
Algorithms: Correctness and Complexity. Slide set 3 Binary Search. c© Theodore Norvell

Binary search

Write a subroutine

proc search(t : int, x : seq 〈int〉) returns result : int ...

that returns

• if t occurs in array x, a number p such that x(p) = t

• if t does not occur in array x, the number −1

Assume that x is (or points to) an array of length ≥ 0,
sorted in nondecreasing order

x(0) ≤ x(1) ≤ · · · ≤ x(x.length− 1)

Since x won’t change we will take this as “background

knowledge” rather than repeating it in all the assertions.

Running time should be about proportional to

log2(x.length).

Specification

First let’s introduce some useful notation

• xS = {x(i) | i ∈ S} where S is a set of indices

• In particular x{p, ..r} = {x(i) | p ≤ i < r}

Now we can give a postcondition using result to represent

the value returned

R :
(t ∈ x{0, ..x.length} ⇒ x(result) = t)

∧ (t /∈ x{0, ..x.length} ⇒ result = −1)

Typeset January 31, 2020 1

Algorithms: Correctness and Complexity. Slide set 3 Binary Search. c© Theodore Norvell

Invariant

Idea: Try to trap a t in a region of the array between two

“indices”.

Invariant 0: If a t is in the array at all, there is one in the

region {p, ..r}

More formally

Invariant 0: t ∈ x {0, ..x.length} ⇒ t ∈ x {p, ..r}

To be sure that invariant 0 makes sense, we should

require that p and r are “in range”.

Invariant 1: 0 ≤ p ≤ r ≤ x.length

We have

{ true }

?{
I :

0 ≤ p ≤ r ≤ x.length
∧ (t ∈ x {0, ..x.length} ⇒ t ∈ x {p, ..r})

}

?

{ R }

Typeset January 31, 2020 2

Algorithms: Correctness and Complexity. Slide set 3 Binary Search. c© Theodore Norvell

Initialization

It is easy to establish this invariant in the first place

{ true }

p := 0
r := x.length{
I :

0 ≤ p ≤ r ≤ x.length
∧ (t ∈ x {0, ..x.length} ⇒ t ∈ x {p, ..r})

}

?

{R }

We must check that I[r : x. length][p : 0] is universally

true.

Iteration

Use I as a loop invariant

{ true }

p := 0
r := x.length{
I :

0 ≤ p ≤ r ≤ x.length
∧ (t ∈ x {0, ..x.length} ⇒ t ∈ x {p, ..r})

}

while G do

{ I ∧ G }

?b

{ I }

end while

{I ∧ ¬G}
?

{R }

When should we stop?

Typeset January 31, 2020 3

Algorithms: Correctness and Complexity. Slide set 3 Binary Search. c© Theodore Norvell

Loop guard

When the size of the interval (r − p) is 1 or 0, we can no

longer split it into disjoint, nonempty subsets.

So use r − p < 2 as ¬G.

p := 0
r := x.length{
I :

0 ≤ p ≤ r ≤ x.length
∧ (t ∈ x {0, ..x.length} ⇒ t ∈ x {p, ..r})

}

while G : r − p ≥ 2 do

{ I ∧ G}

?b

{ I }

end while

{ I ∧ ¬G }

?

{R }

Typeset January 31, 2020 4

Algorithms: Correctness and Complexity. Slide set 3 Binary Search. c© Theodore Norvell

Calculating the result




I :

(
0 ≤ p ≤ r ≤ x.length

∧ (t ∈ x {0, ..x.length} ⇒ t ∈ x {p, ..r})

)

∧ r − p < 2






?{
R :

(t ∈ x{0, ..x.length} ⇒ x(result) = t)
∧ (t /∈ x{0, ..x.length} ⇒ result = −1)

}

We find the last command as follows:

• If p = r then {p, ..r} = ∅ and so t ∈ x {p, ..r}
is false and, from the invariant, that means that

t ∈ x {0, ..x.length} is also false. Thus −1 is the

appropriate result

• On the other hand, if p �= r, then r = p + 1 and, from

the invariant,

0 ≤ p < p + 1 = r ≤ x.length

So p is a legitimate index of x.

