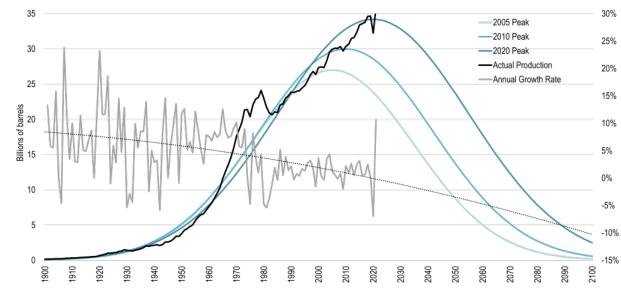


Design of supervisory controllers and ultra-low power data loggers for hybrid power systems

M. Eng Student:

Wei He

Supervised by:


Dr. M. Tariq Iqbal

Faculty of Engineering and Applied Science University of Newfoundland

MEMORIAL UNIVERSITY

- Introduction
- Literature Review
- Research Objectives
- > Power Consumption Minimization of a Low-Cost IoT Data Logger for Photovoltaic System
- > A novel design of a low-cost SCADA system for monitoring standalone photovoltaic systems
- An Open-Source SCADA Architecture for Photovoltaic System Monitoring using ESP32, Banana Pi M4 and Node-RED
- > An IoT-SCADA architecture for photovoltaic system monitoring, control, and inspection in real time
- Conclusion
- Future Works
- Acknowledgment
- Publications

Introduction

> Limited fossil fuel, renewable energy as the alternative

World Annual Oil Production 1900-2021 and Peak Oil 2005-2020 Scenarios.

In 2022, 25.9% of Canada's newly installed capacity is solar energy

> In Ontario, solar energy powers 517,000 homes

Introduction

> Commercial data loggers are expensive, proprietary, and non-configurable

No.	Product	Company	Power consumption	Cost range (€) (Sensors not included)	Number of inputs	Internal data storage	Data sending/saving interval	Market launch year
1	Delta Solivia Gateway M1 G2	Delta Energy Systems GmbH	1 W @ 5 V	174	8	λ	15 min by def.	2019
2	Fronius Datamanager 2.0	Fronius	< 2 W	222-259	6-10	Ν	λ	2013
3	Q.reader	Gantner Instruments GmbH	5 W	600	2	8 GB	λ	2010
4	Smartlogger 3000A	Huawei	8 W	1495	4 DI, 4 AI	Λ.	λ.	2020
5	Powador-proLOG M	Kaco	Ν	549-664	4DI, 4 AI	N	300-3600 s	2009
6	ADL-MXSpro	Meier-NT GmbH	0.1 W-0.76 W	980-1100	max. 8	1 GB	24 h	2017
7	SMA Data Manager M Lite	SMA Solar Technology AG	4 W	285	λ	A State	λ.	2022
8	Solar-Log 2000	Solare Datensysteme GmbH	3 W	1031-1248	8	٨	connected inverters < 30: 5min connected inverters 30-59: 10min connected inverters > 60: 15min	λ
9	MaxWeb XPN	SolarMax	24 W (maximum)	500-600	1 DI, 4 AI	λ	15 min by def.	2016
No.	Methods and rate of communication						Measurement on	Open interfaces for
NO.	RS 485	RS 422	Ethernet	WLAN	USB	2G/3G/4G	main connection point	SCADA integration
1	19200 baud rate, by def.	λ	Yes	λ	λ	A State	Yes	No
2	Yes	Yes	Yes	Yes	λ	A State	Yes	Yes
3	Up to 115.2 kbs	N	Yes	λ	1s to 24h	Λ.	Yes	Yes
4	1200-115200 bps	N	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	N	Yes	λ	λ	λ	λ.	λ
6	300-115200 baud	١	10/100 Mbit	١	Yes	GSM module integrated	Yes	Yes
7	Yes	\	Yes	Yes	Yes	λ	Optional	Yes
8	2400-115200 bps	Yes	10/100 Mbit	Yes	Yes	λ	Yes	Yes
9	Yes	Υ.	Yes	Yes	Yes	Λ.	Yes	No

Commercial products of data logger in PV systems.

Literature Review

Comparison of HMI designs and data storage solutions in the literature review.

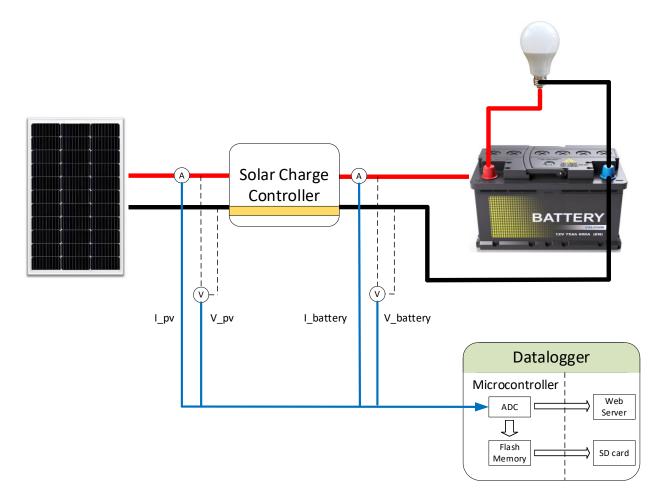
	HMI Design		Data Storage	Data Storage		
Reference	Customized	Website/	LCD	Mobile App	SD Card	Website
	Web Server	Software				
[1]	\checkmark					
[2]		\checkmark	\checkmark		\checkmark	
[3]				\checkmark		\checkmark
[4]	\checkmark					
[5]					\checkmark	
[6]			\checkmark			\checkmark

1. Bouzguenda, M.; Chtourou, S.; Alarfaj, M.; Sumsudeen, R.M.; Shwehdi, M. Arduino Uno Wi-Fi DeMilitarized Zone-based monitoring of solar photovoltaic systems. Measurement and Control 2022, 55, 136-145, doi:10.1177/00202940221090553.

2. Khaleel, K.; Atyia, T.H.; Al-Naib, A.M.I. Design and Development of Real-Time Data Acquisition of Photovoltaic Panel Parameters via IoT. NTU Journal of Renewable Energy 2022, 3, 1-8.

3. Le, P.T.; Tsai, H.L.; Le, P.L. Development and Performance Evaluation of Photovoltaic (PV) Evaluation and Fault Detection System Using Hardware-in-the-Loop Simulation for PV Applications. Micromachines 2023, 14, doi:10.3390/mi14030674.

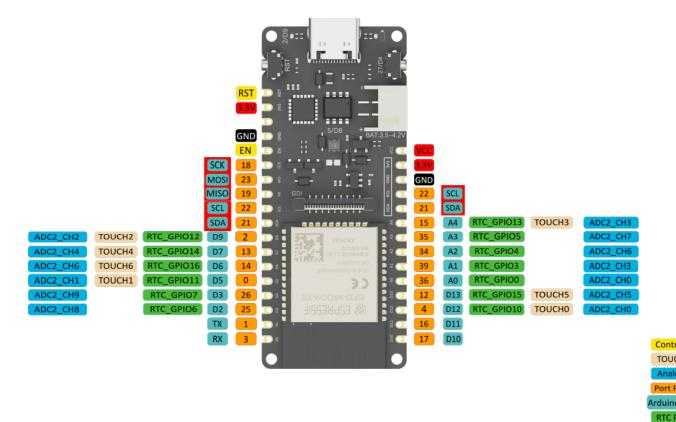
4. İnner, B. Data monitoring system for solar panels with bluetooth. In Proceedings of the 2017 25th Signal Processing and Communications Applications Conference (SIU), 15-18 May 2017, 2017; pp. 1-4.


