
Engi 6892 Algorithms: Complexity and Correctness

T. S. Norvell (c) 2016

2016 Dec 8

Instructions: Answer all questions. If possible, write your answers in the space provided. Write on the
back side of a sheet or request a yellow booklet if more space is required. Answers in yellow booklets
will not be marked unless there is a clear indication in the space provided on this exam paper that the

answer is in the yellow booklet and your name is on the yellow booklet. Answers on the back sides of this

booklet will not be marked unless there is a clear indication in the space provided on this exam paper of

where the answer is located.. This is a closed book exam. Textbooks, notes, and electronic devices are
not permitted; no, you can’t use your cell phone as a clock. If your watch contains a computer, put it
away. However, paper inter-language dictionaries are permitted, provided they contain no hand written
notes within. Set your cell phone to silent and put it away.
Total points: 88 + bonus of 5

Name:

Student #:

Folders/Documents/courses/alg/2016/exam/Grace-Hopper-and-UNIVAC.jpg

Grace Hopper. Computer pioneer. Language designer. First compiler writer. Born Dec 9, 1906.

0

Student #:

Q0 [15] Suppose we can quickly compute the Frobnitz function fr : N→ N. As you may know
fr(0) = 0 and fr(2n + 1) > n, for all n ∈ N. You need to design an algorithm that, for any natural
number n, computes a natural number x such that fr(x) ≤ n and n < fr(x+1). You may call procedure
fr to compute the Frobnitz function; your algorithm should, however, not call this procedure more than
O(logn) times.

proc invFr(n : N) : N
precondition: true
postcondition: fr(result) ≤ n and n < fr(result + 1)

(a)[5] What is the invariant?

(b)[3] What is the loop guard?

(c)[2] What is the variant?

(d)[5] Write a proof outline for this problem so that it takes Θ(logn) time, presuming procedure fr
takes Θ(1) (constant) time.

Engi 6892 Final Exam 1 2016 Dec 8.

Student #:

Q1 [15] For each of the following proof outlines, either explain why the outline is correct or suggest
a way to make it correct.

(a) [5]

{x > 5 ∧ y > 5} x := y + 1 {x > 6}

(b) [5]

{a.length = n}
i := 0
{i = 0}
while i < n ∧ a(i) ≥ 0 do

i := i+ 1

end while
{(i = n ∨ i ∈ {0, ..n} ∧ a(i) < 0) ∧ ∀k ∈ {0, ..i} · a(k) ≥ 0}

(c) [5]

{A,B ∈ N}
a := A
b := B{
b ≥ 0 ∧ z × ab = AB

}

while b > 0 do

z := z × a
b := b− 1

end while{
z = AB

}

Engi 6892 Final Exam 2 2016 Dec 8.

Student #:

Q2 [10] Using the linking invariant

L : ∀i ∈ {2, ..n} · ((i ∈ S) = a(i))

where n = a.length and a is a boolean array, data refine the following code to eliminate all need for
variable S.

var S := {2, ..n}
var k := 2
while k < n do

if k ∈ S then

m := k + k
while m < n do

S := S − {m}
m := m+ k

end while

end if
k := k + 1

end while

Engi 6892 Final Exam 3 2016 Dec 8.

Student #:

Q3 [15] A simple, undirected graph without loops0 G = (V,E) is said to have a cycle if there are
two nodes that have two different simple paths1 between them. Suppose that procedure hasCycle(V,E
) indicates whether a graph has a cycle or not.

Consider the following problem.
Input: a simple, undirected graph without loops G = (V,E) and a function w that maps edges to

real numbers.
Output: a set of edges F ⊆ E such that: (a) the graph (V,F) has no cycles, (b) adding any more

edges would create a cycle, (c), out of all subsets of E satisfying (a) and (b), F minimizes the function
f(D) =

∑
e∈D

w(e).
Design a greedy algorithm to solve this problem. There is no need to prove your algorithm. But

please show the steps that you take to arrive at the algorithm. State the complexity of the algorithm.

Folders/Documents/courses/alg/2016/exam/MST.png
On the left is a graph. On the right, the set of bolded edges satisfies (a), (b), and (c).

0A simple graph has at most one edge between any pair of nodes. A loop is an edge that connects a node to itself.
1A simple path has no repeated nodes, except that the first and last nodes may be the same.

Engi 6892 Final Exam 4 2016 Dec 8.

Student #:

Q4 [6] In the LISP language, an S-expression is one of three things: an atom, an empty list, or a
non-empty list. An atom is written just as a terminal from a finite set X = {x0, x1, . . . , xn−1}; the set
X does not include either ‘(’ or ‘)’. An empty list is written as the terminals ‘(’ and ‘)’ in that order. A
nonempty list is written as a sequence of 1 or more S-expressions preceded by a ‘(’ and followed by a ’)’.
Design a context-free grammar over the set {‘(’, ‘)’} ∪X that describes S-expressions by answering the
following questions

• What is the set of terminals?

• What is the set of nonterminals?

• What is the start nonterminal?

• What are the productions?

Engi 6892 Final Exam 5 2016 Dec 8.

Student #:

Q5 [12]
For all parts below clearly explain your answer.

(a)[3] Suppose the Dafny verifier reports that a postcondition of a method may be violated. Does
this mean:

0. That, on every execution of the method for which the preconditions are true, the postcondition
will be false.

1. That, there is at least one execution in which the preconditions are true and the postcondition is
false.

2. Neither of the above.

(b)[3] Suppose the Dafny verifier does not report that a postcondition of a method may be violated.
Does this mean:

0. That, on every execution of the method for which the precondition is true, the postcondition will
be true.

1. That, there is at least one execution in which the preconditions are all true and the postcondition
is true.

2. Neither of the above.

(c)[3] True or false: In Dafny it is necessary for the programmer to provide a sufficiently strong loop
invariant for a loop to be shown correct.

(d)[3] Will the following Dafny code verify

method between(a : int, c : int) returns (b : int)
requires a + 1 < c
ensures a < b < c {

b := a + (c-a)/2 ; }

method check() {

var y : int := between(10, 20) ;
assert y == 15 ; }

Engi 6892 Final Exam 6 2016 Dec 8.

Student #:

Q6 [15] Joe’s Discount Programming House has 2 software engineering teams. Joe has a set of jobs
presented as a list j of length m. Each job j(i) takes time j (i).time, a positive integer. Given a sequence
of m jobs [j (0), j (1), .., j (m− 1)], we need to find a way of dividing up the jobs between the 2 teams so
that each team does exactly the same amount of work. The jobs can be done in any order. Suppose T
is the sum of the times over all the jobs. We’ll assume T is even.

(a) [5] Design a (possibly very inefficient) recursive algorithm to determine whether there is a subset
of the jobs that can be done in time T/2. Be sure to state the pre- and postcondition of all procedures.

(b) [5] Design a top-down dynamic programming algorithm for the problem. What is the time
complexity of the algorithm?

(c) [5] Design a bottom-up dynamic programming algorithm for solving this problem. What is the
time complexity of the algorithm?

Engi 6892 Final Exam 7 2016 Dec 8.

Student #:

Bonus [5] Either extend or modify your algorithm from Q6(b) or Q6(c) to efficiently compute a way
(assuming there is one) to assign jobs to team 0 and team 1 so that team 0 does work that adds up to
T/2 and team 1 also does work that sums to T/2.

Engi 6892 Final Exam 8 2016 Dec 8.

