
Algorithms: Correctness and Complexity. Slide set 1.5. Improving the rules c© Theodore Norvell

Errors

In expressions

Some expressions are erroneous in some states.

For example, x/y is usually considered an error in states

where y = 0.

Also a(i) is usually considered an error in states where

i < 0 or i ≥ a.length.

In assignments

If the type of a variable is N (natural numbers) then it is

an error to assign a negative number to it.

Correctness

Recall, correctness is as follows

Defn: A proof outline {P} S {R} is partially correct iff,

whenever command S is executed beginning in any state

where P holds,

• no errors occur,

• each internal assertion of S holds each time it is

reached, and

• R holds if and when S terminates.

Thus far we have ignored the possibility of errors.

Typeset January 17, 2020 1



Algorithms: Correctness and Complexity. Slide set 1.5. Improving the rules c© Theodore Norvell

Programming rules ammended

For each expression, E , let df(E) be a condition that is

true in all states where e is defined and false where e is

not defined.

E.g., df(x/y) might be y 
= 0, where x and y are reals.

E.g. df(a(i)) might be 0 ≤ i < a.length, where a is a

sequence and i an integer variable.

For each program variable, V , let rng(V) be the set of

values V can represent.

E.g. if x is of type N then rng(x) = N.

Now our rules are

The assignment rule (check definedness and range)

If P ⇒ df(E) is universally true,

P ⇒ E ∈ rng(V) is universally true, and

P ⇒ R[V : E ] is universally true

then {P} V := E {R} is correct.

The skip rule (no change)

If P ⇒ R is universally true

then {P} skip {R} is correct.

The sequential composition rule (no change)

If {P} S {Q} is correct

and {Q} T {R} is correct

then {P} S {Q} T {R} is correct.

Typeset January 17, 2020 2



Algorithms: Correctness and Complexity. Slide set 1.5. Improving the rules c© Theodore Norvell

The alternation rules (check definedness)

If P ⇒ df(E) is universally true,

P ∧ E ⇒ Q0 is universally true,

P ∧ ¬E ⇒ Q1 is universally true,

{Q0} S {R} is correct,

and {Q1} T {R} is correct

then {P} if E then {Q0} S else {Q1} T end if {R}
is correct.

If P ⇒ df(E) is universally true,

P ∧ E ⇒ Q is universally true,

P ∧ ¬E ⇒ R is universally true,

and {Q} S {R} is correct

then {P} if E then {Q} S end if {R} is correct.

Iteration rule (check definedness)

If P ⇒ df(E) is universally true,

P ∧ E ⇒ Q is universally true,

P ∧ ¬E ⇒ R is universally true,

and {Q} S {P} is correct,

then {P} while E do {Q} S end while {R} is correct.

Typeset January 17, 2020 3



Algorithms: Correctness and Complexity. Slide set 1.5. Improving the rules c© Theodore Norvell

An insufficient invariant

Here is another example correct proof outline that is not

provably correct.

Here j is of type int and N is any int.

{N ≥ 1}
j := 1
{j = 1 ∧N ≥ 1}
s := 0{
I : j ≤ N ∧ s =

∑
k∈{1,..j}

1

k2

}

while j < N do

{j < N ∧ I}
s := s + 1

j2

j := j + 1
end while{
s =

∑
k∈{1,..N}

1

k2

}

The problem is that

{j < N ∧ I} s := s +
1

j2
; j := j + 1 {I} is not correct

Consider an initial state where j = 0.

The invariant used above is too weak.

What invariant should we use?

Typeset January 17, 2020 4