5. C, B.; H, M.-A.; H. B. A, S.; A. Bennani-Ben, A.; I, S.-B.; H, S. A real time, wireless and low cost data acquisition system for residential PV modules. In Proceedings of the 2020 6th IEEE International Energy Conference (ENERGYCon), 28 Sept.-1 Oct. 2020, 2020; pp. 417-422.

6. Didi, Z.; El Azami, I. Experimental Analysis and Monitoring of Photovoltaic Panel Parameters. International Journal of Advanced Computer Science and Applications 2023, 14, 151-157, doi:10.14569/IJACSA.2023.0140219.

- Design a PV system data logger using different low-power strategies to minimize power consumption without compromising performance.
- Design a PV system data logger, using an HMI that consumes low power and displays historical data, and a remote data storage solution that supports large data storage without extra charge.
- Design an open-source SCADA system based on IoT for a PV system, using locally installed middleware to manage the data flow, provide customizable HMIs, and control the PV system load.
- Design an open-source IoT-SCADA system for monitoring and controlling a PV system, using two IoT platforms, increased the system robustness by the data redundancy. Images of the load can be accessed on a web server, enabling the visual verification of the load status.

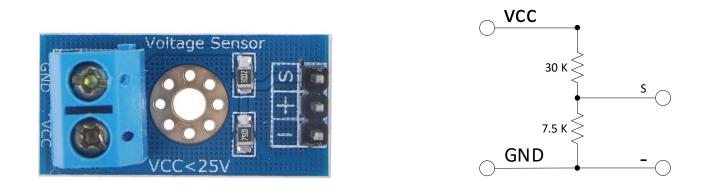
1. Power Consumption Minimization of a Low-Cost Data Logger for PV system


Connection diagram of PV system and developed data logger.

Components

FireBeetle 2 ESP32-E, supports Wi-Fi and Bluetooth

FireBeetle 2 ESP32-E pinout. 10 μ A current consumption during deep sleep

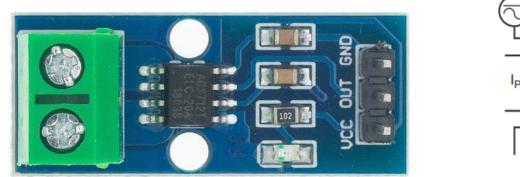

Comparison of FireBeetle 2 ESP32-E and Arduino UNO.

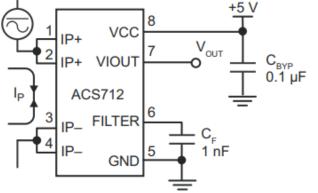
Components	FireBeetle 2 ESP32-E	Arduino UNO
Processor	dual-core Tensilica LX6	ATmega328P
Operating Voltage	3.3 V	5 V
CPU Speed	Up to 240MHz	Up to 16MHz
Analog In/Out/Dual	4/0/9	6/0/0
Pins		
Digital In/Out/Dual Pins	0/0/10	0/0/8
Flash	4 MB	32 kB
SRAM	520 kB	2 kB

MEMORIAL UNIVERSITY

Components

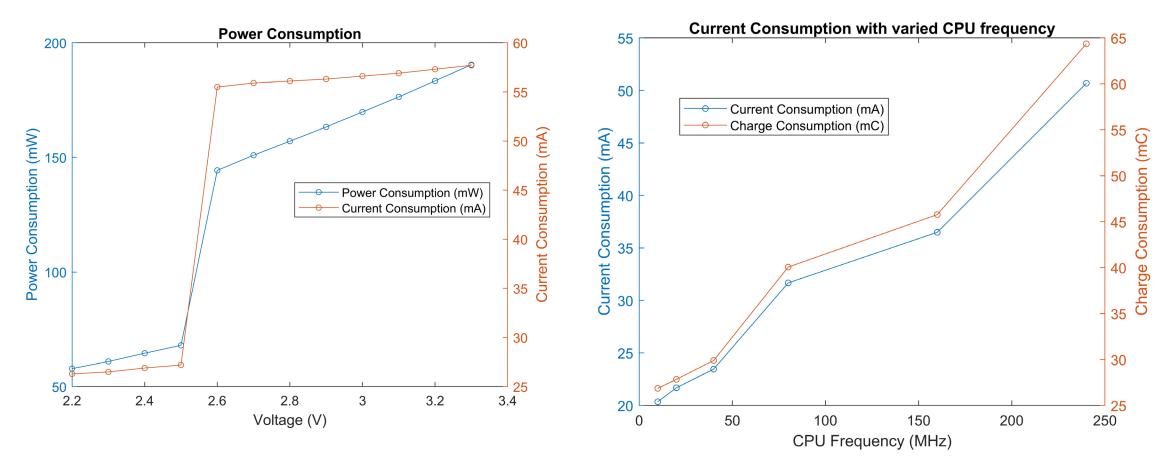
> 0-25 V Voltage divider




DC 0-25V voltage sensor. (a) Real image. (b) Working diagram.

Components

> ACS712 Current sensor


ACS712-20A Current Sensor. (a) Real image. (b) Connection schematic.

1. Power Consumption Minimization of a Low-Cost Data Logger for PV system

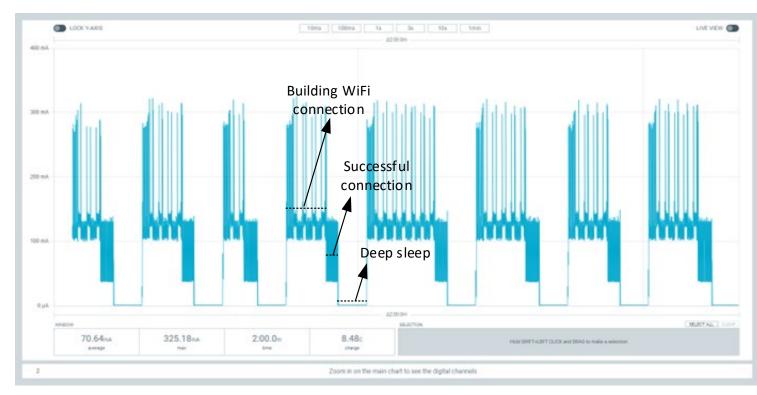
 $p = CV^2 f$

C is the total capacitance V is the supply voltage f is the operating frequency

Fixed *f*, *p* decreases when *v* decreases

Low Power Techniques

Fixed v, p decreases when f decreases


ESP32 power modes with their active components and corresponding current consumptions.

Power Modes	Active Components	Current Consumption
Active	ESP 32 core, ULP coprocessor, RTC, peripherals, Bluetooth, Radio, Wi-Fi	95-240 mA
Modem Sleep	ESP 32 core, ULP coprocessor, RTC, peripherals	2-4 mA @ 2 MHz 20~25 mA @ 80 MHz 30~50 mA @ 240 MHz
Light Sleep	ULP coprocessor, RTC, peripherals	~0.8 mA
Deep Sleep	ULP coprocessor, RTC RTC	150 μA 10 μA
Hibernation	RTC (timer, part of RTC GPIOs)	5 μΑ

Current and charge consumption comparison between SD card and the flash memory.

