Eliminating tail recursion

A recursive call is “tail recursion” if it is the last thing done

before a return.

Many compilers remove tail recursion. (See optional

slides.)

But we can do it ourselves by source-level transformation

procedure f(p)
if ¢ then

f(a)
else

T
end if

end f

procedure f(p)
start: if e then

S
pi=a
goto start
else
T
end if
end f

procedure f(p)
while e do

S

pi=a
end while
T

end f

For example we can optimize quickSort to get
procedure guickSort(var a : array (T') ; p,r : Int)
implements sort(a, p, 1)

whiler — p > 1 do

val i := any value from {p, ..r}

val x := a(i)

var q

partition(a, p, 7, x,q)
quickSort(a, p, q)

p=q+1
end while
end quickSort

Better yet we can ensure that the depth of recursion
never exceeds [log,(r — p)| by only using recursion for
the smaller part of the array
procedure guickSort(var a : array (1) ; p,r : Int)
implements sort(a, p,)
whiler —p > 1 do
val i := any value from {p, ..r}
val x := a(i)
var ¢
partition(a, p, 7, x,q)
ifqg—p<r—q—1then
quickSort(a,p, q)
p=q+1
else
quickSort(a,q+ 1,7)
ri=q
end if
end while
end quickSort

In my Java implementation, this allowed me to sort 10°
items.

Eliminating all recursion from quicksort

Quicksort (of an array) is an entirely top-down, “divide
and conquer” algorithm in that once a problem instance
Is divided into smaller subinstances, there is no need to
return to the original instance.

Therefore we can maintain a set of instances yet to be
solved: the WorkSet.
procedure quickSortNR(var a : array (T))
implements sort(a, 0, a.length)
var WorkSet : Set (Int x Int) := {(0, a.length)}
{inv: if we sort every segment in WorkSet then a will be
sorted }
while WorkSet # () do
var p, r
(p,r) := any element of WorkSet
WorkSet := WorkSet — {(p,r)}
if r —p > 1 then
val ¢ := any value from {p, ..r}
val x := a(i)
var g
partition(a, p, 7, x,q)
WorkSet == WorkSet U {(p,q),(q+1,r)}
end if
end while
end quickSortNR

By representing WorkSet as a stack and pushing the
“smaller” subinstance second, we can ensure that
| WorkSet| never exceeds |log,(a.length)]

Aside. Note that this algorithm is parallelizable.

General pattern for top-down

Top-down recursive

procedure p(x)
if 1s 1s a leaf instance then
solve x by direct means
else
do some work on x
break x into smaller child instances xg, 21, ..x,
for i — {0,..n} do p(z;)
end if
end p

Top-down workset algorithm

procedure p(x)
postcondition R
var WorkSet .= {x}
inv by doing all the tasks in the WorkSet, R will be
established.
while WorkSet # () do
val y := any element of WorkSet
WorkSet := WorkSet — {y}
if ¢ 1s a leaf instance then
solve y by direct means
else
do some work on y
break y into smaller child instances g, y1, -.Yn
WorkSet := WorkSet U {yo, y1, --Yn}
end if
end while
end p

Very few algorithms are purely top down.

Exercise: Find a variant expression for this loop or
otherwise show it terminates.

Eliminating recursion from bottom-up

MergeSort is a bottom-up, “conquer and combine”
algorithm
procedure mergeSort(var a : array (1) ; p,r : Int)
implements sort(a,p,r)
if » — p > 1 then
var ¢ := any numberin {p+1,..,r — 1}
// For efficiency we pick g near the middle
{p<qg<r}
mergeSort(a,p,q) mergeSort(a,q,r)
merge(a,p,q,7)
end if
end mergeSort

where
procedure merge(var a : array (1) ; p,q,r : Int)
precondition p < g < r and segment alp, ..q] is sorted
and a|q, ..r] is sorted
changes a (but only permuting a [p, ..r])
postcondition segment a[p, ..r] is sorted

Exercise: Implement merge .

|mmwy1mhuahexag‘

? Sort Sort ?

