Assignment 1

Theodore S. Norvell
5892 Due 2020 Feb 12.

This assignment may be done in groups of 1 or 2 students. Submission will be by D2L; one
submission per group. Please put your work for question 0 and question 1 in separate files. Make
sure your name is (or names are) included in comments at the top of the file.

We will talk about Dafny and arrays in class. Here is some useful information. You may also
wish to read ahead in the notes.

If arrays are modified in a method, they must be declared in the method’s modifies clause.

If a is an array, then al..] is a sequence (seq) of all the values of the items in the array
from left to right. Also al..k] is a sequence of the values of the first k items, a[i..k] is
the sequence of the values of the k-1 items starting with a[i].

If s and t are sequences, s+t is the concatenation of the two sequences.

Universal quantification in Dafny looks like this
forall j:int :: i<=j<k ==> al[jl==

This example says all items of the sequence a[i..k] are equal to 0. The ==> operator is
implication. Note that Dafny uses left-to-right 3-valued logic (short-circuiting), so it doesn’t
matter that a[j] is undefined for some values of j outside the range of interest.

Existential quantification is similar. E.g.
exists j:int :: i<=j<k && al[jl==0

Dafny allows one to define predicates to be used in assertions and contracts. See below and
the notes for examples of predicates.

You can use x in s to say that x occurs somewhere within sequence s.

QO [10] Binary search
Create a verified implementation of the binary search algorithm from slide set 3.
You may want to use this predicate definition

predicate Sorted(s : seq<int>)

{

forallij: int :: 0 <=1 <=j < [s| ==> sli] <= s]j]

}

Q1 [20] Sorting.

Design a verified method to sort an array in place. Use any sorting algorithm you like except
for selection sort. Ensure that your code verifies. In addition to the Sorted predicate above you
may want to use the following predicate

predicate PermutationOf(s : seq<int>, t : seq<int>)

{

multiset(s) == multiset(t)
}

Comment your code thoroughly to explain the algorithm and the verification.

Advice: Use procedural abstraction. Don’t try to do everything in one method; make smaller
methods. that do part of the work. For example, if you implement insertion sort, make a separate
method to do the insertion; if you implement quicksort, make a separate method to do the partition.

Advice: Draw pictures of your invariants.

Advice: I found that algorithms that only modify the array by swapping two elements to be
the easiest to verify.