Memory	Operation	Current Consumption (mA)	Period (ms)	Discharge (mC)
	Initialization	65.49	4620	302.4
SD card	Read	62.10	8.34	0.516
	Write	58.15	144.1	8.38
	Read	38.84	13.05	0.507
Flash	Write	41.64	10.11	0.421

Average time required to build Wi-Fi connection: **7.575 s**

MEMORI

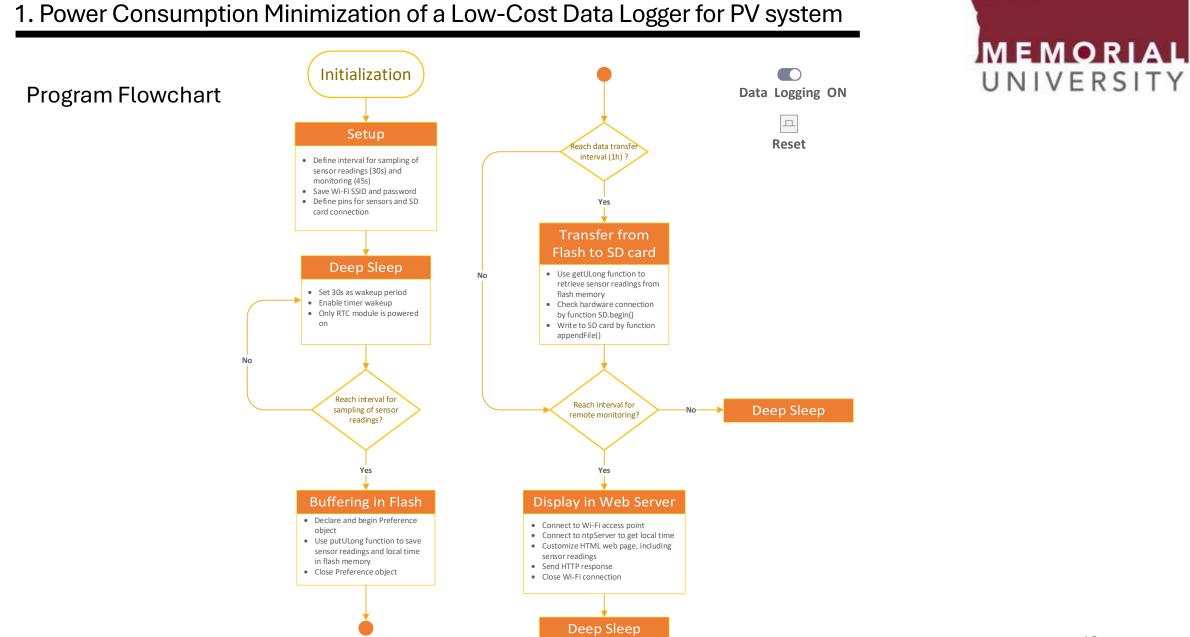
UNIVERSITY

Average current during Wi-Fi building process: **118.27 mA**

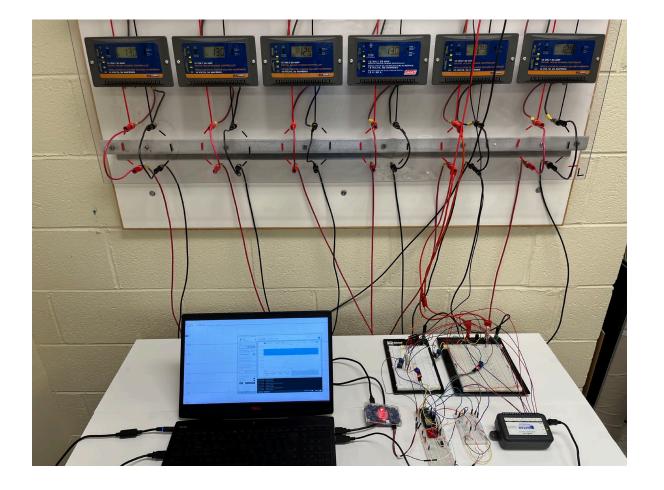
Average current after Wi-Fi is connected: **61.5 mA**

Average current during deep sleep: **1.35 mA**

Current consumption during Wi-Fi connection.

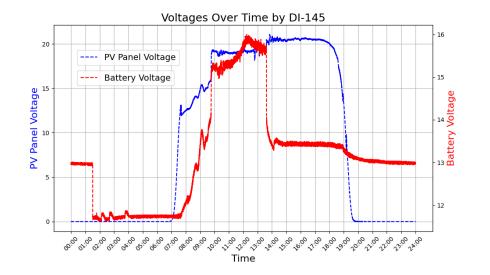

Deep sleep mode saves power, but waking up and reconnecting to Wi-Fi increase power

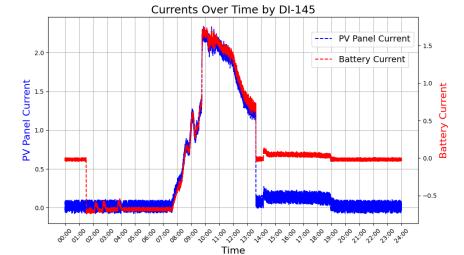
 $T \times 61.5 \text{ mA} = 7.575 \text{ s} \times 118.27 \text{ mA} + (T - 7.575 \text{ s}) \times 1.35 \text{ mA}$ T = 14.717 s, as the shortest monitoring period


The ratio of monitoring times to average current at different Wi-Fi connection intervals.

Wi-Fi connection interval (s)	10	30	45	60
Monitoring times within 600 seconds	60	20	13.33	10
Average current (mA)	23.6	7.34	4.66	4.02
Monitoring times/ average current	2.54	2.72	2.86	2.49

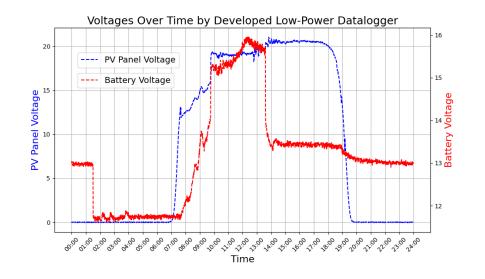
1. Power Consumption Minimization of a Low-Cost Data Logger for PV system

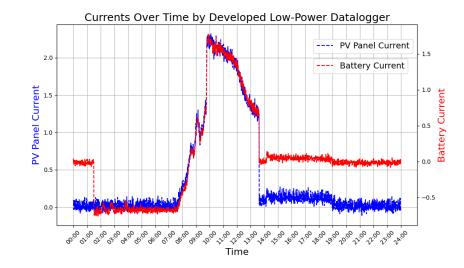


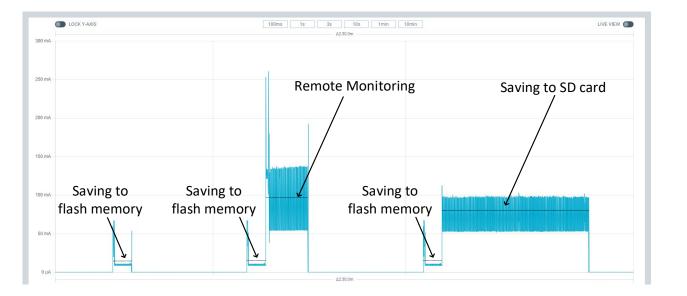

DATAQ® DI-145: a data acquisition device

Power Profiler Kit II: measure the microcontroller power consumption

Experiment test setup.


