DEFERR	ABLE LOA	AD 🧧	Name: \	Vater Pump			Remov	e							
							Scale	ed Annual A	Average (kV	Wh/d): 12	3.48	(.)			
Enter Monthly	Averages —											~			
	Month	Average Load (kWh/d)					Store	age Capacit	ty (kWh):	27	5.00				
	January	62.097					Peak	(Load (kW)	:	55	00	()			
	February	98.214										0			
	March	97.581					Mini	imum load i	ratio (%):	0.0	0	()			
	April	128.333										-			
	May	150.806							Electrica						
	June	183.333							- AC						
	July	195.161		200											
	August	212.903		300 -											
	September	137.500													
	October	124.194		200 -					_						
	November	91.666													
	December	0.000		100 -		_									
				0											
Annual Avera	ige (kWh/d): 0.0	0			L'an	March	April	Ten	June	lut	Bust	September	ober.	mber .	mber .
				a.	Feb	4					A	Septe	o ^c	Nove	Cece Cece

Schematic for Proposed PV based water pumping system with Water Tank

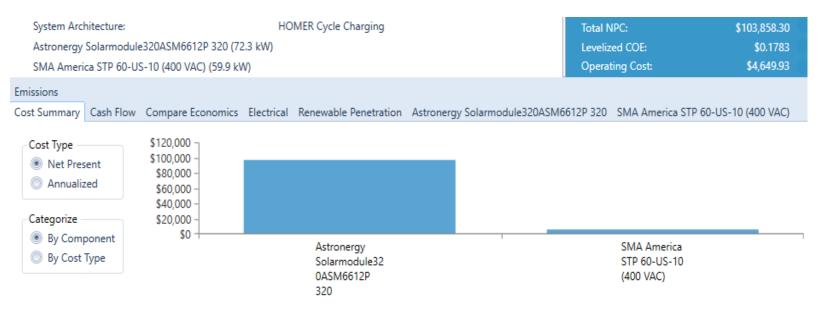
Simulation Result for Sizing of Proposed Solar Water Pumping System with Water Tank in HOMER


- ► The PV Panel network requirement \rightarrow 72.3kW
- ► The Inverter requirement \rightarrow 59.9kW
- ► Fulfilled by a 60kW SMA American STP60-US-10

Simulation Result for Sizing of Proposed Solar Water Pumping System with Water Tank in HOMER

SMA America STP 60-US-10 (400 VAC) (59 nissions st Summary Cash Flow Compare Econom		able Penetration A	stronergy	v Solarmodu	Operating Cost: P 320 SMA America ST	TP 60-US-1	\$4,649.93
roduction	kWh/yr	Consumption	kWh/yr	%	Quantity	kWh/yr	%
stronergy Solarmodule320ASM6612P 320	123,516	AC Primary Load	0	0	Excess Electricity	77,541	62.8
otal	123,516	DC Primary Load	0	0	Unmet Electric Load	44.3	0.0982
III		Deferrable Load	45,056	100	Capacity Shortage	44.3	0.0982
		Monthly E	lectric Pro	duction	Quantity Renewable Fraction Max. Renew. Penetrati	Value 100 on 2,573	%
Ast320 12 10 - 8 - 4 - 2 - 0							

