
Algorithms: Correctness and Complexity. Slide set 5 Data Refinement. c© Theodore Norvell

Data refinement

A Strength reduction

Recall the division algorithm

{ y > 0 ∧ x ≥ 0 }

p := 0
{ I0 : p× y ≤ x }

while x ≥ (p + 1)× y do

p := p + 1
end do

{ p× y ≤ x ∧ x < (p + 1)× y }

To save time and/or hardware, it would be nice to

eliminate the multiplication.

Data refinement is a technique that changes the

coordinate system that we use to represent the state

space.

In this case the new coordinate system is the same as

the old, but with one variable added

Old coordinates New coordinates

x x
y y
p p

t
To eliminate the multiplication, we relate the new

coordinate system to the old via a “linking invariant” of

t = (p + 1)× y

Typeset September 20, 2016 1



Algorithms: Correctness and Complexity. Slide set 5 Data Refinement. c© Theodore Norvell

The only place we need this to be true is while evaluating

the loop guard. Thus we conjoin the linking invariant with

the loop invariant above, to get a new loop invariant.

I : p× y ≤ x ∧ t = (p + 1)× y

The new algorithm is

{ y > 0 ∧ x ≥ 0 }

p := 0
var t
initialize t to establish I
{ I : p× y ≤ x ∧ t = (p + 1)× y }

while x ≥ t do // N.B. No multiplication.

p := p + 1
change t to reestablish I

end do

{ p× y ≤ x ∧ x < (p + 1)× y }

and so

{ y > 0 ∧ x ≥ 0 }

p := 0
var t := y
{ I : p× y ≤ x ∧ t = (p + 1)× y }

while x ≥ t do

p := p + 1
t := t + y

end do

{ p× y ≤ x ∧ x < (p + 1)× y }

This kind of data refinement is often called a strength

reduction, as it replaces an expensive operation

(multiplication) with a less expensive one (addition).

Typeset September 20, 2016 2



Algorithms: Correctness and Complexity. Slide set 5 Data Refinement. c© Theodore Norvell

t is called a tracking variable, as it tracks expression

(p + 1)× y.

In this example the problem did not change as we left

alone all variables mentioned in the precondition and the

postcondition.

Typeset September 20, 2016 3



Algorithms: Correctness and Complexity. Slide set 5 Data Refinement. c© Theodore Norvell

Data Refinement of an abstract problem

In this example, we will data refine an algorithm that

solves one problem so that it solves a different problem.

[Note all numeric variables in this slide set are over

natural numbers N]

We start with the abstract binary search algorithm

Recall the problem was to find a point p in {m, .., n}, the

domain of a boolean function A, such that ¬A(p) and

A(p + 1).

To ensure such a point exists, we assume m < n and

¬A(m) and A(n).

{¬A(m) ∧A(n) ∧m < n} ? {¬A(p) ∧A(p + 1)}

Now consider the problem of designing a divider.

Assume x ≥ 0 and y > 0.

{?} ? {p× y ≤ x ∧ x < (p + 1)× y}

We can link these two problems with the following linking

invariant

L : A(i) = (i× y > x) ∧m = 0 for all i ≥ 0

Typeset September 20, 2016 4

theo
Pencil

theo
Pencil



Algorithms: Correctness and Complexity. Slide set 5 Data Refinement. c© Theodore Norvell

Assuming the linking invariant

A(i) = (i× y > x) ∧m = 0 for all i ≥ 0

we have for the precondition:

¬A(m) ∧A(n) ∧m < n

= by the linking in variant

¬ (0× y > x) ∧ n× y > x ∧ 0 < n

= 0 can’t be greater than x

n× y > x ∧ 0 < n

= since n× y > x implies n > 0

n× y > x

and for the postcondition

¬A(p) ∧A(p + 1)

= by the linking invariant

¬ (p× y > x) ∧ (p + 1)× y > x

=

p× y ≤ x < (p + 1)× y

So, assuming the linking invariant L, the search problem

{¬A(m) ∧A(n) ∧m < n} ? {¬A(p) ∧A(p + 1)}

is the same as this division problem

{n× y > x} ? {p× y ≤ x < (p + 1)× y}

We have data refined one problem to another.

Can we do the same for the algorithm?

