
Algorithms: Correctness and Complexity. Slide set 6 Abstraction Data Types c© Theodore Norvell

Object invariants

Conceptually an object is rather like a loop:

The lifetime behaviour of an object of class

class C

private var f0 : T0

private var f1 : T1

public constructor() U end constructor

public method m0() S0 end m0

public method m1() S1 end m1

end C

is described by this loop

var f0 : T0

var f1 : T1

U

while true do

varm : message := get next message

switch(m)

case m0 do S0 end case

case m1 do S1 end case

end switch

end while

This loop may have a loop invariant.

Such an invariant reflects the “consistent” states of the

object. I.e. the ones that “make sense”.

Typeset September 30, 2014 1

Algorithms: Correctness and Complexity. Slide set 6 Abstraction Data Types c© Theodore Norvell

This loop invariant expresses what we expect to be true

before and after each message.

We call such an invariant an object invariant or a class

invariant.

It is implicitly a postcondition of construction and a pre-

and postcondition of each method. I.e. each method

must preserve the object invariant

Example

A date class

class GregorianDate

private var d : int, m : int, y : int
invariant y ≥ 1 ∧ 1 ≤ m ≤ 12 ∧ 1 ≤ d ≤ 31
invariantm ∈ {4, 6, 9, 11} ⇒ d ≤ 30
invariantm = 2⇒ d ≤ 29
invariantm = 2 ∧ y � 400 ∧ (y � 4 ∨ y | 100)⇒ d ≤ 28
...

public method incr()

d := d + 1
if d = 32
∨ m ∈ {4, 6, 9, 11} ∧ d = 31
∨ m = 2 ∧ d = 30
∨ m = 2 ∧ y � 400 ∧ (y � 4 ∨ y | 100) ∧ d = 29
then d := 1m := m+ 1

ifm = 13 then y := y + 1m := 1 end if end if

end incr

end Date

Typeset September 30, 2014 2

Algorithms: Correctness and Complexity. Slide set 6 Abstraction Data Types c© Theodore Norvell

Example

class DynamicArray〈T 〉
private var a : array〈T 〉 := new array〈T 〉(1)

private var len: int := 0
invariant 0 ≤ len ≤ a.length
public method getLength() : int

return len

end getLength

public method get(i : int) : T

precondition 0 ≤ i < getLength()
return a(i)

end get

public method set(i : int, v : T)

precondition 0 ≤ i ≤ getLength()
...

end set

public method clipTo(i : int)

precondition 0 ≤ len ≤ a.length
changes a, len

len := i
end clipTo

end DynamicArray

In order for get to work we need that 0 ≤ len ≤ a.length.

Thus this is an invariant.

We need to ensure the invariant is true after object

construction and after execution of each public method.

In return we can assume that it is true at the start of each

public method.
Typeset September 30, 2014 3

Algorithms: Correctness and Complexity. Slide set 6 Abstraction Data Types c© Theodore Norvell

Now let’s look at implementing DynamicArray so as to

preserve the invariant.

class DynamicArray〈T 〉
private var a : array〈T 〉 := new array〈T 〉(1)

private var len: int := 0
invariant 0 ≤ len ≤ a.length ∧ 0 < a.length
· · ·
public method set(i : int, v : T)

precondition 0 ≤ i ≤ getLength()
if i = len then

len := len + 1
if len > a.length then

// Must restore the object invariant

var b := new array 〈T 〉 (a.length × 2)
for j ← {0, ..a.length} do b(j) := a(j)
end for

a := b
end if

end if

a(i) := v
end set

end DynamicArray

As with a loop invariant, the object invariant may be

temporarily violated, but should be restored by the end

of the routine.

For set to work, we need that the array has a positive

length. This is why 0 < a.length is in the invariant.

(Having changed the invariant, we must now check that

all methods preserve it.
Typeset September 30, 2014 4

Algorithms: Correctness and Complexity. Slide set 6 Abstraction Data Types c© Theodore Norvell

Concrete data type

For a client programmer to know what the methods

“mean”, they must read the implementation! This is not

good.

For the implementing programmer, how can they know

that they have implemented the methods correctly?

Can we describe the “meaning” of each method by

pre- and postconditions? This will serve as a contract

between the client and the implementer.

Let’s try.

[Notational notes:

• In postconditions, we will use v0 to represent the value

of a variable v at the start of a subroutine invocation.

• In postconditions, we use result to stand for the result.

• Variables not mentioned after “changes” do not

change.]

Typeset September 30, 2014 5

Algorithms: Correctness and Complexity. Slide set 6 Abstraction Data Types c© Theodore Norvell

class DynamicArray〈T 〉
private var a : array〈T 〉 := new array〈T 〉(1)

private var len: int := 0
invariant 0 ≤ len ≤ a.length ∧ 0 < a.length
public method getLength() : int

postcondition result = len
return len

end getLength

public method get(i : int) : T

precondition 0 ≤ i < getLength()
postcondition result = a(i)
return a(i)

end get

public method set(i : int, v : T)

precondition 0 ≤ i ≤ getLength()
changes a, len

postcondition len = max(i + 1, len0) ∧ a(i) = v
∧ (∀j : {0, ..len0} · j �= i⇒ a(j) = a0(j))
... as before ...

end set

public method clipTo(i : int)

precondition 0 ≤ i ≤ length(s)
changes a, len

postcondition len = i ∧ (∀j : {0, ..i} · a(j) = a0(j))
len := i

end clipTo

end DynamicArray

Typeset September 30, 2014 6

Algorithms: Correctness and Complexity. Slide set 6 Abstraction Data Types c© Theodore Norvell

But these contracts:

• are in terms of private variables that are really none of

the client’s business.

• are tied to the particular data representation that we

chose to use.