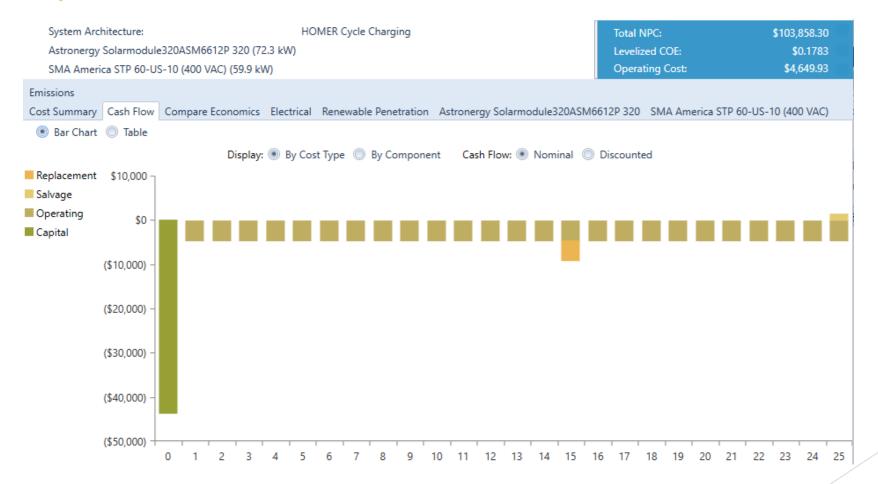
Simulation Results


Proposed solar water pumping system with water tank

Cash Summary for Proposed Solar Water Pumping System in HOMER

- ► Total net present cost of the overall system \rightarrow \$103,858.30
- ► Levelized cost of energy \rightarrow \$0.1783
- ► Operating cost \rightarrow \$4,649.93 per year

Cash Summary for Proposed Solar Water Pumping System in HOMER



Component	Capital (\$)	Replacement (\$)	0&M (\$)	Fuel (\$)	Salvage (\$)	Total (\$)	
Astronergy Solarmodule320ASM6612P 320	\$38,900.87	\$0.00	\$58,443.15	\$0.00	\$0.00	\$97,344.01	
SMA America STP 60-US-10 (400 VAC)	\$4,845.41	\$2,055.78	\$0.00	\$0.00	(\$386.92)	\$6,514.27	
System	\$43,746.27	\$2,055.78	\$58,443.15	\$0.00	(\$386.92)	\$103,858.28	

Cash Flow for Proposed Solar Water Pumping System in HOMER

- ► As per cash flow over the life cycle of 25 years for the proposed system
- ► The initial investment \rightarrow \$43,746.27
- ► Annual investment required \rightarrow \$4,520.83
- ► In the 15th year investment \rightarrow \$4,845.41
- At end of 25th year; salvage value \rightarrow \$1615.14

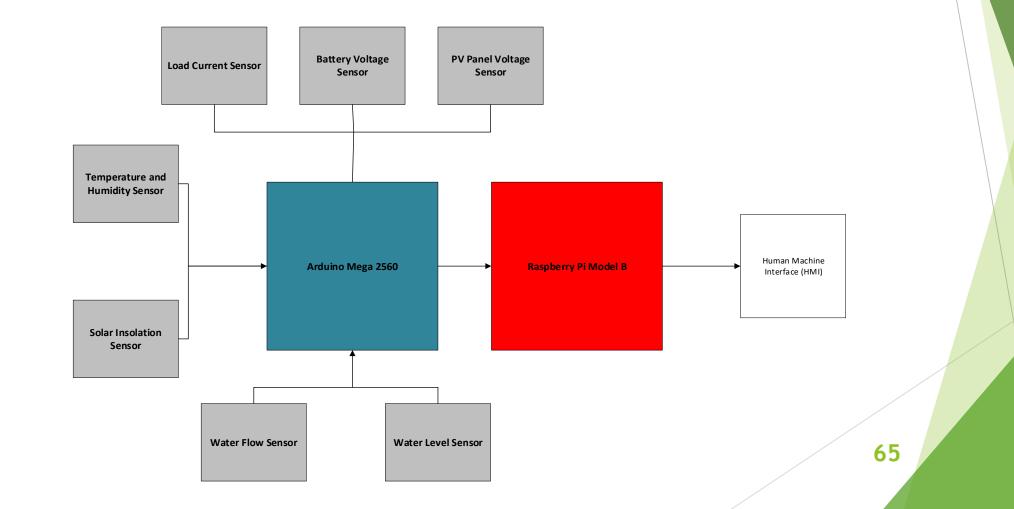
Cash Flow for Proposed Solar Water Pumping System in HOMER

Sizing of Water Tank

- As the total water discharge in one day was 4896m³, so a tank of 5000m³ was planned
- ▶ Considering, a cylindrical tank of 5000m³ with a height of 2m
- ▶ The radius of the tank came as 28.21m

