
Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

Time functions

Reading chapters 2 and 3 of Cormen et al.

Suppose we run a deterministic algorithm a on input x.

The time taken to finish is Timea(x).

But on what computer?

Let’s define a standard computer called a Random

Access Machine

• The RAM has an infinite store of memory location.

• Each location can hold an arbitrary integer.

• Uniform cost model: We’ll assume that each machine

instruction takes 1 unit of time.

• Machine instructions include

∗ store, fetch, indirect store, indirect fetch

∗ add, subtract, multiply, shift left, shift right, and,

bitwise and, or and not.

∗ branch, conditional branch, call, return

The exact details won’t matter because most of the

time we’ll consider only the asymptotic complexity (see

below).

Typeset March 9, 2020 1

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

Deficiencies of the RAM model

— Camelot!

—It’s only a model.

In some ways this model is rather unrealistic.

Real machines do not take the same amount of time for

each instruction. In particular a fetch instruction may take

10s of times more if the word is not in cache — millions

of times more if the word needs to be paged in.

Real memory locations are not infinitely big. For example

consider

p := 2
i := 0
while i < n do p := p× p; i := i + 1 end while

In time of about 13n + 4 it computes 2(2
n) . For large

n this is not accurate as, on any real-world machine,

we will need several words to represent p and each

multiplication will take time dependent on i (or n).

[One way around this problem is to charge

max(log2 |n| , 1) for each operation where n is the number

of bits involved. This logarithmic cost model is less

open to abuse, but in most ways less realistic than the

uniform cost model.]

Advantages of the RAM model

If not abused, the model gives reasonable results up to a

change of coefficients.

It is simple.
Typeset March 9, 2020 2

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

Worst-case, average-case, best-case

It is tedious to work out the time function for every input.

It is usually enough to know how time grows as a function

of input size.

Each input x is associated with a size Sa(x). Usually this

is the number of bits or words required to represent the

input.

For example, if we represent a graph (V,E) by an

adjacency list representation we need |V | + 2 |E| words,

provided the number of nodes and edges is not absurdly

large.

For some problems (e.g. matrix problems) it is

conventional to use other measures (e.g. the square root

of the number of words).

Let Ia(n) = {x | Sa(x) = n}

• Worst case time function

Ta(n) = max
x∈Ia(n)

Timea(x)

• Best case time function

BTa(n) = min
x∈Ia(n)

Timea(x)

• Average case time function (uniform distribution)

ATa(n) =
1

|Ia(n)|

∑

x∈Ia(n)

T imea(x)

• Average case time function (for distribution p)

ATa,p(n) =
∑

x∈Ia(n)

p(x)× Timea(x)

Typeset March 9, 2020 3

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

An experiment

I ran a sorting algorithm (VeryQuickSort) on a large

number of randomly generated arrays. More popular

times are more yellow.1

I also used arrays constructed to require the least or the

maximum2 amount of time.

1 Source available at https://github.com/theodore-norvell/VeryQuickSort

Only fetches, stores, and comparisons were counted. Input size is the array length.
2 The inputs that I constructed to represent the worst case don’t actually aways take the

most time. But they are very close to the worst.
Typeset March 9, 2020 4

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

Typeset March 9, 2020 5

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

Complexity of functions

Asymptotically similar functions

Two similar functions

Throughout this section we’ll consider functions f and

g in N→ R that are ultimately positive. (I.e. that for all

sufficiently large n, f(n) and g(n) are positive.)

Let f (n) = n2/2 + n log10 n+ 1000 and g(n) = n2

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

n

— n2 - - - n2/2 + n log10 n + 1000
As n approaches infinity, both f (n) and g(n) approach

infinity.

f is approaching infinity half as fast in the limit.

lim
n→∞

f(n)

g(n)
=

1

2

Two dissimilar functions

Now consider p(n) = 100n2 and q(n) = n3

Typeset March 9, 2020 6

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

5e+6

1e+7

1.5e+7

2e+7

2.5e+7

n

— n3 - - -100n2

We can see that, p is approaching infinity much slower

than q. Infinitely slower in the sense that

lim
n→∞

p(n)

q(n)
= 0

Definition of “asymptotically similar to”

When 0 < limn→∞ f(n)/g(n) <∞, we have the following

property:

• There are positive numbers a and b such that f (n) is

eventually trapped between a× g(n) and b× g(n)

Consider f(n) = n2/2 + n log10 n + 1000 and g(n) = n2.

