Errors

In expressions

Some expressions are erroneous in some states.

For example, z/y is usually considered an error in states
where y = 0.

Also a(7) is usually considered an error in states where
1 < 0orz > a.length.

In assignments

If the type of a variable is N (natural numbers) then it is
an error to assign a negative number to it.

Correctness

Recall, correctness is as follows

Defn: A proof outline {P} S {R} is partially correct iff,
whenever command § is executed beginning in any state
where P holds,

® 10 errors occur,

e each internal assertion of S holds each time it is
reached, and

e R holds if and when S terminates.

Thus far we have ignored the possibility of errors.

Programming rules ammended

For each expression, &, let df(€) be a condition that is
true in all states where ¢ is defined and false where ¢ is
not defined.

E.g., df(z/y) might be y # 0, where x and y are reals.
E.g. df(a(z)) might be 0 < ¢ < a.length, where « is a
sequence and ¢ an integer variable.

For each program variable, V, let rng()) be the set of
values V can represent.

E.g. if z is of type N then rng(z) = N.
Now our rules are

The assighment rule (check definedness and range)
If P = df(€) is universally true,
P = & € rng(V) is universally true, and
P = R[V : £]is universally true
then {P} V:=& {R}is correct.

The skip rule (no change)
|f P = R is universally true
then {P} skip {R} is correct.

The sequential composition rule (no change)
if {P} S {Q}is correct
and {Q} T {R} is correct
then {P} S {Q} 7 {R} is correct.

The alternation rules (check definedness)

If P = df(€) is universally true,
P AE = Qpis universally true,
P A -E = Q; is universally true,
{Qo} & {R} is correct,

and {9} 7 {R} is correct

then {P} if £ then {Q,} Selse {Q1} T end if {R}

IS correct.

If P = df(€) is universally true,
P A E = Qis universally true,
P AN —-E = R is universally true,
and {Q} S {R} is correct
then {P} if £ then {Q} S end if {R} is correct.

Iteration rule (check definedness)
If P = df(€) is universally true,
P A E = Qis universally true,
P A =& = R is universally true,
and {9} S {P} is correct,
then {P} while £ do {Q} S end while {R} is correct.

An insufficient invariant

Here is another example correct proof outline that is not
provably correct.

Here j is of type int and N is any int.

(N =1}
7:=1
{j=1AN>1}
s: =0

{I) S NAs= Zke{L..j}#}
while 7 < N do

{j < NANT}

S = S-|—jl2

Ji=7+1
end while

{5 = Zke{l,..N} #}
The problem is that

1 .
{i<NAI} s:=s+—; j=j+1 {I} isnotcorrect
J
Consider an initial state where j = 0.

The invariant used above is too weak.
What invariant should we use?