Costing of Water Tank

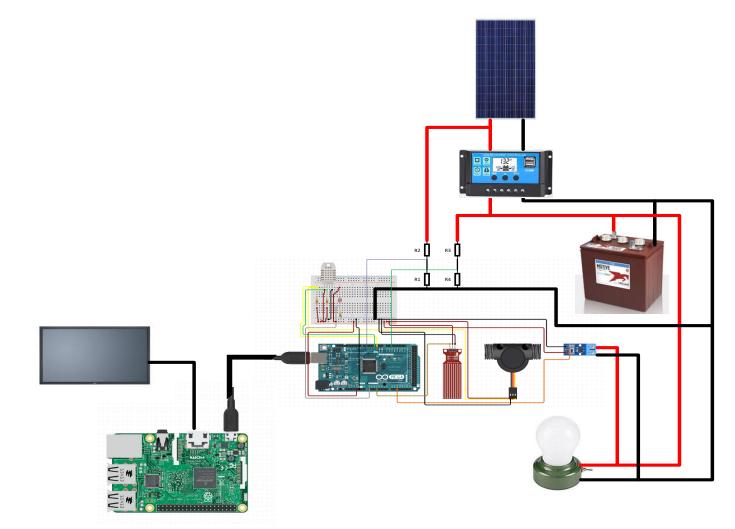
- The local rate for construction, including material, labor, digging and supervision lumped together, cost Rs300/ft²
- Surface area = $2854.6m^2 = 30726.6587ft^2$
- Overall price for tank is 30727 x 300 = Rs 92,181,00 = \$54,540.88

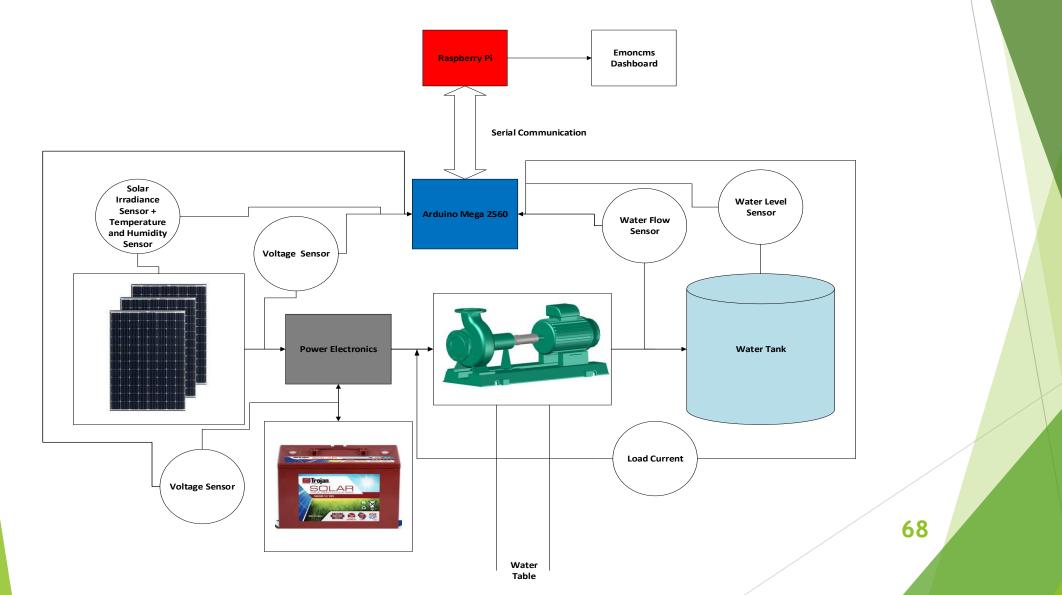

Comparison of Solar water pumping systems with battery bank and Water Tank

Proposed System with Battery Bank	Proposed System with Water Tank
Net Present Cost → \$273,570	Net Present Cost → \$158,399
Levelized cost of Energy \rightarrow \$0.48	Levelized cost of Energy \rightarrow \$0.1783
Operating costs \rightarrow \$5,692.37	Operating costs \rightarrow \$4,649.93
Initial Investment → \$199,981.86	Initial Investment \rightarrow \$98,327.15