|
!
P q r
Y
|

---|hmmm1wyaaeghux‘---

} t
P r
Merge

--|aaeghhmmmtuwxy‘...
¢ t

P ¥

A non-recursive merge-sort

Consider any directed accylic graph (DAG) 1" of pairs
such that

e (0, a.length) is in the DAG
e Pairs (i,7 + 1) are leaves, for all i € {0, ..a.length}

e Every nonleaf (p,r) has exactly 2 children (p, q) and
(Q7 T)s for some ¢, such thatp < ¢ < r.

procedure mergeSortNR(var a : array (1))
var Solved : Set := ()
inv All pairs in Solved represent sorted regions of the
array
while (0, a.length) ¢ Solved
let (p,r) ¢ Solved such that (p, r) is a leaf
or both children of (p, r) are in Solved
if (p,) is a leaf
do nothing
else
Let g be such that (p, ¢) and (g, r) are the children
of (p, 1)
merge(a,p,q,7)
end if
Solved = Solved U {(p,7)}
end while
end p

General pattern for bottom-up
Bottom-up recursive conquer and combine

The general form of a recursive, bottom-up algorithm
procedure p(x)
if = 1s a leaf instance then
solve x by direct means
else
break x into smaller child instances x, x1, ..z,
for i — {0,..n} do p(z;)
combine the solution for the children to solve x
end if
end

As with the top-down algorithm, the algorithm defines a
DAG of instances.

Bottom-up nonrecursive conquer and combine

If we can anticipate which instances will be in the DAG,
we can solve the instances nonrecursively bottom-up.
procedure p(x)
Consider a DAG T’ of instance that contains instance .
var Solved : Set = ()
inv: All instance in Solved are solved
while x ¢ Solved
pick an instance y ¢ Solved that all of 3’s children are
in Solved
if 1 1s a leaf
solve y directly
else
combine the solutions to ’s children so that y is
solved
end if
Solved = Solved U {y}
end while
end p

Layer-by-layer bottom-up

Often bottom up problems can be solved one layer at a
time, starting with the leaves. This will often remove the
need to keep track of solved instances
procedure p(x)
Consider a DAG T’ of subinstances that contains instance
x.
give each node of 1" a natural ‘layer number’ so that
children have lower numbers than parents.
var k=0
inv: all nodes numbered below k£ have been solved
while the root x 1s not solved
solve all instances with £k as layer number

k=k+1
end while
end p

Layer-by-layer merge-sort.

The DAG is a tree such that
e Layer 0 consists of intervals (0,1),(1,2),---

e Layer 1 consists of intervals (0,2),(2,4),---
e Layer 2 consists of intervals (0,4), (4,8), - - -
e eiC

Since layer 0O is already solved, we start with solving
layer 1
procedure mergeSortNR(var « : array (T))
implements sort(a, 0, a.length)
var grawmn = 1
// inv.: each of the segments a0, .. grain|,

Il algrain, ..2 X grain|, a [2 X grain,..3 X grain], etc. on

a.length
grain

// up to and including a[{ J X grain, ..a.length}|

/ 1s sorted, and grain > 0
{grain > 0 A a is a permutation of ay A Vi € N-
alcap(i X grain),..cap ((¢ + 1) X grain)| is sorted,
where cap(j) = min(j, a.length)}
while grain < a.length do
var p .= 0
while p < a.length do
val ¢ := min(p + grain, a.length)
val r ;= min(q + grain, a.length)
merge(a,p,q,T)
p=r
end while
grain = grain X 2
end while
end mergeSortNR

In mergesort we are able to anticipate the subinstances
that need to be solved prior to solving the superinstances.

However the tree of sub-instances used by the
nonrecursive merge-sort may differ from the recursive
version.

e Usually the recursive version attempts to balance the
split. E.g. if a.length = 17, the final merge is between
regions of lengths 8 and 9.

e The bottom up version always merges regions of
length = some power of 2. E.g. if a.length = 17, the
final merge is between regions of lengths 16 and 1.

Note that this algorithm’s inner loop is parallelizable.

