
Algorithms: Correctness and Complexity. Slide set 9. Recursion and Loops c© Theodore Norvell

Loops and recursion

By tail recursion removal these commands are equivalent

f (a)
where f is defined by

procedure f(p)
if e then S f (b)
else T
end if

end f

var p := a
while e do

S
p := b

end do

T

Loops without invariants

So we can use techniques for reasoning about recursive

procedures to reason about loops.

Consider (again) the binary search problem

{ x is sorted }

? without changing x or t, find i such that

{ (t ∈ x{0, ..x.length} ⇒ x(i) = t) and

(t /∈ x{0, ..x.length} ⇒ i = −1) }

We can solve this by calling a procedure that searches

only part of the array

search(0, x.length, t, x, i)

where

procedure search(p, r : Int, t : T, x : array 〈T 〉 , var i)
precondition 0 ≤ p ≤ r ≤ x.length and x is sorted

postcondition t ∈ x{p, ..r} ⇒ x(i) = t
and t /∈ x{p, ..r} ⇒ i = −1

Typeset October 18, 2016 1



Algorithms: Correctness and Complexity. Slide set 9. Recursion and Loops c© Theodore Norvell

Now we can implement the procedure using recursion

procedure search(p, r : Int, t : T, x : array 〈T 〉 , var i)
precondition 0 ≤ p ≤ r ≤ x.length and x is sorted

postcondition t ∈ x{p, ..r} ⇒ x(i) = t
and t /∈ x{p, ..r} ⇒ i = −1

if r − p > 1 then

val q :=
⌊
p+r
2

⌋

if x(q) ≤ t then search(q, r, t, x, i)
else search(p, q, t, x, i)
end if

else // r − p = 1 ∨ p = r
if p = r then i := −1 elseif x(p) = t then i := p else

i := −1 end if

end if

end search

By tail recursion removal, our problem can be solved by

p := 0
r := x.length
while r − p > 1 do

val q :=
⌊
p+r
2

⌋

if x(q) ≤ t then p := q else r := q end if

end while

if p = r then i := −1 elseif x(p) = t then i := p else

i := −1 end if

This is the same result we got in slide set 3.

But we did not need an invariant!

Typeset October 18, 2016 2



Algorithms: Correctness and Complexity. Slide set 9. Recursion and Loops c© Theodore Norvell

(The invariant from slide set 3 was

I :
0 ≤ p ≤ r ≤ x.length

∧ (t ∈ x {0, ..x.length} ⇒ t ∈ x {p, ..r})
and nothing like it makes an appearance in this

development.)

• The invariant looks backward. It summarizes what we

have learned/accomplished so far.

“If t is anywhere in the array, it must be in the region

x {p, ..r}”

• The recursion based approach to loops, which we just

used, looks forward.

The specification of the procedure explains what

remains to be accomplished each time we (re)start the

loop.

“Determine whether x {p, ..r} contains a t and, if so,

indicate it’s location”

Typeset October 18, 2016 3


