

Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

Mohammad Zamanlou, M.Eng. Supervisor: Professor Tariq Iqbal M.Eng. Seminar Presentation

Fall 2020

Department of Electrical & Computer Engineering

Memorial University

St. John's, NL, Canada

Presentation Overview

Introduction

Load Analysis & System Sizing

Dynamic Modelling & Control System (MATLAB/Simulink)

IoT-based SCADA & Data Logging System

Conclusion & Contributions & Publications

\star Questions

Introduction

Topic & Site Selection

- Reasoning >> Environmental <u>Crises</u> in Iran
 - 1. Global Warming (Fossil fuels are the main source of energy generation)
 - 2. Water Crisis (Mis-use of Water in Irrigation)

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

Designed for a 14.7 Hectare Grape Garden - Urmia, West Azerbaijan, Iran

5

Solar Water Pumping

Introduction

Solar PV system offers:

- Causes no pollution
- Long life-cycle
- Unattended operation
- Low maintenance cost
- Easy installation

Introduction

			Sub-Irrigation
Irrigation Metho	ods		
Solution for Wat in Iran	er Crisis		
T · · · · · · · · ·		Surface Irrigation	
Irrigation Method	Water Efficiency		Drin-Irrigation
Surface Irrigation	50-65%	Sprinkler-Irrigation	Drip Inigation
Level Basin	60-80%		
Sub irrigation	50-75%		
Overhead irrigation	60-80%	Charles March	
Sprinkler irrigation	60-85%		
Drip irrigation	80–90%		

Load Analysis & System Sizing

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran Fall 2020

System Load Sizing

Food and Agriculture Organization of the United Nations

1. Flow rate: Tools:

- CropWat v8.1
- ClimWat for CropWat

2. Total Dynamic Head:

Ground water Level + Elevation

CROPWAT WATER ANALYSIS RESULTS

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

System Diagram

9

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

System Sizing without Storage System

Using Lorentz Compass3

Design Factors:

- 1. Flow rate (July): 755 $m^3/_{day}$
- 2. Total Dynamic Head: 45m

MEMORIA

UNIVERSIT

System Design <u>without</u> Storage System

Lorentz Compass3 **Results**:

Pump Chart

MEMORIA

UNIVERSIT

¹² System Design <u>without</u> Storage System

System Costs:

Component	Model	Capital Cost (CAD)
Pump System	PS25K2 C-SJ95-4	19,934.99
Pump Controller	PS25k Controller-18.5kVA	10,826.51
PV Panels	Suntech Power315 (44.4kw)	24,937.25
Total		55,698.75

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

System Sizing with Storage System

- **1.** Flow rate (Constant): **35** $m^3/_{h}$
- **2.** Total Dynamic Head: **45***m*

13

PSk2-15 C-SJ42-6

max. 50 m

IP54

min. 6,0 in

max. 65 m3/h

Solar Submersible Pump System for 6" wells

System Overview

Head

Flow rate **Technical Data** Controller PSk2-15 High efficiency solar pump controller · Hybrid power (solar / grid / generator) support with LORENTZ

- SmartSolution Inputs for water meter, pressure sensors, digital switches
- Simple configuration with LORENTZ PumpScanner Android™Apple
- · Onboard data logging and system monitoring
- · Inbuilt applications for constant pressure, constant flow and daily amount
- · Integrated Sun Sensor

Enclosure class

- Active temperature management
- Integrated MPPT (Maximum Power Point Tracking)

Power	max. 15 kW
Input voltage	max. 850 V
Optimum Vmp**	> 575 V
Motor current	max. 24 A
Efficiency	max. 98 %
Ambient temp.	-3050 °C

Mater AO DONE OUD OF ANIM

MOTOL AC DRIVE SUB 6 TIKW	
 Highly efficient 3-phase AC motor 	
Frequency: 2550 Hz	
 Premium materials, stainless steel: AISI 304 	
 No electronics in the motor 	
Efficiency	max. 80 %
Motor speed	1,4002,850 rpm
Power factor	0.87
Insulation class	F
Enclosure class	IP68
Submersion	max. 150 m