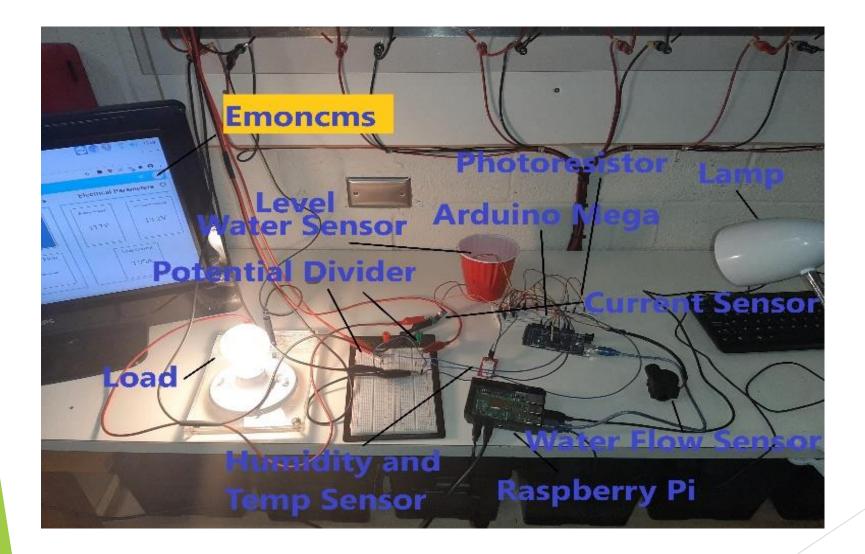
Solar Water Pumping System with Water Tank came out to be a more feasible solution for Pakistani Conditions

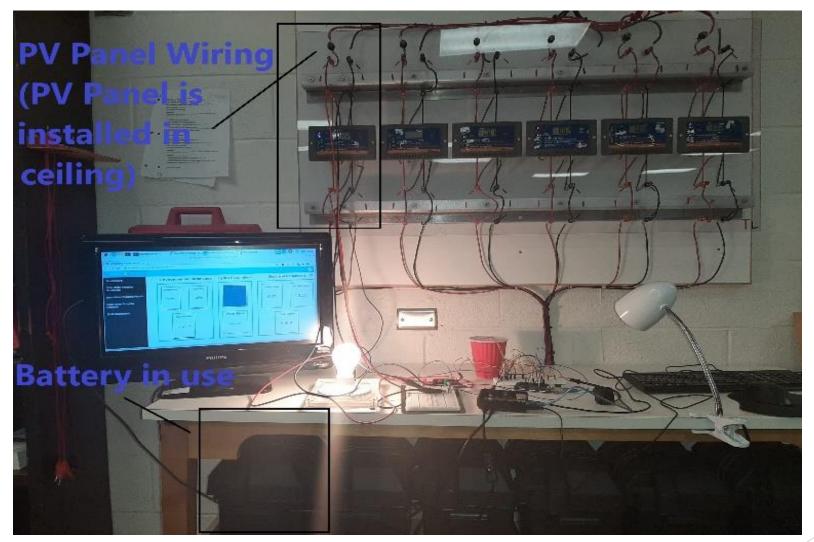
Supervisory Control and Data Acquisition (SCADA) for a Solar Water Pumping System


Emonems SCADA based system for Solar Water Pumping System


Component List for SCADA

Serial	Component Name	Use
Number		
1	Raspberry Pi Model 4 B	It has Emoncms installed, which serve as an HMI
2	Arduino Mega 2560	It acts as a hub for sensors, which takes the data from sensors and
		push it forward to Raspberry Pi
3	Current Sensor Module	Used to sense load current
	(ACS712)	
4	Water flow Sensor (YFS-201)	Used to sense water flow in liters/minute
5	Water Level Sensor	Used to sense the water level in the tank
6	Temperature and Humidity	Used to sense temperature and humidity of the surroundings
	Sensor (DHT-22)	
7	Photo-resistor	Used to sense solar irradiance of the surrounding
8	Set of Resistors used	These are used to set up potential dividers for voltage
		measurement of PV panel and battery