1. Power Consumption Minimization of a Low-Cost Data Logger for PV system

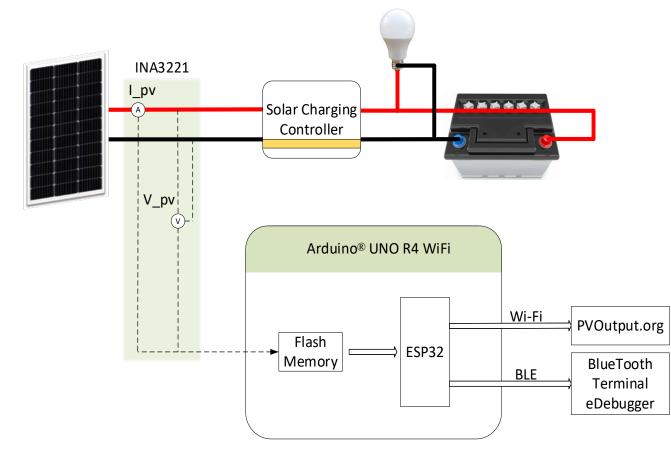



MEMORIAL UNIVERSITY

Data logger precision verification

Web page showing electrical parameters of

monitored PV system.


| ◎ +

MUN	ECE PV	SYSTEM I	DATA LOG	GER: RE	AL-TIME D	DISPLAY	
	Time	PV Panel Voltage (V)	PV Panel Current (A)	Battery Voltage (V)	Battery Current (A)		
	11:38:27	19.01	1.93	15.44	1.40		
	11:39:12	18.99	1.97	15.44	1.43		
	11:39:57	19.01	1.94	15.46	1.43		
	11:40:42	19.01	1.92	15.50	1.42		
	11:41:27	18.99	1.94	15.44	1.42		
	11:42:12	18.94	2.01	15.36	1.43		
	11:42:57	18.90	2.08	15.33	1.45		
	11:43:42	18.91	2.05	15.40	1.47		
	11:44:27	18.91	2.04	15.39	1.46		
	11:45:12	18.89	2.05	15.37	1.45		
	11:45:57	19.00	1.90	15.43	1.38		
	11:46:42	18.97	1.94	15.45	1.41		

Current consumption including all scenarios of the data logger tasks.

MEMORIAL UNIVERSITY

Block diagram

Components

> Arduino UNO R4 Wi-Fi

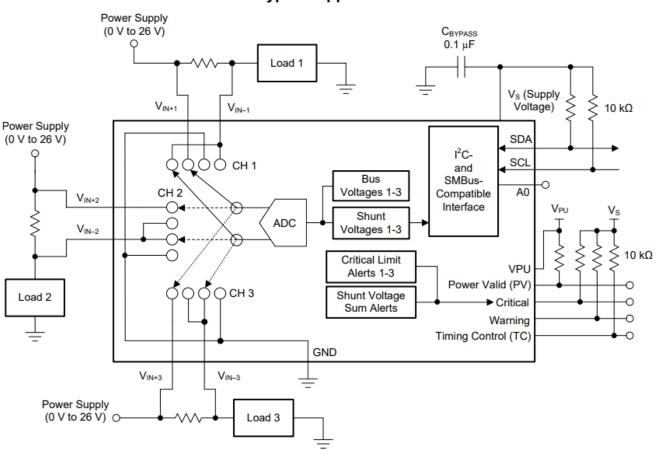
supports Wi-Fi and Bluetooth

	Arduino® UNO R4 Wi-Fi	Arduino® UNO Rev3
ѕки	ABX00087	A000066
Microcontroller	Renesas RA4M1 (Arm® Cortex®-M4)	ATmega328P
Digital I/O Pins	14	14
Analog Input Pins	6	6
Operating Voltage (V)	5 (3.3, for ESP32-S3)	5
Input Voltage (V)	6-24	7-12
DC Current per I/O Pin (mA)	8	20
Clock Speed (MHz)	48 (up to 240, for ESP32-S3)	16
Memory	256 kB Flash, 32 kB RAM	32 kB Flash, 2 kB SRAM
Wi-Fi & Bluetooth connectivity	Yes	No
I ² C	Yes	Yes

Comparison of technical specifications between Arduino® UNO R4 Wi-Fi and Arduino® UNO Rev3.

Components

≻ INA3221:


shunt and bus voltage

monitor, able to measure

voltage and current

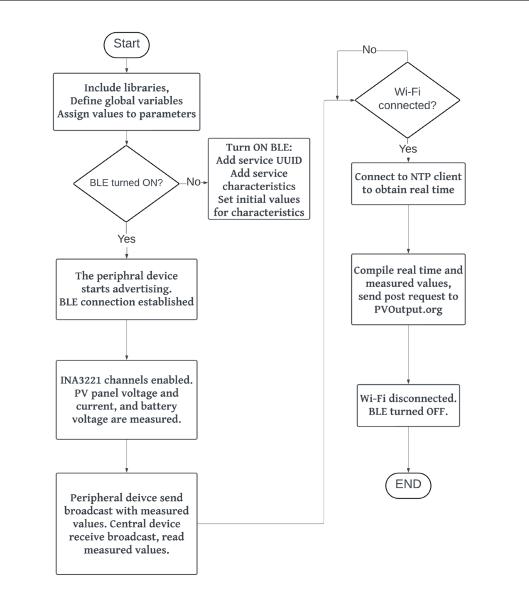
I = Shunt voltage/ shunt resistor

V = Bus voltage

Typical Application

INA3221 schematic diagram

Components

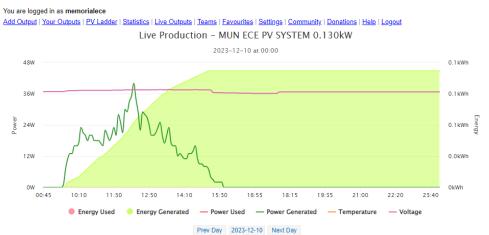

BlueTooth Terminal eDebugger
 Bluetooth debugging assistant
 application running on Android OS

PVOutput.org

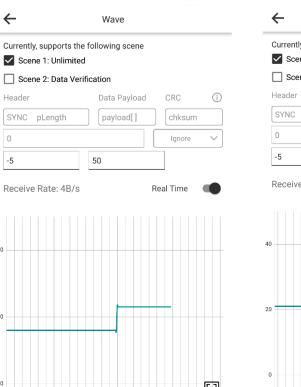
free service for sharing PV output data 2,515,654 solar panels monitored 61,480,020 PV panel outputs recorded

	CSV loader	Live loader
Maximum Previous Days	No Limit	14 (90, in Donation Mode)
Data Interval	Up to one day	Up to five minutes
Maximum Number for per upload	200	288
Supported Parameters by both	Output Date, Energy Generation, Energy Consumption	Output Date, Energy Generation, Energy Consumption
Supported Parameters by CSV loader exclusively	Energy Exported, Peak Power, Peak Time, Conditions, Temperature Min, Temperature Max, Comments, Import Peak, Import Off Peak, Import Shoulder, Import High Shoulder, Export Peak, Export Off Peak, Export Shoulder, Export High Shoulder	1
Supported Parameters by Live loader exclusively	1	Output Time, Power Generation, Power Consumption, Temperature, Voltage

