
Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Graph Search

A problem: We have a graph G = (V,E) and a node

s ∈ V .

• Write u→ v if node u is reachable in one step. “v is a

successor of u”.

∗ If the graph is directed u → v means u = ←−e and

v = −→e for some e ∈ E

∗ If the graph is undirected u→ v means {u, v} =←→e
for some e ∈ E

• Write u
∗
→ v to mean there is a path from u to v, i.e. v

is reachable from u.

∗ I.e. there is a sequence of one or more nodes

[v0, v1, ..., vn] such that

u = v0→ v1→ ...→ vn = v

Typeset November 11, 2016 1

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Reachability: Given a graph G and a node s, find all

nodes reachable from s.

Use the following colour scheme

• H Black nodes. Found and processed. (Handled)

•W Grey nodes. Found but not processed yet. (Work

set)

• White nodes. Not yet found.

The ‘flood’ strategy.

• Colour s grey and all other nodes white.

• Until there are no grey nodes:

∗ Pick a grey node u.

∗ Colour u black.

∗ Colour all of u’s white successors grey.

When there are no more grey nodes, all black nodes are

reachable and all white nodes are not.

Invariants:

• LI1: All black or grey nodes are reachable.

• LI2: All successors of a black node are black or grey.

• LI3: s is black or grey.

If LI2, and LI3 are true and, furthermore, no node is grey,

then all nodes reachable from s must be black.

If LI1, LI2, and LI3 are true and no node is grey, the black

nodes are exactly the nodes reachable from s.

Typeset November 11, 2016 2

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

The flood algorithm for reachability

Inputs: a graph G = (V,E) and a node s
Output: a setH ⊆ V
Precondition s ∈ V
PostconditionH = {v ∈ V | s

∗
→ v}

H := ∅ // Handled (black) nodes

varW := {s} // Work set (grey nodes)

invariant

• LI1: All nonwhite nodes are reachable:

∀v ∈ H ∪W · s
∗
→ v

• LI2: If u is black, all its successors have been

found: ∀u ∈ H, v ∈ V · (u→ v)⇒ (v ∈ H ∪W)

• LI3: s is grey or black: s ∈ H ∪W

• LI4: H ∩W = ∅

whileW �= ∅ do

val u ∈W // let u be any value inW
W :=W − {u} ; H := H ∪ {u}
for v | u→ v do

if v /∈ H ∪W thenW :=W ∪ {v} end if

end for

end while

Typeset November 11, 2016 3

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Does it work?

Recall the invariant is

• LI1: All nodes found are reachable ∀v ∈ H ∪W ·s
∗
→ v

• LI2: If u has been handled, all its successors

have been found ∀u ∈ H, v ∈ V · (u→ v) ⇒
(v ∈ H ∪W)

• LI3: s is grey or black s ∈ H ∪W .

• LI4: H ∩W = ∅

We need to show:

• Termination: |V | − |H| is a variant.

• The invariant is established: Exercise.

• The invariant is preserved: Exercise

• The postcondition H = {v ∈ V | s
∗
→ v} is established

by the loop terminating:

∗ From LI1 and W = ∅, ∀v ∈ H · s
∗
→ v and so

H ⊆ {v ∈ V | s
∗
→ v}

∗ It remains to show {v ∈ V | s
∗
→ v} ⊆ H.

· Let v be any reachable node s
∗
→ v

· So, there is a path s = v0 → v1 → ...→ vn = v

· By LI3 and W = ∅, s is in H.

· By LI2 and W = ∅, ∀u ∈ H, v ∈ V · (u→ v) ⇒
v ∈ H

· So, by induction, each vi is in H and v ∈ H QED

Typeset November 11, 2016 4

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Leaving a trail of bread crumbs

We will mark each node reached with the node that was

used to reach it.

LI5: For any black or grey node u there is a path from s,

s = π(...π(
︸ ︷︷ ︸
≥0

u)...)→ ...→ π(π(u))→ π(u)→ u

all nodes of which, apart from possibly the last, are black.

Use a function valued state variable π : V → V ∪ {null}
(π for πarent). When a node turns grey, update π

The flood algorithm for reachability with paths

for v ← V do π(v) := null end for

H := ∅ varW := {s}
{ Inv: LI1and LI2 and LI3 and L4 and LI5 }

whileW �= ∅ do

val u ∈W // let u be any value inW
W :=W − {u} H := H ∪ {u}
for v | u→ v do

if v /∈ H ∪W thenW :=W ∪ {v} ; π(v) := u end if

end for end while

The π function defines a tree with s at its root.