• must change if that representation changes.

• (therefore, client code may become incorrect!)

• force reasoning about the client code to involve

reasoning about the array-based implementation.

In short, they violate information hiding.

They don’t really describe how a DynamicArray can be

useful to a client in a way that abstracts away from the

implementation particulars and leaves only the logical

essence of the DynamicArray.

Let’s start again.

Typeset September 30, 2014 7

Algorithms: Correctness and Complexity. Slide set 6 Abstraction Data Types c© Theodore Norvell

Abstract data type

This time we will ignore implementation in terms of arrays

and simply make use of a “sequence” type.

Notations for sequences

• Seq 〈T 〉— the type of all finite sequences with items of

type T

• [] — a sequence of length 0

• [a] — a sequence of length 1

• sˆt — the catenation of two sequences

• s(i) — item i (starting at 0, of course)

• s[i, ..j] — a segment from position i up to, but not

including j

• length(s) — the length of s

Typeset September 30, 2014 8

Algorithms: Correctness and Complexity. Slide set 6 Abstraction Data Types c© Theodore Norvell

(Abstract data type for dynamic array.)

interface DynamicArrayI〈T 〉
ghost public readonly var s : Seq 〈T 〉 := []
public method getLength() : int

postcondition result = length(s)
public method get(i : int) : T

precondition 0 ≤ i < length(s)
postcondition result = s(i)

public method set(i : int, v : T)

precondition 0 ≤ i ≤ length(s)
changes s

postcondition s = s0[0, ..i]ˆ[v]ˆs0[i+ 1, ..length(s)]
public method clipTo(i : int)

precondition 0 ≤ i ≤ length(s)
changes s

postcondition s = s0[0, ..i]
end DynamicArrayI

This version precisely documents the interface of an

abstract data type.

We call s an abstract field or a ghost field

But what about the implementation?

We data refine the class.

Introduce (concrete) fields len and a to represent s.

The linking invariant is

LI : length(s) = len ≤ a.length
∧ a.length > 0
∧ (∀j : {0, ..len} · s(j) = a(j))

Typeset September 30, 2014 9

Algorithms: Correctness and Complexity. Slide set 6 Abstraction Data Types c© Theodore Norvell

Once we have decided on the linking invariant, the

individual methods can be implemented independently

of each other.

The complete class is this

class DynamicArray〈T 〉 implements DynamicArrayI〈T 〉
// ghost variable s : Seq 〈T 〉 := [] is inherited

private var a : array〈T 〉 := new array〈T 〉(1)

private var len: int := 0
invariant length(s) = len ≤ a.length ∧ a.length > 0

∧ (∀j : {0, ..len} · s(j) = a(j))
public method getLength() : int

postcondition result = length(s)
return len

end getLength

public method get(i : int) : T

precondition 0 ≤ i < length(s)
postcondition result = s(i)
return a(i)

end get

public method set(i : int, v : T)

precondition 0 ≤ i ≤ length(s)
changes s

postcondition s = s0[0, ..i]ˆ[v]ˆs0[i+ 1, ..length(s)]
...as before...

ghost s := s[0, ..i]ˆ[v]ˆs[i + 1, ..length(s)]
end set

Typeset September 30, 2014 10

Algorithms: Correctness and Complexity. Slide set 6 Abstraction Data Types c© Theodore Norvell

public method clipTo(i : int)

precondition 0 ≤ i ≤ length(s)
changes s

postcondition s = s0[0, ..i]
len := i
ghost s := s[0, ..i]

end DynamicArray

The annotation "ghost" indicates code that is only needed

for verification — it should not be compiled.

When is a subroutine correct? Consider clipTo. We

should show

{0 ≤ i ≤ length(s) ∧ s0 = s ∧ LI }

len := i s := s[0, ..i]

{s = s0[0, ..i] ∧ LI }

The object invariant that we had earlier

len ≤ a.length ∧ 0 < a.length

is merely the part of the linking invariant that involves

only the concrete variables

We call this the concrete invariant.

(Technically the concrete invariant can be obtained from

the linking invariant, by “projecting” onto the concrete

space CI = (∃s · LI).)

This concrete invariant can (and likely should) be

checked using run-time assertion checking. (Unless

0-false-negative static verification technology is used, in

which case, run-time checking would be superfluous.)

Typeset September 30, 2014 11

Algorithms: Correctness and Complexity. Slide set 6 Abstraction Data Types c© Theodore Norvell

There is also an abstract invariant. In this example it is

true, as we put no restrictions on the sequence being

represented.

(Technically the abstract invariant can be obtained from

the linking invariant, by “projecting” onto the abstract

space AI = (∃len · ∃a · LI) .)

Typeset September 30, 2014 12

Algorithms: Correctness and Complexity. Slide set 6 Abstraction Data Types c© Theodore Norvell

You can think of the ghost variables as being the axes of

a state space. We call this the abstract state space of

the ADT.

In the dynamic array example there is only one axis s of

the abstract state space

The concrete variables are the axes of a concrete state

space.

In the dynamic array example, the axes of the concrete

state space are a and len.

The linking invariant links points in the concrete state

space with points in the abstract state space.

For example s = [42, 13] is a point in the abstract state

space.

It is linked to every concrete point such that

len = 2 ≤ a.length ∧ a(0) = 42 ∧ a(1) = 13.

In this example:

∗ Every point in the abstract space is linked to an infinity

Typeset September 30, 2014 13

Algorithms: Correctness and Complexity. Slide set 6 Abstraction Data Types c© Theodore Norvell

of points in the concrete space.

∗ Every point in the concrete space, which obeys the

concrete invariant, is linked to exactly one point in the

abstract space.

Typeset September 30, 2014 14