Pump End PE C-SJ42-6

· Non-return valve · Premium materials, stainless steel: AISI 304 Centrifugal pump Efficiency max. 69 %

Pump Unit PUk2-15 C-SJ42-6 (Motor, Pump End) **Borehole** diamete Water temperature max 30 °C***

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

LORENTZ

System Sizing with Storage System

14

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

Fall 2020

MEMORIA

UNIVERS

¹⁵ System Design with Battery Storage System

Optimization with HOMER Pro Micro Grid Analysis Tool:

¹⁶ System Design with Battery Storage System

Results of the HOMER Optimization:

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

¹⁷ System Design with Battery Storage System

Results of the HOMER Optimization:

Daily profile: PV panels Power Output (KW)

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

System Design with Battery Storage System

Results of the HOMER Optimization:

18

Daily profile: BSS state of charge (%)

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

System Design with Battery Storage System

System Costs:

Component	Model	Capital Cost (CAD)
Pump System	PS15k2 - C-SJ42-6	15,284.68
Inverter	ABB PVI 10.0 I OUTD-x-US-480	5,096.00
PV Panels	Suntech Power 315w (44.4kw)	24,937.25
Battery Storage	Azar Battery 200Ah (x60)	4,860.00
Total		50,177.93

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

System Design with Water Tank Storage

- **1.** Irrigation Flow rate (Constant): **35** $m^3/_h$
- 2. Total Dynamic Head: 45m

Water Reservoir for Gravity fed Irrigation:

- Must be able to contain at least 1-day worth of water
- Must be elevated to add constant **pressure** in distribution line

1 meter of head = 1.42197 PSI Required pressure for Emitters= 15-30 PSI Water Tank Capacity: about $800 m^3$

Tank Elevation: 20 m

²¹ System Design with Water Tank Storage

Cistern Design:

✓ Water Capacity of the Designed Tank = 826.63 m^3

Fall 2020

System Design with Water Tank Storage

Cistern Design:

22

- ✓ Concrete used in the Designed Tank = $178.68 m^3$
- ✓ Concrete Unit Price: $24 \text{ CAD}/m^3$

✓ Concrete Total Price only for cistern construction
 24 x 178.68 = 4,288.32 CAD

System Design with Water Tank Storage

Water Pump Output:

23

Same as without storage system

Energy [kWh]

Irradiation [kWh/m²]

Ambient temp. [°C]

2.3

0.066

18

8.1

0.24

18

14

0.43

19

19

0.61

21

23

0.75

23

26

0.84

25

26

0.87

27

25

0.84

28

23

0.75

28

19

0.61

28

14

0.43

28

17:00

33

7.8

0.24

27

18:00

0

2.2

0.066

27

²⁴ System Design with Water Tank Storage

System Costs:

Component	Model	Capital Cost (CAD)
Pump System	PS25K2 C-SJ95-4	19,934.99
Pump Controller	PS25k Controller-18.5kVA	10,826.51
PV Panels	Suntech Power 315w (44.4kw)	24,937.25
Cistern	Concrete C-35 (178.68 m ³)	4,288.32
Total		59,987.07

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

				Sun PV array
Component* W (A	Vithout Storage A) (\$CAD)	With Battery Bank (B) (\$CAD)	With Water Tank (C) (\$CAD)	Controller Motor Water Irrigation
Pump system	19,934.99	15,284.68	19,934.99	Sun PV array
Pump Controller	10,826.51	5,096.00	10,826.51	Controller - Motor
PV Panels	24,937.25	24,937.25	24,937.25	Batteries Water Pump Irrigation
Battery Storage	N\A	4,860.00	N\A	Sunger Tark
Cistern (Concrete)	N\A	N\A	4,288.32	PV array
Total	55,698.75	50,177.93	59,987.07	Water Pump