It has the result of classifying each reachable edge as a

• Tree edge. Tree edges form a tree defined by π

• Back edge. From descendant to ancestor.

• Forward edge. From ancestor to descendant. (Other

than tree edges.)

• Cross edge. All others

Typeset November 11, 2016 5

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Tracking the colour

To make expressions like v /∈ H ∪W faster, we can track

the colour of each node with an array colour with a linking

invariant that, for all v ∈ V ,

(colour(v) = grey⇔ v ∈W)
∧ (colour(v) = black⇔ v ∈ H)
∧ (colour(v) = white⇔ v /∈ H ∪W)

H is no longer needed.

W is still useful for finding the next node to process.

• LI1: ∀v · colour(v) ∈ {grey, black} ⇒ s
∗
→ v

• LI2: ∀u, v· colour(u) = black ∧ (u→ v)
⇒ colour(v) ∈ {grey, black}

• LI3: colour(s) ∈ {grey, black}

• LI4: ∀v · colour(v) = grey⇔ v ∈W

The flood algorithm for reachability with colour array

for v ← V do π(v) := null colour(v) := white end for

varW := {s}
colour(s) := grey
{ Inv: LI1and LI2 and LI3 and L4 and LI5 }

whileW �= ∅ do

val u ∈W // let u be any value inW
W :=W − {u}
colour(u) := black
for v | u→ v do

if colour(v) = white then

W :=W ∪ {v} ; colour(v) := grey
π(v) := u end if end for end while

Typeset November 11, 2016 6

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Data refiningW

We can keep track of the set of grey nodes with any kind

of collection data structure: Set, FIFO queue, stack.

A FIFO queue Q

Replace W with a FIFO queue Q

LI4 becomes ∀v · colour(v) = grey ⇔ Q.contains(v)

Nodes are visited in a “breadth” first order.

Nodes closer to s are handled earlier.

Each path found has as few edges as possible.

Breadth first search

for v ← V do π(v) := null colour(v) := white end for

var Q : Queue := new Queue
Q.add(s)
colour(s) := grey
{ Inv: LI1and LI2 and LI3 and L4 and LI5 }

while ¬Q.isEmpty do

val u := Q.remove()
colour(u) := black
for v | u→ v do

if colour(v) = white then

Q.add(v) ; colour(v) := grey
π(v) := u

end if

end for

end while

Typeset November 11, 2016 7

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Efficiency

At this point, we can see that, if we can quickly find the

successors of a node, then processing each edge is

Θ(1). Each edge is processed twice. Hence Θ(|V |+ |E|).
An adjacency list representation for the graph will do the

trick.

Typeset November 11, 2016 8

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

A LIFO stack S

LI4 becomes ∀v · colour(v) = grey ⇔ S.contains(v)

If a grey node is found a second (etc) time, it is moved to

the top of the stack.

Depth-first search

for v ← V do π(v) := null colour(v) := white end for

var S : Stack := new Stack
S.push(s)
colour(s) := grey
{ Inv: LI1and LI2 and LI3 and L4 and LI5 }

while ¬S.isEmpty do

val u := S.pop()
colour(u) := black
for v | u→ v do

if colour(v) �= black then // Note change!

if colour(v) = grey then

// Move v to the top of the stack.

S.remove(v) end if

S.push(v) ; colour(v) := grey
π(v) := u // If v is grey, overwrites earlier

assignment!

end if

end for

end while

We need to implement the stack so that an arbirary node

can be removed in constant time. A doubly-linked list

implemented with arrays will do it.

Typeset November 11, 2016 9

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

This is a depth-first search. It follows paths leading away

from s as far as possible before backtracking to find other

paths.

Typeset November 11, 2016 10

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Dijkstra’s algorithm

Let’s revisit the breadth first search

Breadth first search

for v ← V do π(v) := null colour(v) := white end for

var Q : Queue := new Queue
Q.add(s) ; colour(s) := grey
{ Inv: LI1and LI2 and LI3 and L4 and LI5 }

while ¬Q.isEmpty do

val u := Q.remove()
colour(u) := black
for v | u→ v do

if colour(v) = white then

Q.add(v) ; colour(v) := grey
π(v) := u end if end for end while

This finds the shortest path from s to each reachable

node, counting each edge as costing 1.