Circuit Diagram of Proposed SCADA System for Solar Water Pumping System


Proposed SCADA System

Prototype of Proposed SCADA system in Lab

Equipment Used in LAB to Test Prototype

Inputs discovered in Emoncms

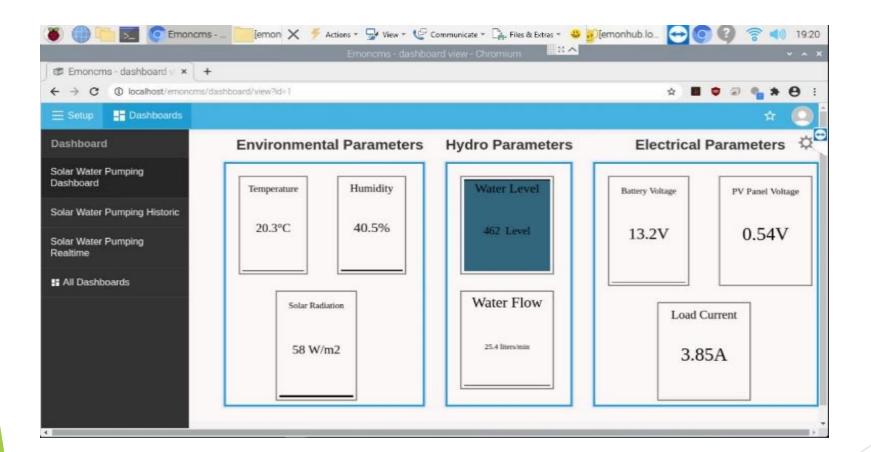
		Emonon	ns - input view - Chromiur	n 8 ^	ne ne state		• •
Emonems - input vi	ew × +						
← → C ① localho	ost/emoncms/input/view				x 🔳 🛡	a 🔒 t	• •
E Setup	boards					4	0
Emoncms	Inputs					Input A	PI Help
3 Inputs	/ 🗆 0						
E Feeds	~ 5						•
Complex	□ 1				195	5	+
Graphs	□ 2	log			195	20.2	*
) Visualization	□ 3	log			195	35.6	+
) Schedule	□ 4	log			195	323	+
	0.5	log			195	73	1
Admin	0 6	ling			195	0	1
	07	log			195	13.62	1
	08				195	13.18	1
	0.9	log			195	3.95	1

Feed for the inputs discovered in Emoncms

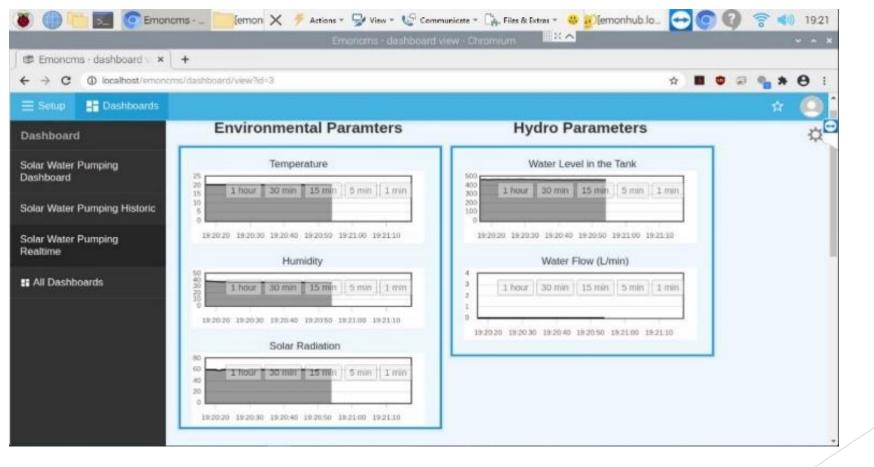
		Emonom	s - feed view - Chromium		* *
Emonoms - feed view	× +				
← → C ① localhost/em	onoms/feed/view			A 🔳 🛛 🗊 🖉	* 0
😑 Setup 📑 Dashboards					🕁 🙆
Emoncms	Feeas				
	1 8				
Inputs	v 5:		128B		215
≡ Feeds	emonth_temperature	PHPFINA	16B	20.3	°C 21s
✓ Graphs	emonth_humidity	PHPFINA	16B	35.7	% 21s
Visualization	<pre>cli> ev_divertmode_state</pre>	PHPFINA	168	322	21s
	ev_current	PHPFINA	16B	3.85	A 21s
3 Schedule	ev_state	PHPFINA	168	72	215
Admin	🗆 niT	PHPFINA	168	0	215
	Voltage 1	PHPFINA	16B	13.62	2 V 21s
	Voltage 2	PHPFINA	168	13.18	3V 21s

