Context-Free Grammars

An **alphabet** is a set of symbols —finite or infinite.

Given an alphabet A the set of all *finite* sequences with items in A is written A^* .

A language (over A) is a subset —finite or infinite— of A^* .

Some languages:

- $\{[0,0], [0,1], [1,0], [1,1]\}$ a finite language over $\{0,1\}$
- $\{0,1\}^* = \{[], [0], [1], [0,0], [0,1], [1,0], [1,1], [0,0,0], \dots\},\$ an infinite language over $\{0,1\}$
- {[], [0], [1], [0, 0], [1, 1], [0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1], \cdots } the infinite set of palindromes over {0, 1}
- { $[1], [2], [1, '+', 1], [1, '+', 2], [2, '+', 2], [1, '+', 1, '+', 1], \cdots$ } arithmetic expressions using 1, 2, and +

As languages are often infinite sets, we need *finite* descriptions of *infinite* languages.

A **context-free language** (CFL) is a language defined by a *context-free grammar* (below).

Context free languages have numerous applications in data formats, programming languages, communication protocols, etc.

Languages that are too complex to be context free are nevertheless often described by first describing a context free language and then imposing additional restrictions

• E.g. the set of all syntactically correct Java classes is context free

class C { int i = 13.5 ; }

• The set of all type correct Java classes is *not* context free.

A context free grammar (CFG) $(A,N,P,n_{\rm start})$ consists of

- An alphabet A (i.e. a set of symbols)
- A finite set of **nonterminal symbols** *N* disjoint from *A*.
- A finite set of **production rules** of the form $n \to \alpha$, where $n \in N$ and $\alpha \in (N \cup A)^*$
- A starting nonterminal $n_{\text{start}} \in N$.

Example $G_0 = (\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, (,), -, \#\}, \{pn, d\}, P_0, pn)$ where P_0 is¹ $\{pn \rightarrow (ddd) \# ddd - dddd,$ $d \rightarrow 0, d \rightarrow 1, d \rightarrow 2, d \rightarrow 3, d \rightarrow 4,$ $d \rightarrow 5, d \rightarrow 6, d \rightarrow 7, d \rightarrow 8, d \rightarrow 9\}$

In formal language theory, it is is usual to write sequences just by listing the items. E.g. $d\dot{d}d$ instead of [d, d, d]. This creates a usually harmless ambiguity between symbols and sequences of length 1. Catenation is written as st rather than s^{t} . The empty sequence is written as either ϵ or as nothing at all rather than [].

For a given grammar $G = (A, N, P, n_{\text{start}})$, define a relation \implies on sequences as follows²

 $\alpha \Longrightarrow \beta$

if and only if

 $\alpha, \beta \in (N \cup A)^*$ and

there are sequences $\gamma, \delta, \theta \in (N \cup A)^*$ and an $n \in N$ such that $\alpha = \gamma n \theta$ and $\beta = \gamma \delta \theta$ and $(n \to \delta) \in P$

If $\alpha \implies \beta$, we say that we can **derive** β from α in one **step**.

Each **derivation step** $\gamma n\theta \implies \gamma \delta \theta$ replaces one occurrence of some nonterminal symbol n with δ where $(n \rightarrow \delta) \in P$. For example the following are derivation steps for G_0

$$ddd \implies 8dd$$
$$ddd \implies d0d$$
$$pn \implies (ddd) \sharp ddd - dddd$$

Thus each grammar defines a directed graph in which the nodes are elements of $(A \cup N)^*$ and, for each α and β , there is an edge from α to β iff $\alpha \Longrightarrow \beta$.

² Using the notation of the rest of the course, we would write the last line of this definition as "such that $\alpha = \gamma^{\hat{}}[n]^{\hat{}}\theta$ and $\beta = \gamma^{\hat{}}\delta^{\hat{}}\theta$ and $(n \to \delta) \in P$ ". Typeset March 5, 2020

A **derivation** is a finite path in this graph. We write $\alpha \stackrel{*}{\Longrightarrow} \beta$ to mean there is a derivation that starts at α and ends at β . I.e. $\alpha \stackrel{*}{\Longrightarrow} \beta$ means that we can transform α into β via 0 or more derivation steps.

For example

 $pn \stackrel{*}{\Longrightarrow} (dd9) \sharp ddd - dd0d$

The **language defined by** a CFG $(A, N, P, n_{\text{start}})$ is the set of sequences in $\alpha \in A^*$ such that $n_{\text{start}} \stackrel{*}{\Longrightarrow} \alpha$.