Typeset September 20, 2016 5



Algorithms: Correctness and Complexity. Slide set 5 Data Refinement. c© Theodore Norvell

Data refinement of an abstract algorithm

We know we can use binary search to solve the abstract

problem

The abstract algorithm is

{ ¬A(m) ∧A(n) ∧m < n }

p := m
r := n
{ I : m ≤ p < r ≤ n ∧ ¬A(p) ∧A(r) }

while r 	= p + 1 do

var q :=
⌊
p+r
2

⌋

{p < q < r ∧ I }

if A(q) then r := q else p := q end if

end while

{ ¬A(p) ∧A(p + 1) }

Introduce natural variables x and y using the linking

invariant

L : A(i) = (i× y > x) ∧m = 0 for all i ≥ 0

{ ¬A(m) ∧A(n) ∧m < n ∧ L }

p := m
r := n
{ I : m ≤ p < r ≤ n ∧ ¬A(p) ∧A(r) ∧ L }

while r 	= p + 1 do

var q :=
⌊
p+r
2

⌋

{p < q < r ∧ I ∧ L }

if A(q) then r := q else p := q end if

end while

{ ¬A(p) ∧A(p + 1) ∧ L }

Typeset September 20, 2016 6

theo
Pencil



Algorithms: Correctness and Complexity. Slide set 5 Data Refinement. c© Theodore Norvell

Rewrite in terms of x and y
{ m× y ≤ x ∧ n× y > x∧m < n ∧ L} [NB: simplifies

to n× y > x ∧ L]

p := 0 r := n
{ I0 : 0 ≤ p < r ≤ n ∧ p× y ≤ x < q × y ∧ L }

while r 	= p + 1 do

var q :=
⌊
p+r
2

⌋

{p < q < r ∧ I0 ∧ L }

if q × y > x then r := q else p := q end if

end while

{ p× y ≤ x < (p + 1)× y ∧L }

A & m are only mentioned in L. Drop these variables.

{ n× y > x }

p := 0 r := n
{ I0′ : 0 ≤ p < r ≤ n ∧ p× y ≤ x < r × y }

while r 	= p + 1 do

var q :=
⌊
p+r
2

⌋

{ p < q < r ∧ I0′ }

if q × y > x then r := q else p := q end if

end while

{ p× y ≤ x < (p + 1)× y }

In summary, we

• Started with an algorithm to search a boolean se-

quence A

• Introduced new variables x and y using a linking

invariant.

• Rewrote to eliminate the need for the sequence A

• Arrived at an algorithm for division that mentions only
Typeset September 20, 2016 7



Algorithms: Correctness and Complexity. Slide set 5 Data Refinement. c© Theodore Norvell

numerical variables and arithmetic operations.

Old coordinates New coordinates

A x
m y
n n
p p
r r

Linking invariant

L : A(i) = i× y > x ∧m = 0 for all i ≥ 0

Typeset September 20, 2016 8



Algorithms: Correctness and Complexity. Slide set 5 Data Refinement. c© Theodore Norvell

A further data refinement

If n is a power of 2, an interesting thing happens: The

algorithm finds one bit per iteration.

Take n = 23 for example

You can see that, in binary, each step down decides on

one more bit of the answer.

At level i above the bottom, each range is of the form{
c2i, .. (c + 1) 2i

}
.

Note that, when i > 0,⌊
c2i + (c + 1) 2i

2

⌋
=

⌊
(2c + 1) 2i

2

⌋
= (2c + 1) 2i−1

E.g. {48, ..56} =
{
6× 23, ..7× 23

}
is numbers of the form

110???. And this splits in half to give

{48, ..52} =
{
12× 22, ..13× 22

}

and

{52, ..56} =
{
13× 22, ..14× 22

}

In general, if i > 0,
{
c2i, .. (c + 1) 2i

}
is the union of{

2c2i−1, .. (2c + 1) 2i−1
}

and{
(2c + 1) 2i−1, .. ((2c + 1) + 1) 2i−1

}
.

Typeset September 20, 2016 9



Algorithms: Correctness and Complexity. Slide set 5 Data Refinement. c© Theodore Norvell

Here is the algorithm again, now assuming n is a power

of 2. Also, I added a conjunct to the postcondition that I’ll

need later.

