
Algorithms: Correctness and Complexity. Slide set 10. Languages and Grammars c© Theodore Norvell

Context-Free Grammars

An alphabet is a set of symbols —finite or infinite.

Given an alphabet A the set of all finite sequences with

items in A is written A∗.

A language (over A) is a subset —finite or infinite— of

A∗.

Some languages:

• {[0, 0], [0, 1], [1, 0], [1, 1]} a finite language over {0, 1}

• {0, 1}∗ = {[] , [0] , [1] , [0, 0] , [0, 1] , [1, 0] , [1, 1] , [0, 0, 0] , · · · } ,
an infinite language over {0, 1}

• {[] , [0] , [1] , [0, 0] , [1, 1] , [0, 0, 0] , [0, 1, 0] , [1, 0, 1] , [1, 1, 1], · · · }
the infinite set of palindromes over {0, 1}

• {[1], [2], [1, ‘+’, 1], [1, ‘+’, 2], [2, ‘+’, 2], [1, ‘+’, 1, ‘+’, 1], · · · }
arithmetic expressions using 1, 2, and +

As languages are often infinite sets, we need finite

descriptions of infinite languages.

A context-free language (CFL) is a language defined

by a context-free grammar (below).

Context free languages have numerous applications in

data formats, programming languages, communication

protocols, etc.

Typeset March 5, 2020 1

Algorithms: Correctness and Complexity. Slide set 10. Languages and Grammars c© Theodore Norvell

Languages that are too complex to be context free are

nevertheless often described by first describing a context

free language and then imposing additional restrictions

• E.g. the set of all syntactically correct Java classes is

context free

class C { int i = 13.5 ; }

• The set of all type correct Java classes is not context

free.

A context free grammar (CFG) (A,N,P, nstart) consists

of

• An alphabet A (i.e. a set of symbols)

• A finite set of nonterminal symbols N disjoint from

A.

• A finite set of production rules of the form n → α,

where n ∈ N and α ∈ (N ∪A)∗

• A starting nonterminal nstart ∈ N .

Example

G0 = ({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, (,),−, 	} , {pn, d} , P0, pn)
where P0 is1

{pn → (d d d) 	 d d d− d d d d,
d → 0, d → 1, d → 2, d → 3, d → 4,
d → 5, d → 6, d → 7, d → 8, d → 9}

1 In formal language theory, it is is usual to write sequences just by listing the items. E.g.

d ḋ d instead of [d, d,d]. This creates a usually harmless ambiguity between symbols and

sequences of length 1. Catenation is written as st rather than sˆt. The empty sequence is

written as either ε or as nothing at all rather than [].
Typeset March 5, 2020 2

Algorithms: Correctness and Complexity. Slide set 10. Languages and Grammars c© Theodore Norvell

For a given grammar G = (A,N,P, nstart), define a

relation =⇒ on sequences as follows2

α =⇒ β

if and only if

α, β ∈ (N ∪A)∗ and

there are sequences γ, δ, θ ∈ (N ∪A)∗ and an n ∈ N

such that α = γnθ and β = γδθ and (n→ δ) ∈ P

If α =⇒ β, we say that we can derive β from α in one

step.

Each derivation step γnθ =⇒ γδθ replaces one

occurrence of some nonterminal symbol n with δ where

(n→ δ) ∈ P . For example the following are derivation

steps for G0
d d d =⇒ 8 d d

d d d =⇒ d 0 d

pn =⇒ (d d d) 	 d d d− d d d d

Thus each grammar defines a directed graph in which

the nodes are elements of (A ∪N)∗ and, for each α and

β, there is an edge from α to β iff α =⇒ β.

2 Using the notation of the rest of the course, we would write the last line of this

definition as “such that α = γˆ[n]ˆθ and β = γˆδˆθ and (n→ δ) ∈ P”.
Typeset March 5, 2020 3

Algorithms: Correctness and Complexity. Slide set 10. Languages and Grammars c© Theodore Norvell

A derivation is a finite path in this graph. We write

α
∗

=⇒ β to mean there is a derivation that starts at α and

ends at β. I.e. α
∗

=⇒ β means that we can transform α
into β via 0 or more derivation steps.

For example

pn
∗

=⇒ (d d 9) 	 d d d− d d 0 d

The language defined by a CFG (A,N, P, nstart) is the

set of sequences in α ∈ A∗ such that nstart
∗

=⇒ α.

