
Algorithms: Correctness and Complexity. Slide set 14. More Graph Search c© Theodore Norvell

A*

One pair, single-source, vs all pairs shortest

path problem

One pair: We need the shortest path from s to f

Single source: We need the shortest path from s to all

other nodes

All pairs: We need the shortest path between all pairs of

nodes.

Dijkstra’s algorithm solves the single source problem.

• We can use it to solve the all-pairs problem by

repeating it for each node — but there are better

methods.

• We can use it to solve the one pair problem.

∗ Start at s . Stop as soon as f is black.

More information

Now suppose

• nodes represent points on a 2-D plane —e.g. locations

on a map— or in a 3D space (e.g. rooms in a building)

• the edge weights are distances.

These edge weights need not be Euclidean (as the crow

flies) distances (

√
(x0 − x1)

2 + (y0 − y1)2 ) (Perhaps the

road is not straight).

Typeset November 11, 2016 1



Algorithms: Correctness and Complexity. Slide set 14. More Graph Search c© Theodore Norvell

No worm holes. We can assume however that

t(u, v) ≥ h(u, v) where

h(u, v) =

√
(xu − xv)

2 + (yu − yv)2

and t(u, v) is the length of the shortest path from u to v.

Dijkstra’s algorithm’s search spreads out in all directions

equally.

• However it seems intuitively sensible to search first

nodes that are “in the right direction”.

• E.g. if I use Dijkstra’s algorithm to find the shortest

driving route from Toronto to Montreal, it will visit

Waterloo before Kingston.

A* is a variation on Dijkstra’s that makes use of the

heuristic “try nodes that seem to be in the right direction

earlier”.

A*

The problem: find a shortest path from s to f in a graph

G = (V,E) using a heuristic function h that estimates

the distance to f . I.e. h(v) is an estimate of the distance

from v to f .

Triangle inequality: We require that for any edge (u, v),

h(u) ≤ w(u, v) + h(v) (1)

Suppose there is a path p from u to v with a cost of w(p).
By induction on path length we have

h(u) ≤ w(p) + h(v) (2)

Typeset November 11, 2016 2



Algorithms: Correctness and Complexity. Slide set 14. More Graph Search c© Theodore Norvell

For the driving application, the Euclidean distance makes

a suitable heuristic.

Recall that t(u) is the minimal cost of travelling from s to

u.

We just use Dijkstra’s algorithm, except:

• We use t(u) + h(u) in place of t(u).

• Thus d(u) approaches t(u) + h(u).
∗ We only turn a node u black when d(v) = t(v)+h(v).

• We stop when f is black and hence (if h(f ) = 0)

d(v) = t(v).

Typeset November 11, 2016 3



Algorithms: Correctness and Complexity. Slide set 14. More Graph Search c© Theodore Norvell

Thus the invariants (replacing DI1 and DI2) are

• A∗I1 : For each black node, v, d(v) = t(v) + h(v).

• A∗I2 : For each grey node, v, d(v)− h(v) is the length

of some path from s to v.

for v ← V do

π(v) := null colour(v) := white d(v) :=∞
end for

var PQ : PriorityQueue := new PriorityQueue
PQ.add(s, h(s)) colour(s) := grey d(s) := h(s)
while ¬PQ.empty() and colour(f) 
= black do

val u := PQ.removeLeast()
{ u has the smallest d value of all grey nodes }

colour(u) := black
for v | u→ v do

val d := d(u)− h(u) + w(u, v) + h(v)
if d(v) > d then

{ v is not black }

d(v) := d PQ.add(v, d) π(v) := u
colour(v) := grey end if end for end while

At termination: If colour(f ) = black, d(f) = t(f ) + h(f) =
t(f ) is the length of a shortest path from s to f and

s, . . . , π(π(f)), π(f ), f

is such a path. If colour(f ) 
= black then there is no path

from s to f .

Typeset November 11, 2016 4



Algorithms: Correctness and Complexity. Slide set 14. More Graph Search c© Theodore Norvell

Here is a simple example. Dijkstra’s algorithm visits:

Toronto, Waterloo, Sarnia, Kingston, Montreal. It must

visit Sarnia before Kingston, since there could be a

Sarnia-Montreal edge of length 1km that would beat any

path through Kingston.

A* visits Kingston, 2nd. At that time Montreal and

Waterloo are grey. The d value for Montreal is 610 and

for Waterloo 707. So Montreal is visited third and the

algorithm stops.

Typeset November 11, 2016 5



Algorithms: Correctness and Complexity. Slide set 14. More Graph Search c© Theodore Norvell

Here is an example. Try hand simulating the algorithm

on it.