Suppose that each edge e is associated with a

nonnegative distance w(←−e ,−→e).

We want to find the shortest path from s to each

reachable node.

Applications are ubiquitous, e.g. in robotics, navigation,

and planning.

Let t(u) be the length of the shortest path from s to u.

t(u) = min
p|s

p
→u

distance(p)

where s
p
→ u means that p is a path from s to u and

distance([u0, e0, u1, e1, ..., en−1, un]) = Σi∈{0,..n}w(ui, ui+1)

Typeset November 11, 2016 11

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Use array item d(v) to track the distance of the shortest

path from s to v handled so far. (I.e., that either consists

of all black nodes, or is all black except for the final item.)

Since we stop as soon as all reachable nodes are black,

we need

• DI1: For each black node, v, d(v) = t(v).

To ensure that the grey node with the smallest d value

also has the true distance, we need

• DI2: For each grey node, v, d(v) is the distance of

some path from s to v.

We data refine W with a priority queue PQ.

• A priority queue associates each item with a priority

value.

• PQ.add(v, x) adds node v with priority x or updates

the priority of v to x.

• PQ.removeLeast() removes and returns a node with

the lowest priority.

Invariants about PQ

• LI4: ∀v · colour(v) = grey⇔ PQ.contains(v)

• DI3: The priority of each node v on PQ is d(v).

Typeset November 11, 2016 12

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

• DI1: For each black node, v, d(v) = t(v).

• DI2: For each grey node, v, d(v) is the distance of

some path from s to v.

• DI3: The priority of each node v on PQ is d(v).

As with DFS, grey nodes may be found more than once,

so we might need to improve a d(v)
Dijkstra’s algorithm

for v ← V do

π(v) := null colour(v) := white d(v) :=∞
end for

var PQ : PriorityQueue := new PriorityQueue
PQ.add(s, 0)
colour(s) := grey d(s) := 0
{ Inv: LI1 and ... and LI5 and DI1 and DI2 and DI3 }

while ¬PQ.isEmpty do

val u := PQ.removeLeast()
{ u has the smallest d value of all grey nodes }

colour(u) := black
for v | u→ v do

if d(v) > d(u) + w(u, v) then

{ v is not black, by DI1 }

d(v) := d(u) + w(u, v)
PQ.add(v, d(v)) ; colour(v) := grey
π(v) := u

end if end for end while

Note: when PQ.add(v, d(v)) is executed, v may already

be on the queue (grey). In this case, its priority is

updated.
Typeset November 11, 2016 13

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Typeset November 11, 2016 14

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

We need to see that the invariants are preserved.

• DI1: For each black node, v, d(v) = t(v).

• DI2: For each grey node, v, d(v) is the distance of

some path from s to v.

Lemma: If DI1 and DI2 hold, then, for any w and any

optimal path from s to w, the first grey node v on the path

(if any) has d(v) = t(v).

Proof. Let v be grey and the first grey node on some

optimal path. If v is s, then d(v) = 0 = t(s).

If v is not s, then s is black. Since the successor of a

black node must be black or grey, the first grey node on

any path starting at s will be preceded by a black node.

Let u be the predecesor of v on the path, as u is black,

by DI1 d(u) = t(u).

Furthermore, when u was visited, the edge from u to v
would have been considered and so d(v) ≤ t(u)+w(u, v).

By DI2, d(v) ≥ t(v), so d(v) = t(u) + w(u, v), and, since

(u, v) is on an optimal path, t(v) = t(u) + w(u, v).

So d(v) = t(v).

DI1 is preserved. Suppose that DI1 and DI2 hold, but,

at line colour(u) := black, u does not have a “true value”

(t(u) < d(u)) i.e. DI1 is about to be broken.

Then there is an optimal path p′ from u to s with a shorter

distance than d(u).

Consider the first grey node u′ on this optimal path. By

the lemma, it must be that d(u′) = t(u′)

Typeset November 11, 2016 15

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Since u′ = u or u′ is before u on an optimal path,

t(u′) ≤ t(u). Altogether

d(u′) = t(u′) ≤ t(u) < d(u)

But this is impossible since u′ would have priority over u
and u wouldn’t have been picked on the previous line.