Provered by OnunEnerryMonitor pro Liouswrite 10.2.6

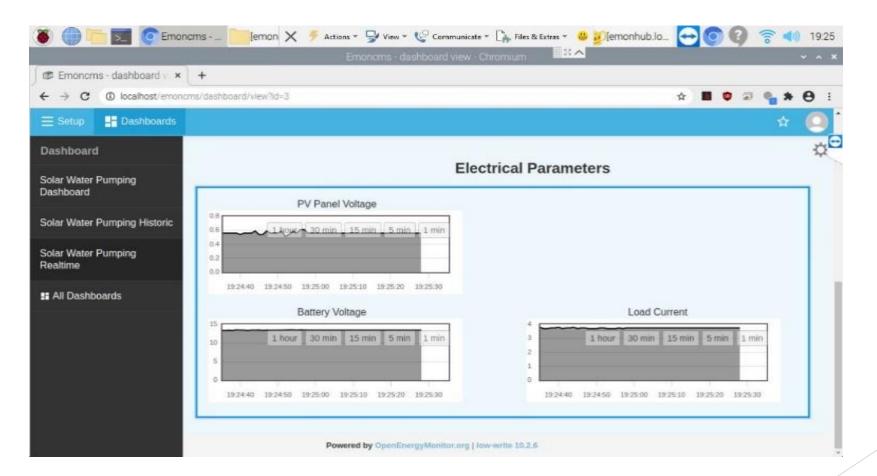
+


Inputs with discovery number, name and feeds

Input Number	Input Name	Feed name	
1	Node Number	Not logged (No feed)	
2	Temperature	emonth_temperature	
3	Humidity	emonth_humidity	
4	Water Level	ev_divertmode	
5	Solar Irradiance	ev_state	
6	Water Flow Sensor	n1T	
7	Battery Voltage	Voltage 1	
8	Panel Voltage	Voltage 2	
9	Load Current	ev_current	


Dashboards reflecting Parameters on Emoncms

- There were three dashboards to capture different parameters of a solar water pumping system
 - Live Dashboard
 - Real Time Dashboard
 - Historic or Logged Dashboard


Live Emoncms Dashboard for a solar water pumping system

Real time Emoncms Dashboard for a solar water pumping system


Real time Emoncms Dashboard for a solar water pumping system

Historic or logged data in Emoncms for a solar water pumping system

← → C ① localhost/emonor	ns/dashboard/view?id=4	÷ 🔳	🗢 🗢 🐁 🕭 🗄
🚍 Setup 📑 Dashboards			☆ 🔘
Dashboard	Environmental Parameters	Hydro Parameters	¢.
Solar Water Pumping Dashboard	Temperature	Water Level in the Tank	1
Solar Water Pumping Historic	25 25 15 5 5 0 W M Y /D /M X	400 D W M Y /D /M //	
Solar Water Pumping Realtime	0 2030 0030 0430 0830 1230 1630	100 0 20:30 00:30 04:30 08:30 12:30 18:30	
	Humidity	Water flow (Liters/min)	
All Dashboards	30 D W M Y /D M A	0.5 D W M Y /D /M /Y	
	20:30 00:30 04:30 08:30 12:30 36:30 Solar Radiation	-0.5 -1.0 29:30 00:38 04:30 08:30 12:30 16:30	
	200 D W M Y /D /M W		1

Historic or logged data in Emoncms for a solar water pumping system

- A detailed design and cost analysis for a solar water pumping system with battery bank was performed in HOMER
- ► The HOMER simulation summary for system is as follows
 - ▶ The PV panel network was 73.8 kW
 - ▶ The inverter rating came as 16.7 kW
 - ► The battery requirement came out to be 450
 - ▶ The net present cost for the overall system came out to be \$273,670
 - ► The levelized cost of energy came out as \$0.48
 - ▶ The operating cost for the system came out to be \$5,692.37

- For the designed system, a detailed dynamic analysis was conducted in MATLAB/Simulink, which validated the HOMER software results
- A detailed design and cost analysis for a solar water pumping system with water tank was performed in HOMER
- ► The HOMER simulation summary for system is as follows
 - ▶ The PV panel network was 72.9 kW
 - ▶ The inverter rating came as 59.9 kW
 - ▶ The net present cost for the overall system came out to be \$103,858.30
 - ► The levelized cost of energy came out as \$0.1783
 - ▶ The operating cost for the system came out to be \$4,649.93

- An Emoncms based SCADA system was implemented to monitor three different categories of parameters for the solar water pumping system
 - Environmental parameters
 - ► Hydro parameters
 - Electrical parameters
- ▶ The data obtained was reflected on three different custom-made dashboards
 - Live Dashboard
 - Real-time Dashboard
 - Historic Dashboard

