
Algorithms: Correctness and Complexity. Slide set 8.0. Procedures and Recursion c© Theodore Norvell

Procedures and design by contract

Procedural abstraction

A procedure (or subroutine) is a named piece of code.

Typically we abstract away from the details of how a

procedure accomplishes its goal and focus on what that

goal is.

The tool for doing such abstraction is the procedure’s

contract.

Contracts for procedures

Consider an algorithm to find a minimum spanning Forest

of a graph where the edges are {e0, ..em} and each edge

e has a weight of w(e).
Input a graph G with nodes N = {u0, ..un} edges

E = {e0, ..em} and a real function w defined on all items of

E.

Output a F subset of E that forms a minimum weight

spanning forest of the graph

Method

var a := new array 〈Edge〉 (m)
for(i← [0, ..m]) do a(i) := ei end for

sort a by weight so that the least weight edges are at the

front

F := ∅
for(i← [0, ..m]) do

if F ∪ {a(i)} has no cycle then

F := F ∪ {a(i)} end if end for
Typeset October 2, 2014 1

Algorithms: Correctness and Complexity. Slide set 8.0. Procedures and Recursion c© Theodore Norvell

We need to sort an array of edges

The contract is

procedure edgeSort(var a : array 〈Edge〉 , w : Edge
par
→ R)

precondition ∀i ∈ {0, ..a.length} · a(i) ∈ dom(w)
changes a

postcondition a is a permutation of a0
∧ ∀i, j ∈ {0, ..a.length} · i ≤ j ⇒ w(a(i)) ≤ w(a(j))

The contract specifies

• What must be true before each invocation (i.e. the

precondition)

• Which variables (aside from local variables) may be

changed by the procedure

• What the procedure guarantees about the state at the

end of an invocation (the postcondition)

Like all contracts there are obligations and benefits. An

obligation of one party generally corresponds to a benefit

Typeset October 2, 2014 2

Algorithms: Correctness and Complexity. Slide set 8.0. Procedures and Recursion c© Theodore Norvell

to the other.
Obligation Benefit

Precondition The

client’s designer is

obliged to ensure

the precondition is

true to start with.

The procedure’s

designer can

assume

the precondition is

already true when it

starts.

Postcondition The procedure’s

designer

is obliged to ensure

the postcondition is

true.

The client’s

designer can

assume

the postcondition is

true after then

invocation.

Changes The procedure’s

designer is obliged

not to change any

other variables.

The client’s

designer can

assume all other

variables are left

alone.

If the client defaults on its obligations then the procedure

need not respect its obligations.

Example

procedure findMax(a : array 〈Int〉) : Int

precondition ∃i ∈ {0, ..a.length} · a(i) ≥ 0
postcondition ∀i ∈ {0, ..a.length} · a(i) ≤ a(result)

Typeset October 2, 2014 3

Algorithms: Correctness and Complexity. Slide set 8.0. Procedures and Recursion c© Theodore Norvell

The following is an acceptable algorithm according to the

contract.

varm := −1, r := 0, j := 0{
(¬ (a {0, ..j} <∗ 0)⇒ a {0, ..j} ≤∗ a(r) = m)

∧ (a {0, ..j} <∗ 0⇒ m ≤ 0)

}
1

while j < a. length
if a(j) > m thenm := a(j) r := j end if j := j + 1

end while

return r

As you can see, if one passes in the array [−3,−2,−4],
then the postcondition will not hold.

[Aside: Good programming practice suggests that,

if the precondition is false, the code should —if

practical— alert the programmer somehow. E.g.

by throwing an exception. This is an example of

defensive programming. Defensive programming

dictates that code should check for errors —internal or

environmental— whenever practical. However I am not

going to put this behaviour into the contract, because it

is not a behaviour I want the client to be able to depend

on. We leave this as a matter of pragmatics rather than

semantics. A good designer will weigh the probability of

an error being caught and the benefit that will provide vs

the costs of checking for an error. End of aside.]

1 The notation a{0, ..j} <∗ 0 means all items of a with indeces in {0, ..j} are less than 0
Typeset October 2, 2014 4

Algorithms: Correctness and Complexity. Slide set 8.0. Procedures and Recursion c© Theodore Norvell

Conventions for procedure pre- and postconditions.

• In postconditions we use v0 to mean “the initial value

of v” (the value at the start of the invocation).

• In effect we have (for all variables) v0 = v as an implicit

conjunct of the precondition.

• If a global variable v is not mentioned in the “changes”

clause, its final value should be the same as it’s initial

value.

• In effect we have (for these variables) v = v0 in the

postcondition.

For example

procedure sort(var a : array 〈Edge〉 , w : Edge
par
→ R)

precondition ∀i ∈ {0, ..a.length} · a(i) ∈ dom(w)
changes a

postcondition a is a permutation of a0
∧ ∀i, j ∈ {0, ..a.length} · i ≤ j ⇒ w0(a(i)) ≤ w0(a(j))

written without these conventions is

procedure sort(var a : array 〈Edge〉 , w : Edge
par
→ R)

precondition (∀i ∈ {0, ..a.length} · a(i) ∈ dom(w))
∧ a0 = a ∧ w0 = w ∧ x0 = x ∧ y0 = y ∧ ...
postcondition a is a permutation of a0
∧ ∀i, j ∈ {0, ..a.length} · i ≤ j ⇒ w0(a(i)) ≤ w0(a(j))
∧ x0 = x ∧ y0 = y ∧ ...