Take a = 0.4 and b = 0.6.

Typeset March 9, 2020 7

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

0 20 40 60 80 100 120 140 160 180 200
0

5000

10000

15000

20000

n

red 0.4× n2 blue 0.6× n2 - - -

n2/2 + n log10 n + 1000

Eventually we have 0.4× g(n) < f (n) < 0.6× g(n)

Definition: Function f is asymptotically similar to g if

and only if there exist positive numbers a, b, and m such

that

∀n ∈ N · n > m⇒ a× g(n) < f (n) < b× g(n)

Notation: We write f � g to mean that f is

asymptotically similar to g.

[This definition has the advantage it works even when

the limit is not defined.]

Exercise: Show that, for any functions p and q, if there

are positive numbers a, b, and m such that

∀n ∈ N · n > m⇒ a× q(n) < p(n) < b× q(n)

there are also positive numbers a′, b′, and m′ such that

∀n ∈ N · n > m′ ⇒ a′ × p(n) < q(n) < b′ × p(n)

Typeset March 9, 2020 8

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

This shows that � is symmetric, I.e., for all functions f
and g, f � g if and only if g � f

Big-Theta notation

Suppose g is a function, the set of all functions that are

asymptotically similar to g is written Θ(g).

That is, for any f and g,

f � g if and only if f ∈ Θ(g)

[Some fishy notation: Rather than writing, for example,

“Θ(g) where g(n) = n3”,

we can use an anonymous function like this

“Θ(λn · n2)”.

But usually people simply write

“Θ(n2)”.

The n2 in this context is refering to the function λn · n2.
I.e., n is not a free variable here.]

Examples

From the experimental data for VeryQuickSort:

• It seems that the worst case time function is in Θ(n2).

Typeset March 9, 2020 9

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

• It seems that the average case time function is in

Θ(n log2 n)

• [[More examples]]

Some properties of Θ

Smaller terms don’t matter. For example

Θ(n2 + n) = Θ(n2)

Typeset March 9, 2020 10

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

The reason is that n ≺ n2, so eventually the n just

doesn’t matter.

Constant coefficients don’t matter. For example

Θ(3n2) = Θ(n2)

Conventionally we omit constant coefficients and write

Θ(c) as Θ(1) for c a constant.

Bases of logs don’t matter. For example

Θ(log2 n) = Θ(log2 10× log10 n) = Θ(log10 n)

Conventionally we write log n rather than logb n for a fixed

b.

Dominated functions are excluded

Θ(n) � Θ(n log n) � Θ(n2) � Θ(n3) � Θ(2n)

Typeset March 9, 2020 11

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

Some time-complexity results

Working out the asymptotic time-complexity of an

algorithm is usually quite simple.

Focus on the most common operation. If you can show

that an operation x is done fewer times than an operation

y, then you can just ignore y.

Selection sort

var i := 0
{ inv: 0 ≤ i ≤ n and the first i items of a are the i smallest

and are sorted }

while i < n do

var j := i + 1
var k := i
var m := a(k)
{ inv i ≤ k < j ≤ n and m = a(k) and m ≤∗ a {i, ..j}
}

while j < n do

if a(j) ≤ m then k := j m := a(k) end if

j := j + 1
end while

a(k) := a(i)
a(i) := m
i := i + 1

end if

A most common operation is j < n. This is executed∑n−1
i=0 (n− i) = n2+n

2 times. And n2+n
2 ∈ Θ(n2).

