
Algorithms: Correctness and Complexity. Slide set 8.3 Eliminating Recursion c© Theodore Norvell

Eliminating Recursion (Optional)

Tail Recursion Optimization (optional)

“TAIL RECURSION n. See TAIL RECURSION.” —

The Jargon File.

Suppose we have a routine of the following form

procedure f(p)
var v

if e then

S

f(A)
else

T

end if

end f

Note that the recursive call is the last thing done before

returning.

Such a call is called a tail call.

Typeset October 1, 2014 1



Algorithms: Correctness and Complexity. Slide set 8.3 Eliminating Recursion c© Theodore Norvell

I’ll assume two stacks are used by the machine code:

• A variable stack containing "stack frames." Stack

frames contain local variables including parameters.

• A return address stack containing return addresses.

So a function f is compiled to the following

f :
push a new stack frame to hold p and v

copy r1 to p’s location in the stack frame

Body of Function

A return is compiled to

pop stack frame

pop an address from the return address stack

branch to that address

A call to f(A),assuming the parameter is passed in r1, is

compiled to

code for A leaving result in r

push address b onto the return address stack

branch to f

b :

[On some architectures, return or the last two steps

of the call might be represented by a single machine

instruction. That doesn’t matter. I’ll break them into their

conceptual steps.]

[On some architectures, the stack frames and return

addresses go on a single stack. It is easier to understand

the following sequence of transformations if we think

about two stacks. In the end, it won’t matter.]

Typeset October 1, 2014 2



Algorithms: Correctness and Complexity. Slide set 8.3 Eliminating Recursion c© Theodore Norvell

So our machine code will look something like the

following.

Note that I’ve distributed the implicit return to each

branch of the if.

f :
push a new stack frame to hold p and v

copy r1 to p’s location in the stack frame

// if e

evaluate e

conditional branch to a

code for S

// call f(A)
code for A leaving result in r1
push address b onto the return address stack

branch to f

b :
// return

pop stack frame

pop an address from the return address stack

branch to that address

a :
code for T

// return

pop stack frame

pop an address from the return address stack

branch to that address

Typeset October 1, 2014 3



Algorithms: Correctness and Complexity. Slide set 8.3 Eliminating Recursion c© Theodore Norvell

Note that there is no use of the stack frame after the

recursive call to f .

So why do we need it?

Save some space by popping the stack frame before

branching to f .

f :
push a new stack frame to hold p and v

copy r1 to p’s location in the stack frame

evaluate e

conditional branch to a

code for S

code for A leaving result in r1
pop stack frame

push address b onto the return address stack

branch to f

b : pop stack frame

pop an address from the return address stack

branch to that address

a :
code for T

pop stack frame

pop an address from the return address stack

branch to that address

Typeset October 1, 2014 4



Algorithms: Correctness and Complexity. Slide set 8.3 Eliminating Recursion c© Theodore Norvell

But the first thing f will do is push a new stack frame

So why pop and then push? Save time by doing neither.

f :
push a new stack frame to hold p and v

g :
copy r1 to p’s location in the stack frame

evaluate e

conditional branch to a

code for S

code for A leaving result in r1
pop stack frame

push address b onto the return address stack

branch to f g

b :
pop an address from the return address stack

branch to that address

a :
code for T

pop stack frame

pop an address from the return address stack

branch to that address

Typeset October 1, 2014 5



Algorithms: Correctness and Complexity. Slide set 8.3 Eliminating Recursion c© Theodore Norvell

Suppose before the recursive call to f , the top of the

return address stack is x. The call pushes b.

The return from the recursive call to f will pop address

b from the stack and branch to b. The code after b then

pops address x from the stack and branches to that.

If we don’t push b, the return from the recursive call will

pop and branch straight to x. The same end result.

So why push b ?

f :
push a new stack frame to hold p and v

g : copy r1 to p’s location in the stack frame

evaluate e

conditional branch to a

code for S

code for A leaving result in r1
push address b onto the return address stack

branch to g

b : pop an address from the return address stack

branch to that address

a :
code for T

pop stack frame

pop an address from the return address stack

branch to that address

This is tail recursion optimization or, since it can be

applied to nonrecursive calls too, tail call optimization.

Typeset October 1, 2014 6



Algorithms: Correctness and Complexity. Slide set 8.3 Eliminating Recursion c© Theodore Norvell

Eliminating recursion altogether (optional)

Back in the days of Fortran and Cobol, programmers

were taught to eliminate recursion altogether, as these

languages did not support it. I’ll illustrate with an example

procedure f(p)
var v

a: if e then

S

f(x)
b: T

f(y)
c: U

else

W

end if

rtn:

end f

Becomes

procedure f(p)
type Label = {a, b, c, rtn}
var v

var vStack := new Stack ()
var pStack := new Stack ()
var labelStack := new Stack 〈Label〉 ()
var label := a
while ¬(empty(labelStack ) ∧ label = rtn) do

if label = a then

if e then

Typeset October 1, 2014 7



Algorithms: Correctness and Complexity. Slide set 8.3 Eliminating Recursion c© Theodore Norvell

S

push p onto pStack

push v onto vStack

push b onto labelStack

p := x
label := a // recursive call

else

W

label := rtn
end if

elseif label = b then

T

push p onto pStack

push v onto vStack

push c onto labelStack

p := y
label := a // recursive call

elseif label = c then

U

label := rtn
elseif label = rtn then

label := pop labelStack
p := pop pStack
v := pop vStack

end if

end while

end f

[End of optional section.]

Typeset October 1, 2014 8