Program flowchart

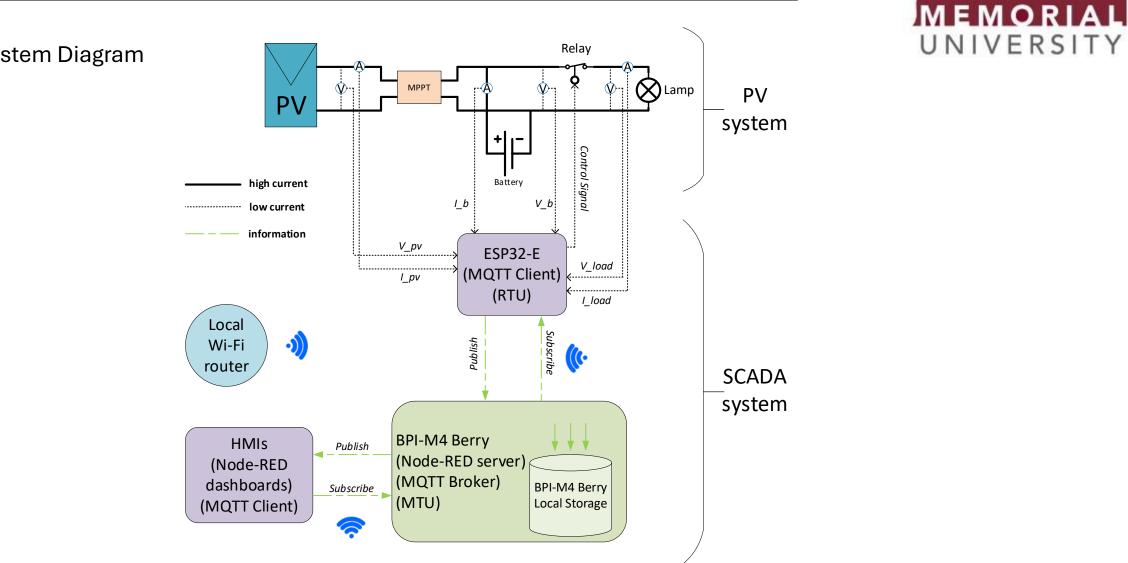


Experimental Results


PV System BLE Service	UUID	Result
Generic Access	00001800- 0000-1000-8000-00805f9b34fb	\
Generic Attribute	00001801- 0000-1000-8000-00805f9b34fb	\
PV power Service	0000180f- 0000-1000-8000-00805f9b34fb	١
Power Characteristic	00002a19- 0000-1000-8000-00805f9b34fb	\
Property	/	Read, Notify
Value	/	(0x)19

BLE service information between BTeD and the RTU.

PVOutput


PV panel output power on Dec. 10, 2023, recorded in PVOutput.org.

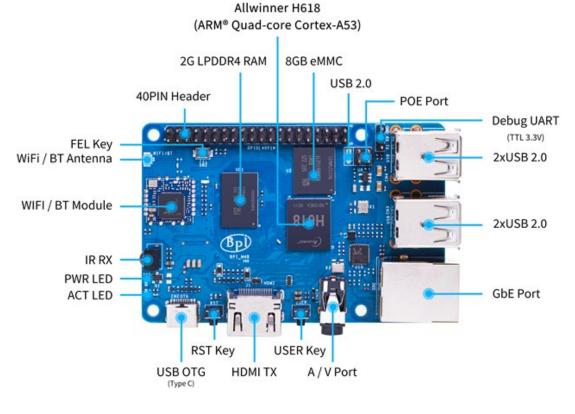
Scene 2: Data Verification Header Data Payload CRC [SYNC pLength payload[] chksum Ignore -5 50 Receive Rate: 5B/s Real Time 40 40 40 40 40	Scene 1: Unlimiter		
SYNC pLength payload[] chksum 0 Ignore -5 50 Receive Rate: 5B/s Real Time 40	_		
0 Ignore V -5 50 Receive Rate: 5B/s Real Time 40	Header	Data Payload	CRC (i
-5 50 Receive Rate: 5B/s Real Time	SYNC pLength	payload[]	chksum
Receive Rate: 5B/s Real Time	0		Ignore 🗸
40	-5	50	
20		R	Real Time 🗨
		R	Real Time
	40	R	Real Time

BTeD live recording of the PV panel output power.(a) Increased power (b) Decreased power.

3. An Open-Source SCADA Architecture for PV system monitoring using ESP32, Banana Pi M4 and Node-RED

System Diagram

Overview of proposed SCADA Design.

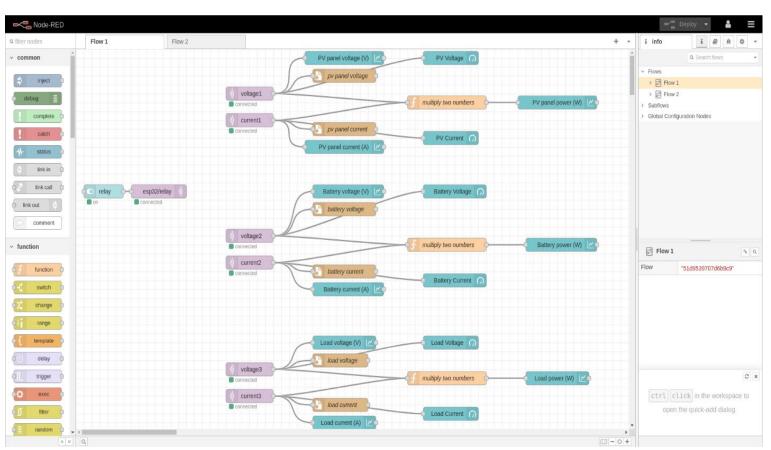

3. An Open-Source SCADA Architecture for PV system monitoring using ESP32, Banana Pi M4 and Node-RED

Components

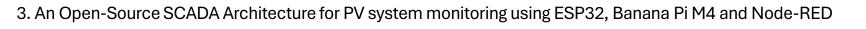
- ➢ Banana Pi M4 Berry
- Single Board Computer (SBC) powered by the Allwinner H618 System-on-Chip (SoC)
- Full HDMI connector and M.2 PCIe 2.0 slot
- 2GB of LPDDR4 memory, 8GB of embedded

Multi-Media Controller (eMMC) storage

• Integrated Wi-Fi and Bluetooth capabilities


BPI-M4 Berry

Components


≻ Node-RED

- flow-based programming using nodes
- Each node has a specific function: receiving data, performing an operation on this data, and then forwarding the processed data onwards.
- easy implementation of MQTT protocol
- supports local running

MEMORIAL

UNIVERSITY

Program Flowchart and Algorithm

Algorithm 1: Data acquisition, automatic control, display, and logging.

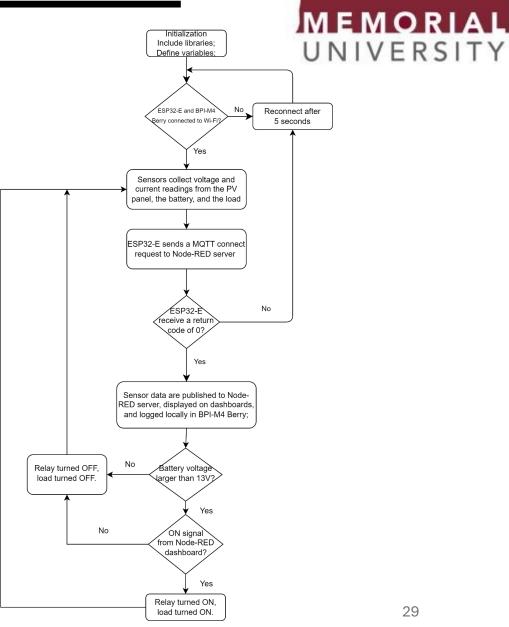
Initialization;

- 1. ESP32-E connects to the local TCP/IP Wi-Fi network;
- 2. Voltage/current sensors measure voltages/currents from the PV panel, the battery, and the load;
- 3. ESP32-E reads sensor values on Pin 36, 39, 35, 34, 12, 15;
- 4. ESP32-E (MQTT publisher) sends a connect request to the Node-RED server (MQTT broker) over IP; While ESP32-E receives a return code of 0 do
- ESP32-E publishes the sensor data to the Node-RED server over the Wi-Fi network; 5.
- Node-RED logs the sensor data in the local BPI-M4 Berry flash memory; 6.
- 7. Display the sensor data in Node-RED dashboards, and any other device over the Wi-Fi network; If the battery voltage is less than 13 volts or subscription message from Node-RED is OFF then
 - 8. Turn off the relay;

Else

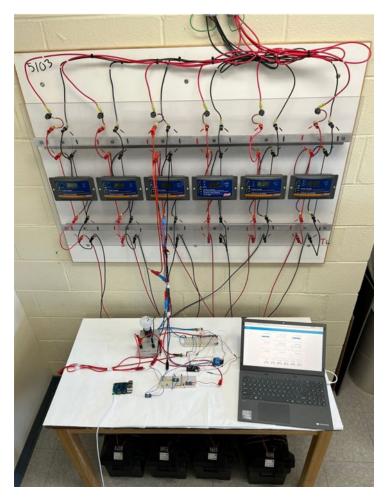
9. Turn on the relay;