Cost	Without Storage System	With Battery Storage System	With Water Tank Storage	PV array
Pumping System	Medium	Low	High	Water Pump Trrigation
Piping System	High	Low	Low	PV array PV array Controller Batteries Water Pump Irrigation
	Flowrate: up to 98 m^3/h	Flowrate: 35 ^{m^o} / _h	Flowrate: 35 $m^3/_h$	Sum PV array PV array Controller Motor
Suggested System	Solar Pumping w	vith Battery Sto	rage System	Water Pump

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

Dynamic Modelling & Control System

27

MATLAB/Simulink

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

28 Dynamic Modelling & Control System

²⁹ Dynamic Modelling & Control System

Dynamic Modelling & Control System

³¹ Dynamic Modelling & Control System

Dynamic Modelling & Control System 32

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

³³ Dynamic Modelling & Control System

Battery Charge Controller

Fall 2020

³⁴ Dynamic Modelling & Control System

Measurement Unit

³⁵ Dynamic Modelling & Control System

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

³⁶ Dynamic Modelling & Control System

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

Fall 2020

³⁷ Dynamic Modelling & Control System

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

IoT-Based SCADA & Data Logging System

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran Fall 2020

Introduction

39

\checkmark Supervisory Control and Data Acquisition

MEMORIA

By Mohammad ZamanlouIEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)September 2020

Project 1

Low-Cost, Open Source IoT-Based SCADA System Design Using Thinger.IO and ESP32 Thing

2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE)

Set up to remotely monitor a 260 W, 12 V Solar PV System.

Data Stored Online on Thinger.IO Cloud (WiFi Only)

A few HMIs were Designed

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

Project 2

Advanced Home Automation System Using Raspberry-pi and Arduino

Data Stored Locally on Raspberry Pi Server

NGINX for HTTP basic-authentication

Dataplicity for Exposing to the Internet (3rd Party App) (WiFi Only)

International Journal of Computer Science and Engineering (IJCSE) ISSN(P): 2278-9960; ISSN(E): 2278-9979 Vol. 8, Issue 2, Feb - Mar 2019; 1-10 © IASET

System Diagram

42

A. Solar Pumping Schematic Diagram

B. Designed SCADA System Schematic Diagram

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

43 Technology used in the Project

Fall 2020

NGINX Basic HTTP Encryption

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

Experimental Set-up

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

⁴⁵ Node-RED Program

By Mohammad Zamanlou

IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)

September 2020

Internet Connections List

<pre>pi@mysolarserver:~ \$ ifconfig -a lo: flags=73<up,loopback,running> mtu 65536 inet 127.0.0.1 netmask 255.0.0.0 inet6 ::1 prefixlen 128 scopeid 0x10<host> loop txqueuelen 1000 (Local Loopback) RX packets 7 bytes 362 (362.0 B) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 7 bytes 362 (362.0 B) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0</host></up,loopback,running></pre>	③ 192.168.2.50:480 × +
<pre>ppp0: flags=4305<up,pointopoint,running,noarp,multicast> mtu 1500 inet 25.127.244.104 netmask 255.255.255 destination 10.64.64.64 ppp txqueuelen 3 (Point-to-Point Protocol) RX packets 8 bytes 158 (158.0 B) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 9 bytes 221 (221.0 B) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 wlan0: flags=4163<up,broadcast,running,multicast> mtu 1500 inet 192.168.2.50 netmask 255.255.255.0 broadcast 192.168.2.255 inet6 fe80::97f2:39ac:23b5:9c10 prefixlen 64 scopeid 0x20<link/> ether b8:27:eb:42:fb:fb txqueuelen 1000 (Ethernet) RX packets 4866 bytes 328121 (320.4 K1B) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 4568 bytes 626122 (611.4 K1B) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 wwan0: flags=4163<up,broadcast,running,multicast> mtu 1500 inet 169.254.232.145 netmask 255.255.0.0 broadcast 169.254.255.255 inet6 fe80::e9bf:3966:5b83:b966 prefixlen 64 scopeid 0x20<link/> ether 3a:63:47:37:f2:28 txqueuelen 1000 (Ethernet) RX packets 0 bytes 0 (0.0 B) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 60 bytes 1090 (Ethernet) RX packets 60 bytes 1098 (10.8 K1B) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0</up,broadcast,running,multicast></up,broadcast,running,multicast></up,pointopoint,running,noarp,multicast></pre>	 ← → C () 192.168.2.50:480 ☆ ★ (a) : Sign in http://192.168.2.50:480 Your connection to this site is not private Username Password Sign in Cancel
pi@mysolarserver:~ \$ route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 0.0.0.0 192.168.2.1 0.0.0.0 UG 302 0 0 wlan0 10.64.64.64 0.0.0.0 255.255.255 UH 0 0 0 opp0 169.254.0.0 0.0.0.0 255.255.0.0 U 203 0 0 wwan0 192.168.2.0 0.0.0.0 255.255.255.0 U 302 0 0 wlan0 pi@mysolarserver:~ \$ Connection reset by 192.168.2.50 port 22 CPS C:\Users\Mr. Engineer>	