Here is what I got.

Typeset November 11, 2016 6



Algorithms: Correctness and Complexity. Slide set 14. More Graph Search c© Theodore Norvell

• A∗I1 : For each black node, v, d(v) = t(v) + h(v).

• A∗I2 : For each grey node, v, d(v)− h(v) is the length

of some path from s to v.

Lemma: If A*I1 and A*I2 hold, then, for any w and any

optimal path from s to w, the first grey node v on the path

(if any) has d(v) = t(v) + h(v).

Proof. If v is s, then d(v) = h(s) = t(s) + h(s).

If v is not s, the predecesor u of v on the path is black

and so (by A*I1) d(u) = t(u) + h(u).

Furthermore, when u was visited, the edge from u

to v would have been considered and so d(v) ≤
d(u)−h(u)+w(u, v)+h(v), or d(v) ≤ t(u)+w(u, v)+h(v).

Since (u, v) is on an optimal path, t(v) = t(u) + w(u, v).
So d(v) ≤ t(v) + h(v).

By AI*2, d(v)− h(v) is the length of some actual path, so

d(v)− h(v) ≤ t(v), and, thus, d(v) ≥ t(v) + h(v).

So d(v) = t(v) + h(v).

Typeset November 11, 2016 7



Algorithms: Correctness and Complexity. Slide set 14. More Graph Search c© Theodore Norvell

• A∗I1 : For each black node, v, d(v) = t(v) + h(v).

• A∗I2 : For each grey node, v, d(v)− h(v) is the length

of some path from s to v.

• Lemma: If A*I1 and A*I2 hold, then, for any w and any

optimal path from s to w, the first grey node v on the

path (if any) has d(v) = t(v) + h(v).

A*I1 is preserved. Suppose that A*I1 and A*I2 hold, but,

at line colour(u) := black, d(u) does not reflect a shortest

path (t(u) + h(u) < d(u)) i.e. A*I1 is about to be broken.

Consider the first grey node u′ on an optimal path p from

s to u.

By the lemma, it must be that d(u′) = t(u′) + h(u′)

Consider the part of p that runs from u′ to u; call it p′;

by the optimality of p, we have, t(u) = t(u′) + w(p′), or

w(p′) = t(u)− t(u′).

By triangle inequality (2), h(u′) ≤ w(p′) + h(u), so

h(u′) ≤ t(u)− t(u′) + h(u), or h(u′) + t(u′) ≤ t(u) + h(u).

All together we have.

d(u′) = t(u′) + h(u′) ≤ t(u) + h(u) < d(u)

But this is impossible since u′ would have priority over u

and so u wouldn’t have been picked on the previous line.

A*I2 is preserved. Exercise.

Typeset November 11, 2016 8



Algorithms: Correctness and Complexity. Slide set 14. More Graph Search c© Theodore Norvell

Why A* works.

We will try to pick h values that break the algorithm.

Suppose the algorithm is in the following state and about

to turn e black, even though the best route to it has not

yet been considered. I.e. e is ahead (or tied with) b and c

in the p.q.

From the constraint on the heuristic (1), we know

h(b) ≤ w(b, e) + h(e) and so h(b) ≤ 13.

But then d(b) ≤ 20 and so b will be ahead of e in the p.q.

Contradiction.

From the constraint on the heuristic (1), we know

h(c) ≤ w(c, d) + w(d, e) + h(e) and so h(c) ≤ 12.

But then d(c) ≤ 20 and so c will be ahead of e in the p.q.

Contradiction, again.

Typeset November 11, 2016 9



Algorithms: Correctness and Complexity. Slide set 14. More Graph Search c© Theodore Norvell

The constraint

h(u) ≤ w(u, v) + h(v)

on h makes it impossible to pick h values that cause

nodes to turn black before a best route to them has been

found. Thus when f turns black we have found the best

path to it.

If the heuristic is not conservative (does not obey the

constraint), A* can still be used, but it may fail to find the

shortest path.

E.g. if we want to minimize gas consumption, a

good heuristic is great-circle distance * average gas

consumption per km. However this may fail to find a

route that is all down-hill. (A conservative heuristic would

be great-circle distance * minimum gas consumption per

km)

At an extreme if the h values are so large that they

swamp out the weights, the algorithm degenerates to a

“best first search”.

• Best first d(v) = h(v)

• Dijkstra d(v) = the weight of the best path from s to v

found so far.

• A* d(v) = h(v)+ the weight of the best path from s to v

found so far.

Typeset November 11, 2016 10