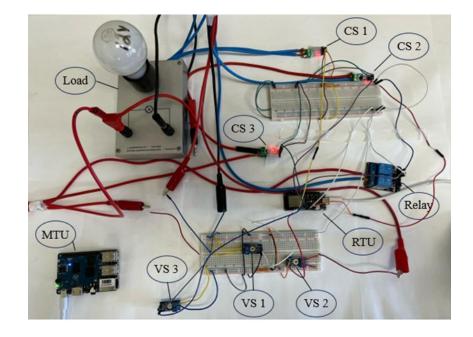
End

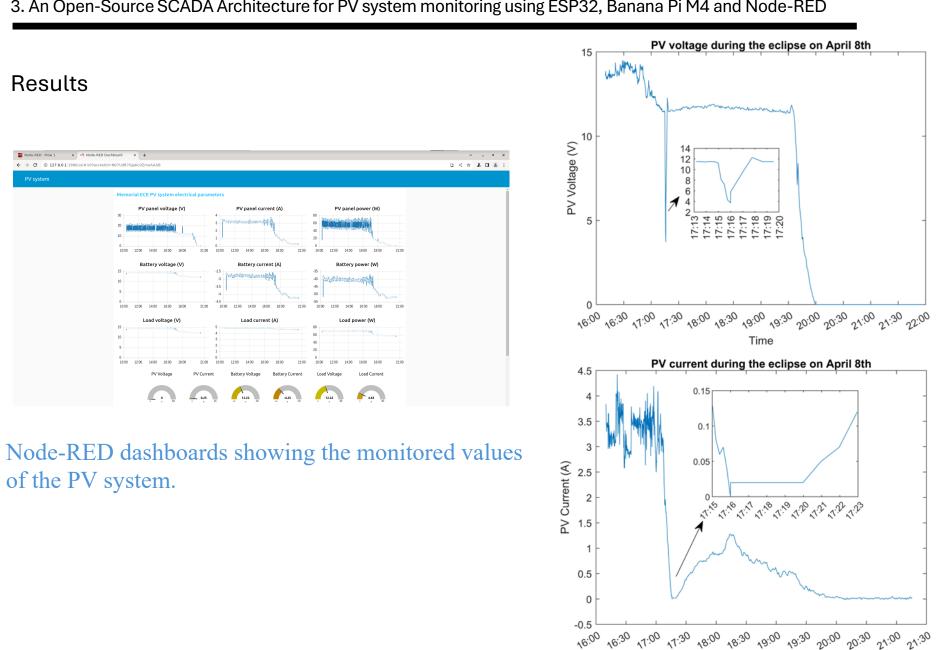

End

If ESP32-E does not receive a return code of 0 then

10. Print "Attempting MQTT connection" in Arduino IDE Serial Monitor, reconnect in 5 seconds; Else


11. Go to Step 1;


End


Experimental Setup

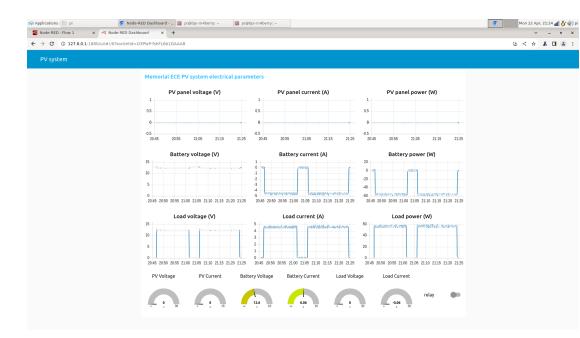
Hardware implementation of the proposed SCADA system.

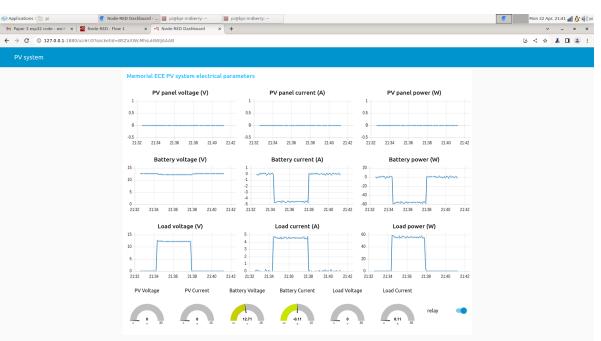
Experimental setup at MUN ECE laboratory.

Time

3. An Open-Source SCADA Architecture for PV system monitoring using ESP32, Banana Pi M4 and Node-RED

Results

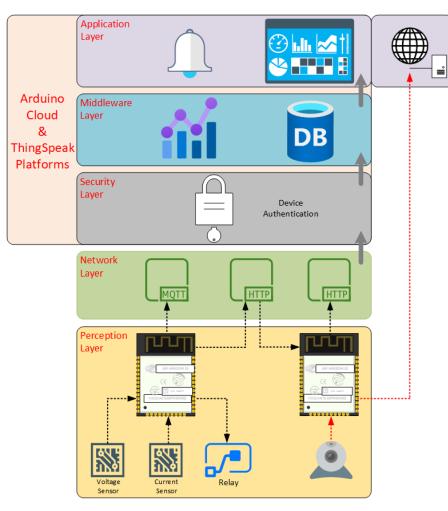

← → C ③ 127.0.0.1:1880/ui/#!/0?soc


MEMORIAL

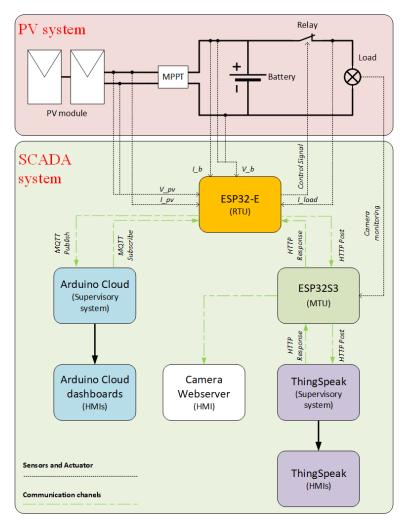
UNIVERSITY

Results

Test results for supervisory control.


Test results for local control.

4. An IoT-SCADA architecture for PV system monitoring, control, and inspection in real time

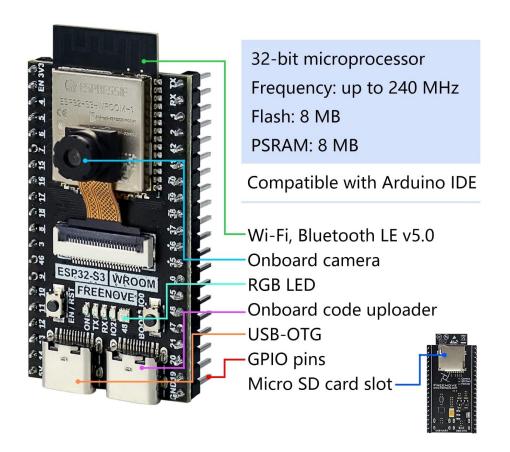


System Diagram

5-layer IoT-based SCADA architecture

Proposed design of 5-layer IoT-based SCADA architecture.