By Mohammad Zamanlou

M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

47 SCADA IoT Dashboard

Environment Tab

Main Tab

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran F

Engineering Energy Systems Laboratory

Unavailable due to COVID-19

Cost Analysis

System Costs:

Component	Cost (CAD)
Raspberry Pi Zero	37.60
Arduino Nano	4.80
Camera Module	13.99
3G Module SIM5320 A (optional)	105.99
Internet Plan (Iran) 48GB/year	6.5
Total	56.39 - 162.38

Open-Source SCADA System

Cost Comparison

Microsoft Azure

In addition to components cost (Same components), Minimum 12.80 \$CAD/month for each IoT Hub unit to implement the SCADA

Hicrosof	t Azure								Contac	: Sales 📞	Search ${\sf Q}$	My account	Portal	Sign in
Overview S	Solutions Proc	ducts ∨ Do	ocumentation	<u>Pricing</u> ∨	Training	Marketplace	Partners \sim	Support \sim	Blog	More \vee			Free a	ccount >
Region: Canada East		~	Currency: Canadia	n Dollar (\$)		~								
Pricing														
– IoT Hub				Connect y	our IoT de	evices and build	l your IoT sol	ution to turn	data int	o business	intelligence			
Basic tier														
EDITION TYPI	E		PF	RICE PER IOT H	IUB UNIT (PER T	OTAL NUMBE	R OF MESSAG	ES/DAY	MESSA	GE METER SIZ	Έ.		

EDITION TYPE	PRICE PER IOT HUB UNIT (PER MONTH)	TOTAL NUMBER OF MESSAGES/DAY PER IOT HUB UNIT	MESSAGE METER SIZE
B1	\$12.80	400,000	4 KB
B2	\$64	6,000,000	4 KB
B3	N/A	300,000,000	4 KB

- ✓ Importance of advancing & publicizing renewable energy technologies in agriculture
- ✓ SCADA IoT based systems
- ✓ Proposed system successfully implemented
- $\checkmark\,$ Cost-effective & Low power consumption
- $\checkmark\,$ Data is stored locally and is secure
- ✓ Available for remote places through WiFi or Cellular networks

Contributions

- ✓ Water requirement analysis
- ✓ System sizing & analysis without storage
- \checkmark System sizing & analysis with a storage
- ✓ Dynamic modelling & control system in MATLAB/Simulink
- ✓ IoT-based SCADA and data logging system

- The study and comparison of solar water pumping system for different locations in Iran need to be studied.
- It is suggested to study the impact of using solar water pumping in reducing the carbon emissons over a set period.
- It is suggested to study using solar water pumping in a vast number in a specific area. For example, in a city like Urmia, West Azerbayjan, the difference it can make to convert all types of irrigation systems into solar water pumping.
- The study and comparison of using solar water pumping for other types of fruits/crops needs to be done which will advance the solar water pumping technology. The common fruits/crops in Urmia West Azerbayjan are apples, cherries, apricot, grapes, wheat, cucurbits
- The study and comparison of solar water pumping for different types of irrigation systems can be studied such as flood irrigation, sprinkler irrigation, and micro-irrigation.