For example, the language defined by G0 includes the

sequence

(7 0 9) 	 8 6 7− 5 3 0 9
To prove this, all we need to do is show 1 derivation (of

the many) from pn.

pn =⇒ (d d d) 	 d d d− d d d d =⇒ (d d 9) 	 d d d− d d d d

=⇒ (d d 9) 	 d d d− d d 0 d =⇒ (d 0 9) 	 d d d− d d 0 d

=⇒ (7 0 9) 	 d d d− d d 0 d =⇒ (7 0 9) 	 d d d− d d 0 d

=⇒ (7 0 9) 	 d d d− d d 0 9 =⇒ (7 0 9) 	 d d d− d 3 0 9

=⇒ (7 0 9) 	 8 d d− d 3 0 9 =⇒ (7 0 9) 	 8 6 d− d 3 0 9

=⇒ (7 0 9) 	 8 6 7− d 3 0 9 =⇒ (7 0 9) 	 8 6 7− 5 3 0 9

Typeset March 5, 2020 4

Algorithms: Correctness and Complexity. Slide set 10. Languages and Grammars c© Theodore Norvell

Another example. Let G1 = (A1, N1, P1, block)

• A1 = {+, ∗, /,−, (,), <, :=, if , then,while,do, else, end}∪
I ∪N , where I is a finite set of identifiers disjoint from

{if , then,while,do, else, end} and N is some finite

subset of N.

• N1 = {block, command, exp, comparand, term, factor}

• and P1 contains all of the following production rules3

block → ε

block → command block

command → i := exp for all i ∈ I

command → if exp then block else block end if

command → while expdo block endwhile

exp → comparand

exp → comparand < comparand

comparand → term

comparand → term + comparand

comparand → term− comparand

term → factor

term → factor ∗ term

term → factor / term

factor → n for all n ∈ N

factor → i for all i ∈ I

factor → (exp)

An example of a string in this language is

while i < n do j := j + i i := i + 1 end while

3 Recall that ε means an empty sequence.
Typeset March 5, 2020 5

Algorithms: Correctness and Complexity. Slide set 10. Languages and Grammars c© Theodore Norvell

We can show that

while i < n do j := j + i i := i + 1 end while

is in the language by showing a derivation.

block

=⇒ command block

=⇒ while expdo block endwhile block
...

=⇒ while i < n do j := j + i command block end while block

=⇒ while i < n do j := j + i i := exp block end while block

=⇒ while i < n do j := j + i i := comparand block · · ·

=⇒ while i < n do j := j + i i := term + comparand block · · ·

=⇒ while i < n do j := j + i i := factor + comparand block · ·

=⇒ while i < n do j := j + i i := i + comparand block · · ·

=⇒ while i < n do j := j + i i := i + term block · · ·

=⇒ while i < n do j := j + i i := i + factor block · · ·

=⇒ while i < n do j := j + i i := i + 1 block end while block

=⇒ while i < n do j := j + i i := i + 1 end while block

=⇒ while i < n do j := j + i i := i + 1 end while

Typeset March 5, 2020 6

Algorithms: Correctness and Complexity. Slide set 10. Languages and Grammars c© Theodore Norvell

Another way to show that a sequence is in a context free

language is with a parse tree.

Typeset March 5, 2020 7

Algorithms: Correctness and Complexity. Slide set 10. Languages and Grammars c© Theodore Norvell

Let’s define parse trees.

An ordered tree is a directed tree whose nodes are either

leaves (with no children) or branches whose (0 or more)

children are arranged in a sequence children(t)

A parse tree for a CFG (A,N, P, nstart) is a finite ordered

tree whose nodes are labelled with symbols from A ∪N ,

such that

• the root is labelled with nstart and

• each branch node is labelled with a nonterminal

symbol n ∈ N and has a sequence of children whose

labels form a finite sequence α such that (n→ α) ∈ P .

Given a parse tree t the sequence of leaves is given by

proc fringe(t)

if t is a leaf then return [label(t)]
else // t is a branch

var α := []
for u← children(t) do α := αˆfringe(u) end for

return α
end if

end fringe

Exercise: Show that, for any parse tree t, if fringe(t) = α,

then nstart
∗

=⇒ α.

Exercise: Show that if nstart
∗

=⇒ α, there is a parse tree t
such that α = fringe(t).

Thus, for any s ∈ A∗, s is in the language of G if and only

if there is a parse tree t where s = fringe(t).

Typeset March 5, 2020 8

Algorithms: Correctness and Complexity. Slide set 10. Languages and Grammars c© Theodore Norvell

Exercise: Design a CFG for the language of palindromes

in {0, 1}∗.

Exercise: Design a CFG for the language of valid boolean

expressions in {p, q, r,∧,∨,⇒,¬, (,)}∗

Exercise: Design a CFG for the language of valid C++

variable declarations in {int, ∗, [,], (,), ; , a, b, c, 0, 1}∗

where a, b, and c are identifiers. E.g.

int a(int, int∗);

declares a to be a function, while

int (∗b[10])();

declares b to be an array of 10 pointers to functions

returning int results.

Exercise: Look up the definition of regular language.

• Show that every regular language is a context-free

language.

• Show that some context free languages are not regular

languages.

Typeset March 5, 2020 9