SCADA components of the proposed design. ³³

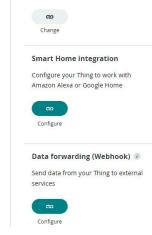

Components

➢ ESP32-S3

Xtensa® 32-bit LX7 dual-core processor, more advanced than Xtensa® 32-bit LX6 dual-core Processor in ESP32-E

Support PSRAM integration

More suitable for camera use

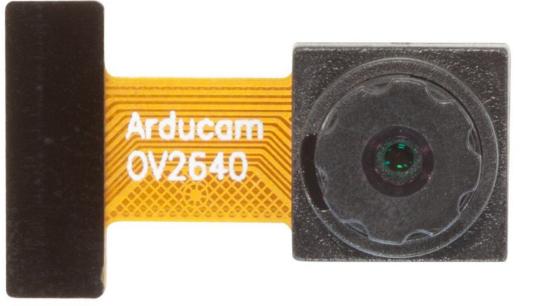

ESP32-S3

Components

- Arduino Cloud
- •Device Management
- •Security
- •Data Visualization
- •Cloud Programming
- •Remote Control
- •Over-the-Air Updates
- •Cloud Services Integration

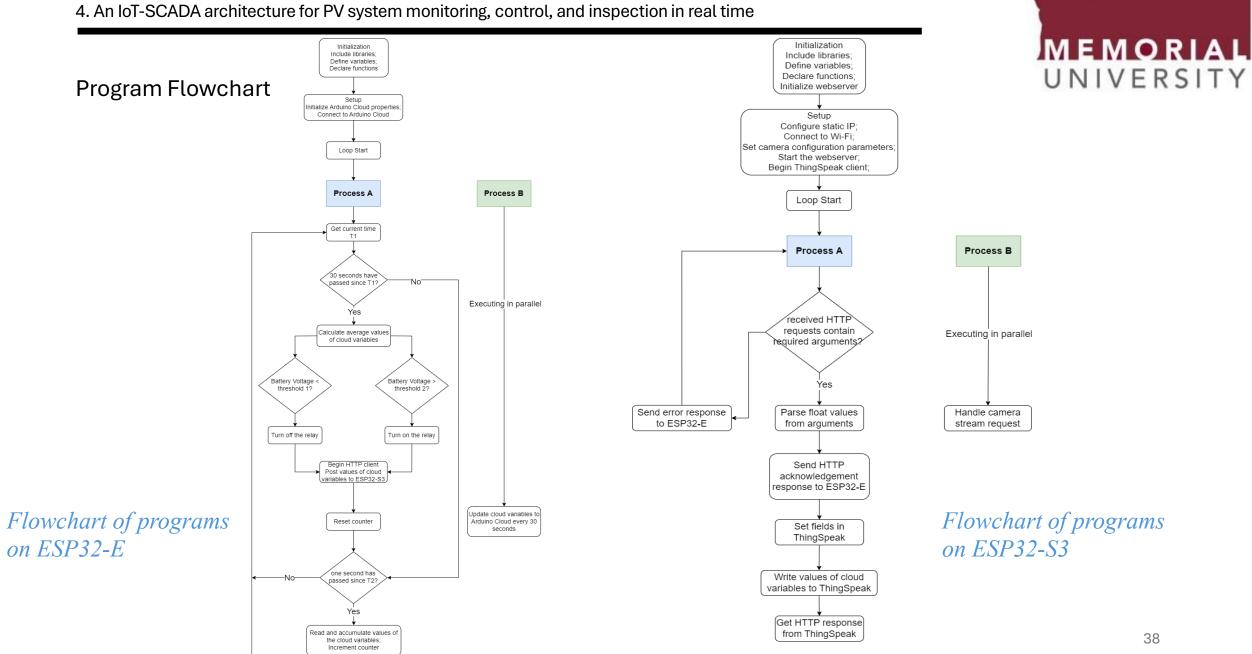
Things > ESP32e -	\odot		향 Setup 〈〉 Sketch
Cloud Variables		ADD	Associated Device
Name ψ	Last Value	Last Update	ID: b9e90d87-bdec-4d58-84c1-1b8 🕒
battery_current float battery_current;	-0.054	04 Jul 2024 22:17:29	Type: FireBeetle-ESP32 Status: Online
<pre>battery_voltage float battery_voltage;</pre>	12.743	04 Jul 2024 22:17:29	έσ m
<pre>load_current float load_current;</pre>	0.19	04 Jul 2024 22:17:29	Change Detach
<pre>pv_current flost pv_current;</pre>	0.152	04 Jul 2024 22:17:29	Network Wi-Fi Name: welh
<pre>pv_voltage float pv_voltage;</pre>	0	04 Jul 2024 22:17:29	Wi-Fi Name: weih_ Password:

Arduino Cloud interface

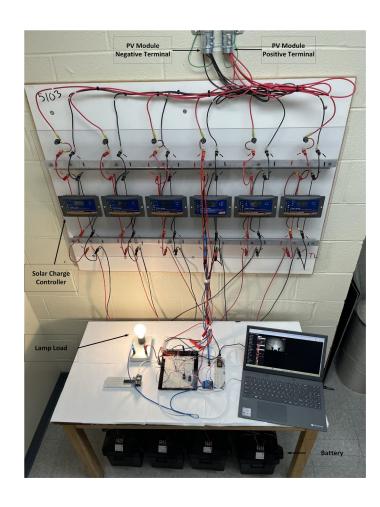

Components

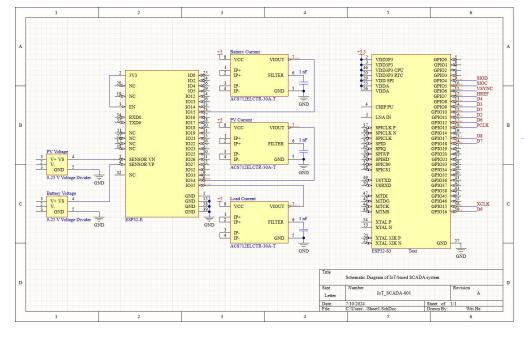
- ThingSpeak
- •IoT analytics platform
- •MATLAB integration
- •Various analysis app available
- •Cloud storage

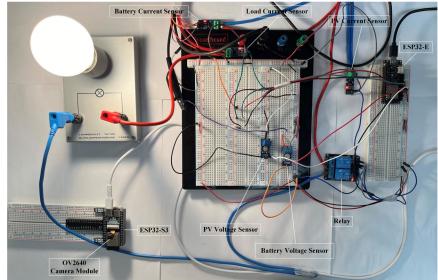
	□ , ThingSpeak™	Channels 👻	Apps 👻	Devices 🕶	Support -	Commercial Use How to Buy WH
	PV monitoring Channel ID: 2570592 Author: mwa0000027591798 Access: Private	g				
	Private View Public View Add Visualizations Add	Channel S dd Widgets		Sharing ort recent da	API Keys	Data Import / Export MATLAB Analysis MATLAB Visualization
•	Channel Stats Created: <u>29 days ago</u> Last entry: <u>less than a minute a</u> Entries: 33038	AEO				
	Field 1 Chart	PV Voltag	24. Jun	C ^R O 1. Jul ThingSpee	-	PV Voltage
	Field 2 Chart	PV Currer	n NM		r ×	PV Current C O V X
		Τŀ	hing	gSp	eak	interface


Components

- OV2640 Camera
- 1/4 inch CMOS image sensor
- combination of a single-chip UXGA
 (1600×1200) camera and an image processor
- Supports different image sizes
- resolution, frame rate, exposure control, white balance, gain control, noise reduction can all be configured
- 3.3V supply voltage, compatible with MCU