- The study and comparison of solar water pumping with different types of pumping systems need to be studied such as surface and centrifugal submersible pumps.
- The study and comparison of regular pumping systems and solar water pumping need to be studied.
- The study and comparison of using different types of PV panels need to be done.
- The study and comparison of different types of battery storage systems need to be done.
- It is suggested to develop a simplified mathematical model of the system in Simulink. Therefore, the system can be simulated for a year or several years to observe its various components' responses. The designed dynamic model in this thesis takes a lot of time to only simulate the system for a short period because of the type of the Simulink blocks used in it.
- A dynamic model for solar water pumping systems with water tank storage can be developed. Therefore, two types of system structures can be compared with each other.

My Publications (7)

- [1] M. Zamanlou, M. T. Iqbal, "Design and Analysis of Solar Water Pumping with Storage for Irrigation in Iran," **2020** IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), Virtual Conference, Charlotte, NC, USA
- [2] C. A. Osaretin, M. Zamanlou, M. T. Iqbal, S. Butt, "Open Source IoT-Based SCADA System for Remote Oil Facilities Using Node-RED and Arduino Microcontrollers" 2020 IEEE Information Technology, Electronics and Mobile Communication Conference (IEMCON), Virtual Conference, Vancouver, BC, Canada
- [3] M. Zamanlou and M. T. Iqbal, "Development of an Economical SCADA System for Solar Water Pumping in Iran," 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Vancouver, BC, Canada, 2020, pp. 1-4, doi: 10.1109/IEMTRONICS51293.2020.9216408.
- [4] A. M. Sharan, M. Zamanlou, "Energy Efficiency Enhancement of Electrical Vehicles," International Journal of Engineering and Applied Sciences (IJEAS), ISSN: 2394-3661, Volume-7, Issue-5, May 2020
- [5] M. Zamanlou, M. T. Iqbal, "Design and analysis of a solar water pumping system for drip irrigation of a fruit garden in Iran," The 28th Annual Newfoundland Electrical and Computer Engineering Conference (IEEE NECEC), 2019, St. John's, NL, Canada
- [6] A. M. Sharan, M. Zamanlou, "Accurate And Efficient Power Generation Of Photovoltaic Systems Using Wireless Technology," International Journal of Engineering and Applied Sciences (IJEAS), Volume-6, Issue-4, pp 2394-3661 April 2019
- [7] M. Sharan, M. Zamanlou, Md. H. Rahman, Md. A. Al-Mehdi, "Centralized Power Generation of Solar Parks using Wireless Controlling," 2019 International Journal of Current Engineering and Technology, Vol.9, No.3 (May/June 2019), pp 405-411

By Mohammad Zamanlou M.Eng. Seminar Presentation - Design and Analysis of Solar Water Pumping for Drip Irrigation in Iran

[1] IEEE NL Young Professionals Chapter Invited Technical Talk, "Design & Analysis of a Solar Water Pumping System for Micro Irrigation of a Fruit Garden," Memorial University, St. John's, NL, Canada, **December 2019**

[2] NSERC Energy Storage Technology Network Winter School, "Battery Storage System vs Water Tank Storage for Solar Water Pumping in Iran", Simon Fraser University, Surrey, BC, Canada, **February 2020**

On The News (2)

[1] *The Telegram*, "Memorial University professor, students develop wireless solar park capabilities," St. John's, NL, Canada, June 2019

[2] The Telegram, "Memorial University research aims to improve electric vehicles", St. John's, NL, Canada, July 2020