DI2 is preserved. Exercise.

Implementation note

The colour array is no longer being used. We can demote

it to a ghost variable.

Animation

See the Algorithms Animated site.

Other algorithms

There are many other algorithms for finding shortest

paths. E.g. the Bellman-Ford algorithm and Floyd’s

algorithm.

Other problems

We can replace > and + with other suitable operators.

E.g. If weights represent (independent) probabilities of

success, replace

> with < ,

+ with ×,

0 with 1, and

∞ with 0
to find the most reliable path.

Typeset November 11, 2016 16

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Efficiency

Assume the priority queue operations add and remove

can be done in Θ(log n) time where n is the size of the

queue:

• We may need Θ(|V |) items on the queue, so the

algorithm takes Θ(|E| × log |V |) time.

Dijkstra’s algorithm has the property that it can be

modified to print out all the nodes in order of their

distance from s. Can you show that any shortest path

algorithm with this property takes Ω(|E| × log |V |) time?

Typeset November 11, 2016 17

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Priority Queue Representation

An efficient priority queue can be built from a balanced

heap.

• A heap is a labelled binary tree in which each node is

labeled with a data item and a priority

• The priority of each parent is less than or equal to the

priority of its children.

• We store the items and priorities in the first n items of

an array a. Invariant: ∀i ∈ {0, ..n} ·

(leftExists(i) ⇒ a(i).priority ≤ a(left(i)).priority)
∧ (rightExists(i) ⇒ a(i).priority ≤ a(right(i)).priority)

• E.g.,

• Note: Only the priorities are shown in the pictures.

• We also need a function mapping each item to its

location in a. If each item is represented by a unique

small number in {0, ..m}, we can use an array loc so

that

∀i ∈ {0, ..n} · loc(a(i).item.number) = i

∀j ∈ {0, ..m} · loc(j) = −1 ∨ a(loc(j)).item.number = j

Typeset November 11, 2016 18

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Array representation

We can build a balanced heap of size n by using the first

n items of an array a.

• Use breadth-first numbering.

• The root is at location 0.

• Invariant: ∀i ∈ {0, ..n} ·

left(i) = 2i + 1
∧ right(i) = 2i + 2
∧ leftExists(i) = (2i + 1 < n)
∧ rightExists(i) = (2i + 2 < n)

• In a picture

• The height (counting branches) of the tree is �log2 n�,
which is in Θ(log n)

Typeset November 11, 2016 19

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Inserting into a heap

Put the new item at a(n); increment n. Then swap the

element upwards until its priority is larger or equal to its

parent’s (or at the root) (+ corresponding changes to loc)

E.g.

The worst case is Θ(log n)

Reducing priority of an item

Reduce the priority and then swap it upwards, just as in

insert.
Typeset November 11, 2016 20

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Removing the lowest priority item

• Decrement n; then a(0) := a(n) (+ corresponding

changes to loc).

• Swap the item now at the root down until its priority is

less than or equal to that of all its children.

∗ Swap only with a lowest child.

∗ The number of swaps is limited to the height of the

tree. Θ(log n)

Typeset November 11, 2016 21

Algorithms: Correctness and Complexity. Slide set 13. Graph Search c© Theodore Norvell

Another application of heaps

Heap Sort:

Input: an array a such that a.length > 0
Output: the same array

Postcondition a is a sorted permutation of a0
var n := 1
inv a is a permutation of a0 and a[0, ..n] is a heap

while n < a.length do

floatUp(n) n := n + 1
end while

inv a is a permutation of a0 and a[0, ..n] is a heap.

inv a {0, ..n} ≤∗ a {n, ..a.length}
inv a[n, ..a.length] is sorted largest to smallest

while n > 0 do

n := n− 1 swap(a, 0, n) sinkDown(0)

end while

where

• floatUp restores the heap invariant by swapping an

item upward from a leaf position

• sinkDown restores the heap invariant by swapping an

item downward from the root position.

Since floatUp and sinkDown are both Θ(log n) time

(where n is the size of the heap), Heap Sort is Θ(n log n)
time (where n is the size of the array).

(No loc array is needed. We only needed it before to

reduce the priority of an item.)

Typeset November 11, 2016 22