{ n× y > x ∧
(
∃j · n = 2j

)
}

p := 0 r := n
{ I1 : p < r ≤ n ∧ p× y ≤ x < r × y ∧

(
∃j · n = 2j

)
}

while r 	= p + 1 do

var q :=
⌊
p+r
2

⌋

{ p < q < r ∧ I1 }

if q × y > x then r := q else p := q end if

end while

{ p× y ≤ x < (p + 1)× y ∧ r = p + 1 }

Replace variable n with variable j, using a linking

invariant of n = 2j

{ 2j×y > x}

p := 0 r :=2j

{ I1′ : p < r ≤ 2j ∧ p× y ≤ x < r × y }

while r 	= p + 1 do

var q :=
⌊
p+r
2

⌋

{ p < q < r ∧ I1′ }

if q × y > x then r := q else p := q end if

end while

{ p× y ≤ x < (p + 1)× y ∧ r = p + 1 }

The next three steps

• Add variables i and c.

• Rewrite the algorithm to use i and c instead of p and r.

• Eliminate variables p and r.

Typeset September 20, 2016 10



Algorithms: Correctness and Complexity. Slide set 5 Data Refinement. c© Theodore Norvell

Add variables i and c, using a linking invariant of

L1 : p = c2i ∧ r = (c + 1) 2i

we get

{ 2j × y > x }

[p, r, c, i] :=
[
0, 2j, 0, j

]

{ I2 : p < r ≤ 2j ∧ p× y ≤ x < r × y ∧ L1}
while r 	= p + 1 do

var q :=
⌊
p+r
2

⌋

if q × y > x

then




r
c
i



 :=




q
2c
i− 1



 else




p
c
i



 :=




q
2c + 1
i− 1





end if

end while

{ p× y ≤ x < (p + 1)× y ∧ r = p + 1 ∧ L1 }

Rewrite to use i and c in preference to p and r.
{ 2j × y > x }

[p, r, c, i] :=
[
0, 2j, 0, j

]

{ I2′ : c2i × y ≤ x < (c + 1) 2i × y ∧ L1}
while i > 0 do

var q := (2c + 1) 2i−1

if q × y > x

then




r
c
i



 :=




q
2c
i− 1



 else




p
c
i



 :=




q
2c + 1
i− 1





end if

end while

{ c×y ≤ x < (c + 1)× y ∧ i = 0 ∧ L1 }

Typeset September 20, 2016 11



Algorithms: Correctness and Complexity. Slide set 5 Data Refinement. c© Theodore Norvell

Now eliminate variables p and r
{ 2j × y > x }[
c
i

]
:=

[
0
j

]

{ I2′′ : c2i × y ≤ x < (c + 1) 2i × y}

while i > 0 do

var q := (2c + 1) 2i−1

if q × y > x

then

[
c
i

]
:=

[
2c
i− 1

]
else

[
c
i

]
:=

[
2c + 1
i− 1

]

end if

end while

{ c× y ≤ x < (c + 1)× y ∧ i = 0 }

Old coordinates New coordinates

n j
p c
r i
x x
y y

Linking invariant

p = c2i ∧ r = (c + 1) 2i ∧ n = 2j

Typeset September 20, 2016 12

theo
Pencil



Algorithms: Correctness and Complexity. Slide set 5 Data Refinement. c© Theodore Norvell

Another strength reduction

Can we eliminate the multiplication by strength

reduction?

q × y

= (2c + 1) 2i−1y

= 2icy + 2i−1y

Introduce tracking variables d = 2icy and e = 2i−1y, so

q × y = d + e

L2 : d = 2icy ∧ e = 2i−1y

After a bit of algebra to find the right assignments to d
and e, we get:

{ 2j × y > x }




c
i
d
e




 :=






0
j
0
2j−1y






{I3 : c2i × y ≤ x < (c + 1) 2i × y∧ L2 }

while i > 0 do

if d + e > x

then






c
i
d
e




 :=






2c
i− 1
d
e/2




 else






c
i
d
e




 :=






2c + 1
i− 1
d + e
e/2






end if

end while

{ c× y ≤ x < (c + 1)× y }

Typeset September 20, 2016 13



Algorithms: Correctness and Complexity. Slide set 5 Data Refinement. c© Theodore Norvell

Old coordinates New coordinates

j j
c c
i i
x x
y y

d
e

Linking invariant

d = 2icy and e = 2i−1y

Starting from an algorithm to search a boolean list, we

have designed an efficient circuit that requires nothing

more complex than an adder.

Here is the data path.

Typeset September 20, 2016 14




