A*®

One pair, single-source, vs all pairs shortest
path problem

One pair: We need the shortest path from s to f

Single source: We need the shortest path from s to all
other nodes

All pairs: We need the shortest path between all pairs of
nodes.

Dijkstra’s algorithm solves the single source problem.

e We can use it to solve the all-pairs problem by
repeating it for each node — but there are better
methods.

e We can use it to solve the one pair problem.
x Start at s . Stop as soon as f is black.

More information

Now suppose

e nodes represent points on a 2-D plane —e.g. locations
on a map— or in a 3D space (e.g. rooms in a building)

e the edge weights are distances.
These edge weights need not be Euclidean (as the crow

flies) distances (\/(xo —21)° + (yo — y1)?) (Perhaps the
road is not straight).

No worm holes. We can assume however that
t(u,v) > h(u,v) where

h(u,v) = \/(:Eu —2,)" + (Yo —)2
and t(u, v) is the length of the shortest path from « to v.
Dijkstra’s algorithm’s search spreads out in all directions
equally.
e However it seems intuitively sensible to search first
nodes that are “in the right direction”.

e E.g. if | use Dijkstra’s algorithm to find the shortest
driving route from Toronto to Montreal, it will visit
Waterloo before Kingston.

A* is a variation on Dijkstra’s that makes use of the
heuristic “try nodes that seem to be in the right direction
earlier”.

AF

The problem: find a shortest path from s to f in a graph
G = (V, E) using a heuristic function h that estimates
the distance to f. l.e. h(v) is an estimate of the distance
from v to f.

Triangle inequality: We require that for any edge (u, v),

h(u) < wlu, v) + h(v) (1)
Suppose there is a path p from u to v with a cost of w(p).
By induction on path length we have

h(u) < w(p) + h(v) (2)

For the driving application, the Euclidean distance makes
a suitable heuristic.

Recall that t(u) is the minimal cost of travelling from s to
Uu.
We just use Dijkstra’s algorithm, except:

e We use t(u) + h(u) in place of t(u).

e Thus d(u) approaches t(u) + h(u).

+ We only turn a node u black when d() t(v)+ ().

e We stop when f is black and hence (if i(f)

d(v) = t(v).

Thus the invariants (replacing DI1 and DI2) are
e A*I1 : For each black node, v, d(v) = t(v) + h(v).

e A*I12 : For each grey node, v, d(v) — h(v) is the length
of some path from s to v.

forv < V do
m(v) :==null colour(v) := white d(v) = o0
end for
var P() : PriorityQueue := new PriorityQueue
PQ.add(s, h(s)) colour(s) := grey d(s) := h(s)
while —PQ.empty() and colour(f) # black do
val u := P(Q).removeLeast()
{ u has the smallest d value of all grey nodes }
colour(u) := black
for v | u — v do
val d := d(u) — h(u) + w(u,v) + h(v)
if d(v) > d then
{ v 1s not black }
dlv):=d PQ.add(v,d) m(v) =u
colour(v) := grey end if end for end while
At termination: If colour(f) = black, d(f) = t(f) + h(f) =
t(f) is the length of a shortest path from s to f and

S, .. m(@(f)), 7(f), f
is such a path. If colour(f) # black then there is no path

from s to f.

Here is a simple example. Dijkstra’s algorithm visits:
Toronto, Waterloo, Sarnia, Kingston, Montreal. It must
visit Sarnia before Kingston, since there could be a
Sarnia-Montreal edge of length 1km that would beat any
path through Kingston.

h=750

185 /=597 h=0

678

Sarnia

Waterloo ontreal

h=506

Toronto

d=506

Kingston

h=750

Sarnia
Waterloo
d=597+110
=707

Toronto
d=506
Kingston
d =269+300
=569

A* visits Kingston, 2nd. At that time Montreal and
Waterloo are grey. The d value for Montreal is 610 and
for Waterloo 707. So Montreal is visited third and the
algorithm stops.