Research Contribution

Research Contributions

- A comprehensive design and cost analysis for a battery-based solar water pumping system for a selected site in Pakistan was performed in HOMER
- Detailed dynamic modeling for designed solar water pumping system with battery bank in HOMER was performed in MATLAB/Simulink to evaluate the system's feasibility with changing conditions
- A comprehensive design and cost analysis for a water tank-based solar water pumping system for the same selected site in Pakistan was performed in HOMER
- The economical results for both the designed solar water pumping systems were compared to evaluate the most feasible solar water pumping system for Pakistani conditions
- An open-source Emoncms based SCADA was designed to monitor different parameters of a solar water pumping system

Future Work

Future Work

- Dynamic analysis for a solar water pumping system with water tank in MATLAB/Simulink can be performed for the already designed system in HOMER
- The open-source Emoncms based SCADA system can be improved for a wireless system, so that the data could be controlled and monitored wirelessly
- An email alert system can be incorporated in the already developed SCADA system using Swift-mailer
- A button control can be added to control the motor's ON/OFF from the SCADA system

Publications

Publications

Articles in Refereed Publications

Usman Ashraf, M. Tariq Iqbal, Optimised Design and Analysis of Solar Water Pumping Systems for Pakistani Conditions, Energy and Power Engineering Energy, Volume 12, pp 521-542; doi:10.4236/epe.2020.1210032

Refereed Conference Publications

- Usman Ashraf, M. Tariq Iqbal, An Open Source SCADA for a Solar Water Pumping System Designed for Pakistani Conditions, presented at IEEE computing and communication workshop and conference, CCWC 2021
- Usman Ashraf, M. Tariq Iqbal, Feasibility Analysis of a Solar Water Pumping System in Pakistani Conditions: A Case Study, presented at IEEE CCECE 2020

Regional Conference Publications

Usman Ashraf, Andrew Peddle, Uday Khadodra, M. Tariq Iqbal, Design and analysis of a solar water pumping system for two hectares farm in India, presented at The 29th Annual IEEE NECEC conference St. John's, November 19th, 2020.

- P. Choudhary, R. K. Srivatava, and S. De, "Solar powered induction motor based water pumping system: A review of components, parameters and control methodologies," in 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON), Mathura, Oct. 2017, pp. 666–678, doi: 10.1109/UPCON.2017.8251129.
- A. Allouhi *et al.*, "PV water pumping systems for domestic uses in remote areas: Sizing process, simulation and economic evaluation," *Renew. Energy*, vol. 132, pp. 798–812, Mar. 2019, doi: 10.1016/j.renene.2018.08.019.
- R. Sharma, S. Sharma, and S. Tiwari, "Design optimization of solar PV water pumping system," *Mater. Today Proc.*, vol. 21, pp. 1673–1679, 2020, doi: 10.1016/j.matpr.2019.11.322.
- M. T. Chaichan, A. H. A. Kazem, M. M. K. El-Din, A. H. K. Al-Kabi, A. M. Al-Mamari, and H. A. Kazem, "Optimum Design and Evaluation of Solar Water Pumping System for Rural Areas," *Int. J. Renew. Energy Res. IJRER*, vol. 7, no. 1, Art. no. 1, Mar. 2017.
- ▶ H. A. Kazem, A. H. A. Al-Waeli, M. T. Chaichan, A. S. Al-Mamari, and A. H. Al-Kabi, "Design, measurement and evaluation of photovoltaic pumping system for rural areas in Oman," *Environ. Dev. Sustain.*, vol. 19, no. 3, pp. 1041–1053, Jun. 2017, doi: 10.1007/s10668-016-9773-z.
- ▶ F. Alkarrami, T. Iqbal, and K. Pope, "Optimal sizing of a stand-alone hybrid energy system for water pumping in Sirte, Libya," in *2016 IEEE Electrical Power and Energy Conference (EPEC)*, Ottawa, ON, Canada, Oct. 2016, pp. 1–5, doi: 10.1109/EPEC.2016.7771679.

