Demystifying complexity

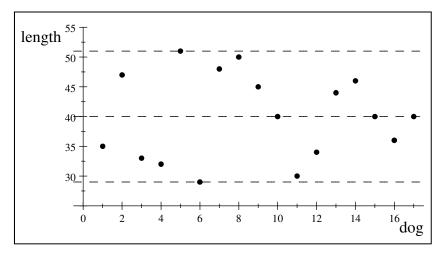
Measuring and uncertainty

- 3 things to measure
 - Worst case time complexity
 - Average case time complexity
 - Best case time complexity
- 3 ways to answer
 - Exact (or tight) bound (Θ)
 - Upper bound (*O*)
 - Lower bound (Ω)

3 and 3: it's a coincidence! Do not read anything into it.9 combinations.

An analogy: Suppose we measure 17 dogs.

The data is as follows (with max, min, and mean)



Let's define:

- The worst case to be the length of the longest dog.
- The best case to be the length of the shortest dog.
- The average case to be the length of the most typical dog.
- 9 questions we might ask about the data

	worst	best	average
	case?	case?	case?
What is an	100 or 51.1	100 or 29.1	100 or 40.1
upper bound on	or 51	or 29	or 40
the			
What is (a tight	51	29	40
bound on) the			
What is a lower	0 or 50.9 or	0 or 28.9 or	0 or 39.9 or
bound the	51	29	40

- To say that 100 is an upper bound for the worst case is to say that the worst case lies within $\{x \mid x \le 100\}$.
- To say that 50.9 is a lower bound for the worst case is to say that the worst case lies within the set 2

 $\{x \mid x \ge 50.9\}.$

• If we know that both these are true, then we know that the worst case lies within

 $\{x \mid 50.9 \le x \le 100\}$

• To say that 51 is (a tight bound on) the worst case is to say that the worst case lies within the set $\{x \mid x = 51\}$.

In complexity, it is the same, except we are comparing functions rather than numbers.

The analogy

- The room is analogous to a set of functions.
- Each length is analogous to a function.

Now considering just functions

• To say that n^3 is an upper bound on a function f is to say that it is in the set

$$\left\{f \mid f \preceq \left(\lambda n \cdot n^4\right)\right\}$$

• To say that n^2 is a lower bound on a function f is to say that it is in the set

$$\left\{ f \mid f \succeq \left(\lambda n \cdot n^2\right) \right\}$$

• If we know that n^2 is a lower bound and that n^4 is an upper bound, then we know

$$\left\{ f \mid \left(\lambda n \cdot n^2\right) \preceq f \preceq \left(\lambda n \cdot n^4\right) \right\}$$

i.e., that

$$f \in \Omega(n^2) \cap O(n^4)$$

• If we later learn that in fact $f \asymp (\lambda n \cdot n^3)$, then we know

$$f\in \Theta(n^3)$$

Building complexity and problem complexity

Now consider a whole building: In each room there are 17 dogs.

The (worst-case) complexity of a room is the length of its longest dog.

Define the *best room* to be the room with least (worst-case) complexity.

Call the (worst-case) complexity of the best room the building's (worst case) complexity.

If I examine one room, I can determine an upper bound on the complexity of the building.

If I examine 2 rooms, I can use the minimum of the two longest dogs to get a (possibly tighter) upper-bound.

But to find a lower bound on the complexity of the building I need to either exam every single room or use some reasoning about the nature of dogs and of rooms full of dogs.

The analogy

- The Building is analogous to a problem.
- Different rooms are analogous to different algorithms.
- The length the longest dog in a room is analogous to the worst-case time function of the algorithm.