Acknowledgment

My sincere thanks to my supervisor, Dr. Tariq Iqbal Thanks to my mother, my father, and my uncle Thanks to Avrin Goom Azaran company for funding Thanks to Memorial University

Thanks to all the friends

- [1] "Iran Countries & Regions IEA." [Online]. Available: https://www.iea.org/countries/iran.
- [2] I. Yahyaoui, Specifications of Photovoltaic Pumping Systems in Agriculture: Sizing, Fuzzy Energy Management and Economic Sensitivity Analysis. 2016.
- [3] E. T. Maddalena, C. G. D. S. Moraes, G. Braganca, L. G. Junior, R. B. Godoy, and J. O. P. Pinto, "A Batery-Less Photovoltaic Water-Pumping System with Low Decoupling Capacitance," in *IEEE Transactions on Industry Applications*, 2019, doi: 10.1109/TIA.2019.2900412.
- [4] S. S. Chandel, M. Nagaraju Naik, and R. Chandel, "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," *Renewable and Sustainable Energy Reviews*. 2015, doi: 10.1016/j.rser.2015.04.083.
- [5] J. P. Evans and B. F. Zaitchik, "Modeling the large-scale water balance impact of different irrigation systems," Water Resour. Res., vol. 44, no. 8, Aug. 2008, doi: 10.1029/2007WR006671.
- [6] "Water crisis in Iran Wikipedia." [Online]. Available: https://en.wikipedia.org/wiki/Water_crisis_in_Iran.
- [7] "Water Crisis in Iran Iran News Update." [Online]. Available: https://irannewsupdate.com/news/society/water-crisis-in-iran/.
- [8] A. Parvaresh Rizi, A. Ashrafzadeh, and A. Ramezani, "A financial comparative study of solar and regular irrigation pumps: Case studies in eastern and southern Iran," *Renew. Energy*, vol. 138, pp. 1096–1103, 2019, doi: 10.1016/j.renene.2019.02.026.
- [9] H. Ghasemi-Mobtaker, F. Mostashari-Rad, Z. Saber, K. wing Chau, and A. Nabavi-Pelesaraei, "Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: Barley production of Iran," *Renew. Energy*, 2020, doi: 10.1016/j.renene.2020.07.047.
- [10] J. Lehr H. and J. Keeley, Water Encyclopedia. John Wiley & Sons, Inc., 2005.
- [11] "Crop water requirements," FAO Irrig. Drain. Pap. No. 24, Food Agric. Organ. United Nations, Rome, 1977.
- [12] "CROPWAT a computer program for irrigation planning and management," FAO Irrig. Drain. Pap. No. 46, Food Agric. Organ. United Nations, Rome, 1992.
- [13] "CLIMWAT for CROPWAT," FAO Irrig. Drain. Pap. No. 49, Food Agric. Organ. United Nations, Rome, 1993.
- [14] "Crop evapotranspiration Guidelines for computing crop water requirements," FAO Irrig. Drain. Pap. No. 56, Food Agric. Organ. United Nations, Rome, 1998.
- [15] "CONNECTED LORENTZ." [Online]. Available: https://www.lorentz.de/products-and-technology/products/connected/.
- [16] "PSk2-25 C-SJ95-4 | Lorentz Pumps." [Online]. Available: https://lorentzpumps.co.za/product/psk2-25-c-sj95-4/.
- [17] "PSk2-15 C-SJ42-6 | Lorentz Pumps." [Online]. Available: https://lorentzpumps.co.za/product/psk2-15-c-sj42-6/.
- [18] "HOMER Pro Microgrid Software for Designing Optimized Hybrid Microgrids." [Online]. Available: https://www.homerenergy.com/products/pro/index.html.
- [19] "KianBattery." [Online]. Available: https://www.kianbattery.com.
- [20] "Manasazan Shop." [Online]. Available: https://manasazan.ir/.
- [21] "Engineer Plus | Ready Mix Concrete." [Online]. Available: https://engineerplus.ir/price/ready-mixed-concrete.

S. Barrison

್ಷ