∗ Of course, if t = x(p), then p is an acceptable result.

∗ Now t ∈ x {p, ..r} simplifies to t = x(p) and, if this is

false, then, from the invariant, t ∈ x({0, ..x.length}
is also false and −1 is the correct result.

So we have

{ I ∧ r − p < 2}
if p = r then result := −1
elsif t = x(p) then result := p
else result := −1 end if

{R }

Typeset January 31, 2020 5

Algorithms: Correctness and Complexity. Slide set 3 Binary Search. c© Theodore Norvell

Loop body

Now it remains to implement the loop body ?b which

• Needs to preserve the invariant

• And should bring the loop “closer to termination”

Our remaining problem

{ I ∧ r − p ≥ 2 } ?b { I }

Combining 0 ≤ p ≤ r ≤ x.length with r − p ≥ 2 we have

0 ≤ p < p + 1 < r ≤ x.length

If q is such that p < q < r, the interval {p, ..r} can be

split into two nonempty and disjoint intervals {p, ..q} and

{q, ..r}.

We know from I that if t is anywhere in the array, it is in

x{p, ..r}

Because the array is sorted:

• if x(q) ≤ t then, if a t is anywhere in the array, one

must be in x{q, ..r}

• if x(q) > t then, if a t is anywhere in the array, one

must be in x {p, ..q}

Typeset January 31, 2020 6

Algorithms: Correctness and Complexity. Slide set 3 Binary Search. c© Theodore Norvell

Loop body (continued)

So this leads to

{ I ∧ r − p ≥ 2 }

?
{ I ∧ p < q < r }

if x(q) ≤ t then p := q else r := q end if

{ I }

What about “should bring the loop ‘closer to

termination’”?

• Since p < q < r, the value of r − p gets smaller

with each iteration of the loop and so must eventually

become smaller than 2.

Choosing q:

• Any q such that p < q < r will do.

• For efficiency, we want to make {p, ..q} and {q, ..r}
roughly the same size.

• So a good choice is q :=
⌊
p+r
2

⌋
.

Typeset January 31, 2020 7

Algorithms: Correctness and Complexity. Slide set 3 Binary Search. c© Theodore Norvell

In summary

proc search(t : int, x : seq 〈int〉) returns result : int
requires x is sorted in nondecreasing order

x(p) ≤ x(p+ 1) ≤ · · · ≤ x(x.length− 1)

ensures

(t ∈ x{0, ..x.length} ⇒ x(result) = t)

∧ (t /∈ x{0, ..x.length} ⇒ result = −1)

var p := 0
var r := x.length{
I :

0 ≤ p ≤ r ≤ x.length
∧ (t ∈ x({0, ..x.length})⇒ t ∈ x {p, ..r})

}

while G : r − p ≥ 2 do

{ I ∧ G }

val q :=
⌊
p+r
2

⌋

{I ∧ G ∧ p < q < r}
if x(q) ≤ t then

p := q
else

r := q
end if

end while

{ I ∧ r − p < 2}
if p = r then result := −1
elsif t = x(p) then result := p
else result := −1 end if

end search

Typeset January 31, 2020 8

Algorithms: Correctness and Complexity. Slide set 3 Binary Search. c© Theodore Norvell

In Java

Time

Each iteration cuts the size of r − p roughly in two, thus

the number of iterations is approximately log2(x. length).

For example if x. length = 129, the worst-case values for

r − p are

129, 65, 33, 17, 9, 5, 3, 2, 1
so 8 iterations before r − p < 2. While �log2 129� = 8.

In fact, the number of iterations is either �log2(x. length)�
or �log2(x. length)�.

Typeset January 31, 2020 9