OV2640 camera module

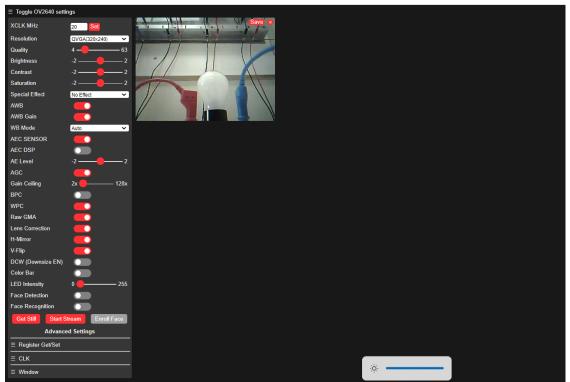




4. An IoT-SCADA architecture for PV system monitoring, control, and inspection in real time

Experimental Setup

Hardware setup of IoT-SCADA system


Hardware schematic diagram

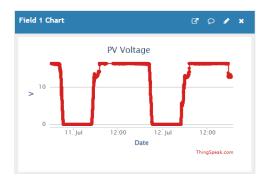
39

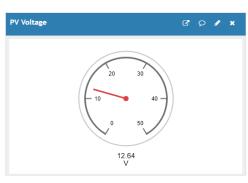
Experimental Setup

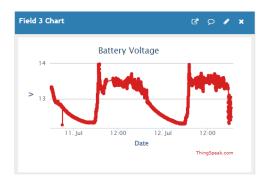
```
1 % Store the channel ID for the PV monitoring channel.
 2 channelID = 2570592;
 3 readAPIKey = 'GW5DUUKETI09WJTU';
5 % Provide the ThingSpeak alerts API key. All alerts API keys start with TAK.
 6 alertApiKey = 'TAKzIUH98ogbRUuzpzu';
 8 % Set the address for the HTTTP call
 9 alertUrl="https://api.thingspeak.com/alerts/send";
11 % webwrite uses weboptions to add required headers. Alerts needs a ThingSpeak-Alerts-API-Key header.
12 options = weboptions("HeaderFields", ["ThingSpeak-Alerts-API-Key", alertApiKey ]);
14 % Set the email subject.
15 alertSubject = sprintf("Low Battery Voltage");
17 % Read the recent data.
18 BV_Data = thingSpeakRead(channelID, 'ReadKey', readAPIKey, 'NumPoints', 30, 'Fields', 3);
20 % Check to make sure the data was read correctly from the channel.
21 if isempty(BV_Data)
22
      alertBody = ' No data read from battery. ';
23 else
      % Get the most recent point in the array of battery voltage data.
24
25
      lastBV Value = BV Data(end);
26
      lastBV_Value
27
28
      % Set the outgoing message
29
      if (lastBV_Value <= 12.5)</pre>
30
          alertBody = ' The battery voltage is low! ';
31
32
33
       else (lastBV Value > 12.5)
           alertBody = 'The battery voltage is normal. ';
34
      end
35 end
37 % Catch errors so the MATLAB code does not disable a TimeControl if it fails
38 try
39
      webwrite(alertUrl , "body", alertBody, "subject", alertSubject, options);
40 catch someException
41
       fprintf("Failed to send alert: %s\n", someException.message);
42 end
43
```

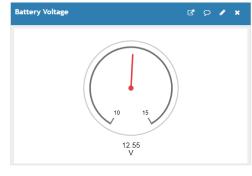

Camera server interface

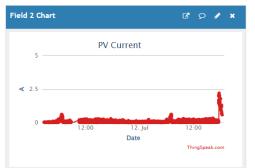
MATLAB program for email alert when the battery voltage is below 12.5 V.

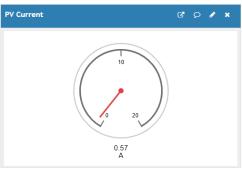

Results

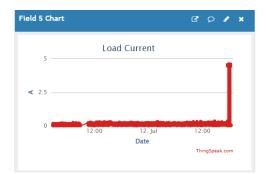


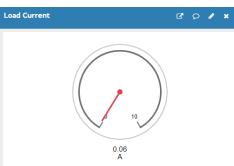

Arduino Cloud dashboards on July 11 and 12, with 1D time scale. Arduino Cloud dashboards on July 12, with 1H time scale.

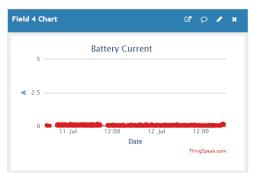

MEMORIAL UNIVERSITY

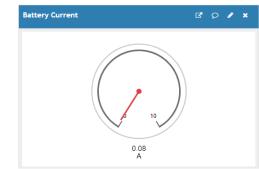

Results

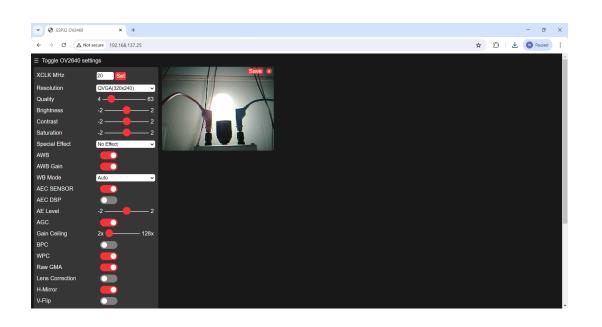












ThingSpeak dashboards displaying PV system parameters.

Results

Load on when battery voltage is larger than 13.0 V.

Alert: Low Battery Voltage

The battery voltage is low!

Time: 2024-07-17 22-03-032 :+0000

You are receiving this email because a ThingSpeak Alert was requested using your ThingSpeak Alerts API key. For more information please refer to the ThingSpeak Alerts Documentation.

□ ThingSpeak[™]

Email alert noticing that battery voltage is less than 12.5 V.

- Being low power consumption and affordable, an IoT data logger specifically designed for PV system monitoring was studied. Different power-saving techniques were employed.
- A new design of HMI and a data storage solution featuring remote, extensive, and low-cost characteristics was proposed for the SCADA system to monitor standalone PV systems.
- Total solar eclipse data were recorded, using an IoT data logger based on BPI-M4 Berry single board computer and Node-RED middleware, featuring easy-to-implement and versatility
- An IoT-SCADA system was proposed to monitor and inspect the PV system, using Arduino Cloud and ThingSpeak. Such data redundancy increased the system robustness.

Future Works

> Wireless communication between the smart sensors and actuators

- > Non-intrusive DC current sensors.
- One integrate solution that achieves local HMI, local data storage, cloud HMI, and cloud data storage.

I want to sincerely thank:

Dr. Tariq Iqbal as my academic supervisor

Dr. Mirza Jabbar Aziz Baig as the co-author

Administrative staff at the Faculty of Engineering & Applied Science

✤ My family, lab friends, course friends, and home friends

- He, W.; Iqbal, M. T. Power Consumption Minimization of a Low-Cost IoT Data Logger for Photovoltaic System. J. Electron. Electric. Eng. 2023, 2, 241–261.
- He, W.; Iqbal, M. T. A Novel Design of a Low-Cost SCADA System for Monitoring Standalone Photovoltaic Systems. *J. Electron. Electric. Eng.* **2024**, *3*, 101–109.
- He, W.; Baig, M.J.A.; Iqbal, M.T. An Open-Source Supervisory Control and Data Acquisition Architecture for Photovoltaic System Monitoring Using ESP32, Banana Pi M4, and Node-RED. *Energies* 2024, *17*, 2295. https://doi.org/10.3390/en17102295
- He, W.; Iqbal, M.T. An IoT-SCADA architecture for photovoltaic system monitoring, control, and inspection in real time. Manuscript submitted to *Electronics* for publication.
- He, W.; Mumtaz, K.; Sajjad, A.; Javaid, M.; Iqbal, M.T. Energy use analysis and simulation of MUN CSF Building using BEopt.
 Presented in The 32nd Annual Newfoundland Electrical and Computer Engineering Conference, November 14, 2023, St. John's, Newfoundland and Labrador.

All questions are welcome!