For example, the language defined by G_0 includes the sequence

(709) # 867 - 5309

To prove this, all we need to do is show 1 derivation (of the many) from pn.

$$pn \implies (ddd) \sharp ddd - dddd \implies (dd9) \sharp ddd - dddd\implies (dd9) \sharp ddd - dd0d \implies (d09) \sharp ddd - dd0d\implies (709) \sharp ddd - dd0d \implies (709) \sharp ddd - dd0d\implies (709) \sharp ddd - dd09 \implies (709) \sharp ddd - dd0d\implies (709) \sharp ddd - dd09 \implies (709) \sharp ddd - d309\implies (709) \sharp 8dd - d309 \implies (709) \sharp 86d - d309\implies (709) \sharp 867 - d309 \implies (709) \sharp 867 - 5309$$

Another example. Let $G_1 = (A_1, N_1, P_1, \text{block})$

- $A_1 = \{+, *, /, -, (,), <, :=, if, then, while, do, else, end\} \cup \mathcal{I} \cup \mathcal{N}$, where \mathcal{I} is a finite set of identifiers disjoint from $\{if, then, while, do, else, end\}$ and \mathcal{N} is some finite subset of \mathbb{N} .
- $N_1 = \{ block, command, exp, comparend, term, factor \}$
- and P_1 contains all of the following production rules³

block
$$\rightarrow \epsilon$$

- block \rightarrow command block
- command $\rightarrow i := \exp$ for all $i \in \mathcal{I}$
- command \rightarrow if exp then block else block end if
- command \rightarrow while exp do block end while
 - $\exp \rightarrow \text{comparand}$
 - $\exp \rightarrow \text{comparand} < \text{comparand}$
- comparand \rightarrow term
- comparand \rightarrow term + comparand
- comparand \rightarrow term comparand
 - term \rightarrow factor
 - term \rightarrow factor * term
 - term \rightarrow factor / term
 - factor $\rightarrow n$ for all $n \in \mathcal{N}$
 - factor $\rightarrow i$ for all $i \in \mathcal{I}$

factor \rightarrow (exp)

An example of a string in this language is while i < n do j := j + i i := i + 1 end while

³ Recall that ϵ means an empty sequence. Typeset March 5, 2020

We can show that

while i < n do j := j + i i := i + 1 end while is in the language by showing a derivation.

block

- \implies command block
- \implies while exp do block end while block

i

- \implies while i < n do j := j + i command block end while block
- \implies while i < n do j := j + i $i := \exp \text{block}$ end while block
- \implies while i < n do j := j + i i := comparand block \cdots
- \implies while i < n do j := j + i i := term + comparand block \cdots
- \implies while i < n do j := j + i i := factor + comparand block \cdots
- \implies while i < n do j := j + i i := i +comparand block \cdots
- \implies while i < n do j := j + i $i := i + \text{term block} \cdots$
- \implies while i < n do j := j + i $i := i + factor block \cdots$
- \implies while i < n do j := j + i i := i + 1 block end while block
- \implies while i < n do j := j + i i := i + 1 end while block
- \implies while i < n do j := j + i i := i + 1 end while

Another way to show that a sequence is in a context free language is with a **parse tree**.

Let's define parse trees.

An ordered tree is a directed tree whose nodes are either leaves (with no children) or branches whose (0 or more) children are arranged in a sequence children(t)

A parse tree for a CFG $(A, N, P, n_{\text{start}})$ is a finite ordered tree whose nodes are labelled with symbols from $A \cup N$, such that

- \bullet the root is labelled with $n_{\rm start}$ and
- each branch node is labelled with a nonterminal symbol $n \in N$ and has a sequence of children whose labels form a finite sequence α such that $(n \to \alpha) \in P$.

Given a parse tree t the sequence of leaves is given by

```
proc fringe(t)
```

```
if t is a leaf then return [label(t)]
```

```
else // t is a branch
```

```
var \alpha := []
for u \leftarrow children(t) do \alpha := \alpha^{\hat{}} fringe(u) end for
return \alpha
```

end if

end *fringe*

Exercise: Show that, for any parse tree t, if $fringe(t) = \alpha$, then $n_{\text{start}} \stackrel{*}{\Longrightarrow} \alpha$.

Exercise: Show that if $n_{\text{start}} \stackrel{*}{\Longrightarrow} \alpha$, there is a parse tree t such that $\alpha = fringe(t)$.

Thus, for any $s \in A^*$, s is in the language of G if and only if there is a parse tree t where s = fringe(t).

Exercise: Design a CFG for the language of palindromes in $\{0,1\}^*$.

Exercise: Design a CFG for the language of valid boolean expressions in $\{p, q, r, \land, \lor, \Rightarrow, \neg, (,)\}^*$

Exercise: Design a CFG for the language of valid C++ variable declarations in $\{int, *, [,], (,), ;, a, b, c, 0, 1\}^*$ where a, b, and c are identifiers. E.g.

int a(int, int*);

declares a to be a function, while

int (*b[10])();

declares b to be an array of 10 pointers to functions returning int results.

Exercise: Look up the definition of regular language.

- Show that every regular language is a context-free language.
- Show that some context free languages are not regular languages.