Typeset March 9, 2020 12

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

Merge sort

To avoid recursion, we can simply combine bigger and

bigger regions of the array.

procedure mergeSortNR(var a : array[T])

implements sort(a, 0, a.length)

var grain := 1
inv each of the segments a [0, ..grain] ,
a[grain, ..2× grain], a[2× grain, ..3× grain] etc on up

to and including a[
⌊
a.length
grain

⌋
× grain, ..a.length] is sorted

while grain < a.length do

var p := 0
while p < a.length do

val q := min(p + grain, a.length)
val r := min(q + grain, a.length)
merge(a, p, q, r)

p := r
end while

grain := grain × 2
end while

end mergeSortNR

Each merge operation is Θ(r − p) (best and worst case).

• So the inner loop is Θ(n) where n = a.length.

• The outer loop is executed 1 + �log2 n�

• So the best and worst (and hence average) time

complexity is Θ(n log n).

Comparing merge sort to selection sort

Typeset March 9, 2020 13

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

(Warning completely made-up numbers ahead)

Suppose, for the sake of argument, that, on a particular

real machine

TselectionSort(n) = 10n2 + n ns

and

TmergeSort(n) = 100n log n ns
10n2 + n

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

x

y

- - - merge — selection

0 20 40 60 80 100
0

20000

40000

60000

80000

1e+5

x

y

- - - merge — selection

QuickSort

procedure quickSort(var a : array[T]; p, r : Int)

implements sort(a, p, r)
if r − p > 1 then

val i := any value from {p, ..r}
val x := a(i)
var q
partition(a, p, r, x, q)

{ p ≤ q < r
everything in a{p, ..q}] is ≤ x
and a(q) = x
and everything in a {q + 1, ..r} is ≥ x }

quickSort(a, p, q)

quickSort(a, q + 1, r)
Typeset March 9, 2020 14

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

end if

end quickSort

Worst case

partition(a, p, r, x, q) takes Θ(r − p).

In the worst-case q = p (or q = r− 1). Then the partitions

that need to be done are on intervals of size n, n−1, ,

n−2, ... , 2. So the time is in

Θ(n) + Θ(n−1) + · · · + Θ(2)

= Θ(
n2 + n

2
− 1)

= Θ(n2)

Average case (Rough argument)

Consider only data comparisons (the most frequent

operation).

Assume i is chosen randomly and that partition is fair.

Partition requires r − p− 1 comparisons.

If you break a 1m stick in two, what is the expected length

of the longer piece?

On average the array will break into pieces of size
1
4 (r − p) and 3

4 (r − p) so the depth of the call tree is

about log4/3 n. If partition is implemented well, the

number of comparisons at each level is less than n. So

the total is less than n log4/3 n = n× lnn
ln 4/3

∼= 3.5n lnn.

You can see that this analysis is a bit pessmistic. We can

not rely on a consistant 25 : 75 split. Half the time it will

be better and half the time it will be worse. When it is
Typeset March 9, 2020 15

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

better (closer to 50 : 50) this helps a lot. When it is worse

(closer to 0 : 100), this does not hurt much.

[A more careful analysis gives the expected number of

comparisons as 2n lnn]

So quicksort takes average time Θ(n log n).

Typeset March 9, 2020 16

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

The robustness of asymptotic results

The exact speed that an algorithm takes depends on

• The details of how the algorithm is coded in a high-

level language

• The details of how that coding is translated to machine

code

• The properties of the processor (e.g. clock speed and

instructions per clock)

• Which input is used.

• Happenstance (e.g. cache misses)

By looking at asymptotic time complexity of the worst-

case (or average-case) time function on a RAM machine.

We get a result that

• Does not depend on the details of how the algorithm

is coded.

∗ But will depend on data-structure selection

• Does not depend on the details of the translation to

machine code

• Does not depend on the properties of any processor

• Does not depend on which input is used.

• Does not depend on happenstance.

In general, the Θ time complexity on a RAM model will be

the same as the Θ time complexity on any real hardware,

provided the real machine does not run out of space.

Typeset March 9, 2020 17

Algorithms: Correctness and Complexity. Slide set 11. Complexity of Functions. c© Theodore Norvell

(Most of) The over simplifications of the RAM model just

don’t matter, when combined with the over simplifications

of asymptotic complexity.

Typeset March 9, 2020 18