- S. Biswas and T. Iqbal, "Dynamic Modelling of a Solar Water Pumping System with Energy Storage," *J. Sol. Energy*, vol. 2018, pp. 1–12, Apr. 2018, doi: 10.1155/2018/8471715.
- N. Yadav and D. K. Sambariya, "Mathematical Modelling and Simulation of Photovoltaic Module Using MATLAB/SIMULINK," in 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Jul. 2018, pp. 1–6, doi: 10.1109/ICCCNT.2018.8494167.
- T. R. Teregulov, B. Sharifov, and A. R. Valeev, "Simplified solar panel modeling in MATLAB/Simulink considering Bashkortostan Republic (Russia) environment characteristics," in 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), May 2016, pp. 1–4, doi: 10.1109/ICIEAM.2016.7911448.
- X. H. Nguyen and M. P. Nguyen, "Mathematical modeling of photovoltaic cell/module/arrays with tags in Matlab/Simulink," *Environ. Syst. Res.*, vol. 4, no. 1, p. 24, Dec. 2015, doi: 10.1186/s40068-015-0047-9.
- M. Assaf, D. Seshsachalam, D. Chandra, and R. K. Tripathi, "DC-DC CONVERTERS VIA MATLAB/SIMULINK," p. 8.
- H. Guldemir, "Modeling and Sliding Mode Control of Dc-Dc Buck-Boost Converter," p. 6.

- "(1) (PDF) The State of Charge Estimating Methods for Battery: A Review," *ResearchGate*. https://www.researchgate.net/publication/258400689_The_State_of_Charge_Estimating_Methods _for_Battery_A_Review (accessed Aug. 22, 2020).
- M. Zhang and X. Fan, "Review on the State of Charge Estimation Methods for Electric Vehicle Battery," World Electr. Veh. J., vol. 11, no. 1, Art. no. 1, Mar. 2020, doi: 10.3390/wevj11010023.
- "(1) (PDF) Modeling of lithium-ion battery using MATLAB/simulink," *ResearchGate*. https://www.researchgate.net/publication/259567883_Modeling_of_lithiumion_battery_using_MATLABsimulink (accessed Aug. 22, 2020).
- T. Bhattacharjee, M. Jamil, and A. Jana, "Design of SPWM based three phase inverter model," in 2018 Technologies for Smart-City Energy Security and Power (ICSESP), Mar. 2018, pp. 1–6, doi: 10.1109/ICSESP.2018.8376696.
- S. Umashankar, V. K. Arun Shankar, G. Jain, and M. L. Kolhe, "Comparative evaluation of pulse width modulation techniques on effective DC link voltage utilization of grid connected inverter," in 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Mar. 2016, pp. 2376–2383, doi: 10.1109/ICEEOT.2016.7755120.
- A. A. Ansari and D. M. Deshpande, "Mathematical Model of Asynchronous Machine in MATLAB Simulink," *Int. J. Eng. Sci. Technol.*, vol. 2, p. 8, 2010.

- S. Shah, A. Rashid, and M. Bhatti, "Direct Quadrate (D-Q) Modeling of 3-Phase Induction Motor Using MatLab / Simulink," vol. 3, no. 5, p. 7, 2012.
- M. Zamanlou and M. T. Iqbal, "Development of an Economical SCADA System for Solar Water Pumping in Iran," in 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Sep. 2020, pp. 1–4, doi: 10.1109/IEMTRONICS51293.2020.9216408.
- M. Rijo, "Design, implementation and tuning of an irrigation canal system SCADA," Agric. Eng. Int. CIGR J., vol. 19, no. 2, Art. no. 2, Aug. 2017.
- J. G. Natividad and T. D. Palaoag, "IoT based model for monitoring and controlling water distribution," *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 482, p. 012045, Mar. 2019, doi: 10.1088/1757-899X/482/1/012045.
- ▶ F. J. Gimeno-Sales *et al.*, "PV Monitoring System for a Water Pumping Scheme with a Lithium-Ion Battery Using Free Open-Source Software and IoT Technologies," *Sustainability*, vol. 12, no. 24, Art. no. 24, Jan. 2020, doi: 10.3390/su122410651.
- A. I. Abdelkerim, M. M. R. S. Eusuf, M. J. E. Salami, A. Aibinu, and M. A. Eusuf, "Development of Solar Powered Irrigation System," *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 53, p. 012005, Dec. 2013, doi: 10.1088/1757-899X/53/1/012005.

THANK YOU!

ANY QUESTIONS!