Typeset October 2, 2014 5

Algorithms: Correctness and Complexity. Slide set 8.0. Procedures and Recursion c© Theodore Norvell

Recursion

Recursive procedures are ones that may call themselves

directly or indirectly.

Thinking about what a procedure does, rather than how

it does it (procedural abstraction) is the way to deal with

recursive procedures.

For example, consider the sorting a deck of 52 cards.

We’ll assume there is some partial order ≤ on the cards.

For example (s0, v0) ≤ (s1, v0) could be defined by

((s0, v0) ≤ (s1, v0)) = (s0 < s1 ∨ (s0 = s1 ∧ v0 ≤ v1))

where ♣ < ♦ < ♥ < ♠. or it could be defined by

((s0, v0) ≤ (s1, v0)) = (v0 ≤ v1)

Here is an algorithm for sorting cards

• Pick any card. Call it x. Remove it from the deck.

• Make a pile A of all remaining cards < x.

• Make another pile B of all remaining cards > x.

• x goes in neither pile, but other cards equal to x can

go in either pile.

• Ask a friend to sort pile A and pile B

• Put x on top of pile B and pile A on top of x.

• Now the deck is sorted.

It may appear that the task you are asking your friend to

do is just as hard as the one you are trying to do, but it

is not. You need to sort 52 cards, they need to sort, at

most, 51.
Typeset October 2, 2014 6

Algorithms: Correctness and Complexity. Slide set 8.0. Procedures and Recursion c© Theodore Norvell

Now let’s do it with an array and allow duplicate values.

We’ll assume that x ≤ y∧y ≤ x⇒ x = y, for all x, y ∈ T .

Let’s specify sorting a portion of an array with a contract

procedure sort(var a : array 〈T 〉 ; p, r : Int)

precondition 0 ≤ p ≤ r ≤ a.length
changes a, but only at indices {p, ..r}
postcondition

a is a permutation of a0
∧ ∀i, j ∈ {p, ..r} · i ≤ j ⇒ a(i) ≤ a(j)

Now without worrying about how our friends do their

sorts, we can implement the sort specification with the

following algorithm.

procedure fairlyQuickSort(var a : array 〈T 〉 ; p, r : Int)

implements sort(a, p, r)
if r − p > 1 then

val i := any value from {p, ..r}
val x := a(i)
var q

partition(a, p, r, x, q)

{ p ≤ q < r
and everything in a{p, ..q} is ≤ x
and a(q) = x
and everything in a {q + 1, ..r} is ≥ x }

sort(a, p, q)

sort(a, q + 1, r)
end if

end fairlyQuickSort

Typeset October 2, 2014 7

Algorithms: Correctness and Complexity. Slide set 8.0. Procedures and Recursion c© Theodore Norvell

This works assuming that partition permutes segment

p, ..r of a such that the assertion is true, does not change

any other items of a and does not change p or r.

So partition should implement the following contract

procedure partition(var a : array 〈T 〉 ; x : T ; p, r :
Int ; var q : Int)
precondition p < r and {p, ..r} ⊆ dom(a) and

x ∈ a{p, ..r}
changes a (but only permuting a [p, ..r]), q
postcondition p ≤ q < r and a{p, ..q} ≤∗ x and

x ≤∗ a{q + 1, ..r} and x = a(q)

where S ≤∗ x means ∀y ∈ S · y ≤ x and similarly for

x ≤∗ S.

Now we can verify the partial correctness of

fairlyQuickSort based on the specifications of sort

and partition.

Exercise: Implement partition.

Typeset October 2, 2014 8

Algorithms: Correctness and Complexity. Slide set 8.0. Procedures and Recursion c© Theodore Norvell

Of course our friends may use the same algorithm, and

so may their friends, and so on. If all do, that gives the

classic quick sort algorithm.

procedure quickSort(var a : array 〈T 〉 ; p, r : Int)

implements sort(a, p, r)
if r − p > 1 then

val i := any value from {p, ..r}
val x := a(i)
var q

partition(a, p, r, x, q)

{ p ≤ q < r
∧ a{p, ..q} ≤∗ x ∧ a(q) = x ∧ a {q + 1, ..r} ≥∗ x }

quickSort(a, p, q) quickSort(a, q + 1, r)
end if

end quickSort

For total correctness we need to show the algorithm will

terminate.

For termination we can use a variant expression:

A variant expression for a recursive routine is an integer

expression that

• can not be less than 0 (assuming the precondition

holds)

• is less (by at least 1) for each recursive invocation

With quickSort a variant expression is r − p.

By the precondition, this is ≥ 0.

The values of the variant for the recursive calls are,

respectively, q − p and r − q − 1.

Typeset October 2, 2014 9

Algorithms: Correctness and Complexity. Slide set 8.0. Procedures and Recursion c© Theodore Norvell

Since q < r, we have q − p < r − p

Since p ≤ q, we have r − q − 1 < r − p

There is no need to resort to proof by strong induction for

each recursive subroutine. Just apply partial correctness

and show there is a variant.

[Aside: Theory meets practice. Our quickSort is perfect

in theory. However in practice there is a problem. Real

machines only approximate ideal machines. In particular

each time a subroutine is invoked, some data needs to

be added to the stack until the invocation ends. When

I tried sorting an array of size 105 in Java, I actually

exceeded the stack limit of the JVM. We’ll fix this problem

later.]

Typeset October 2, 2014 10