Here is an example. Try hand simulating the algorithm
on it.

Heuristic estimates

of the distance to t Actual lengths of edges

Here is what | got.

44226 3+4=7 -
5 5 146=7

0+4=6 145=6

heuristic distance to t + best distance found from s
= best estimated distance from s to t via this node

e A*I1 : For each black node, v, d(v) = t(v) + h(v).
e A*I12 : For each grey node, v, d(v) — h(v) is the length
of some path from s to v.

Lemma: If A*I1 and A*I2 hold, then, for any w and any

optimal path from s to w, the first grey node v on the path

(if any) has d(v) = t(v) + h(v).

Proof. If v is s, then d(v) = h(s) = t(s) + h(s).

If v is not s, the predecesor u of v on the path is black

and so (by A*1) d(u) = t(u) + h(u).

Furthermore, when u was visited, the edge from u

to v would have been considered and so d(v) <

d(u)—h(u)+w(u,v)+h(v), ordv) < t(u)+w(u,v)+h(v).

Since (u,v) is on an optimal path, t(v) = t(u) + w(u, v).

So d(v) < t(v) + h(v).

By AlI*2, d(v) — h(v) is the length of some actual path, so
d(v) — h(v) < t(v), and, thus, d(v) > t(v) + h(v).

So d(v) = t(v) + h(v).

e A*I1 : For each black node, v, d(v) = t(v) + h(v).

e A*I12 : For each grey node, v, d(v) — h(v) is the length
of some path from s to v.

e Lemma: If A*I1 and A*I2 hold, then, for any w and any

optimal path from s to w, the first grey node v on the
path (if any) has d(v) = t(v) + h(v).

A*I1 is preserved. Suppose that A*I1 and A*I2 hold, but,
at line colour(u) := black, d(u) does not reflect a shortest
path (t(u) + h(u) < d(u)) i.e. A*I1 is about to be broken.

Consider the first grey node «' on an optimal path p from
s 10 w.
By the lemma, it must be that d(u') = t(v') + h(u)
Consider the part of p that runs from «' to u; call it p/;
by the optimality of p, we have, t(u) = t(u') + w(p’), or
w(p) = t(u) — t(u).
By triangle inequality (2), h(u') < w(p’) + h(u), so
h(u') <t(u) —t(u') 4+ h(u), or h(v') + t(u') < t(u) + h(u).
All together we have.

du') = t(u") + h(u) < t(u) + h(u) < d(u)
But this is impossible since ' would have priority over u
and so u wouldn’t have been picked on the previous line.

A*12 is preserved. Exercise.

Why A* works.
We will try to pick A values that break the algorithm.

Suppose the algorithm is in the following state and about
to turn e black, even though the best route to it has not
yet been considered. l.e. e is ahead (or tied with) b and ¢
in the p.q.

From the constraint on the heuristic (1), we know
h(b) < w(b,e) + h(e) and so h(b) < 13.

But then d(b) < 20 and so b will be ahead of e in the p.qg.
Contradiction.

From the constraint on the heuristic (1), we know
h(c) < w(c,d) +w(d,e) + h(e) and so h(c) < 12.

But then d(c) < 20 and so c will be ahead of e in the p.q.
Contradiction, again.

The constraint

h(u) < w(u,v) + h(v)
on h makes it impossible to pick i values that cause
nodes to turn black before a best route to them has been
found. Thus when f turns black we have found the best
path to it.

If the heuristic is not conservative (does not obey the
constraint), A* can still be used, but it may fail to find the
shortest path.

E.g. if we want to minimize gas consumption, a
good heuristic is great-circle distance * average gas
consumption per km. However this may fail to find a
route that is all down-hill. (A conservative heuristic would
be great-circle distance * minimum gas consumption per
km)

At an extreme if the h values are so large that they
swamp out the weights, the algorithm degenerates to a
“pest first search”.

e Best first d(v) = h(v)

e Dijkstra d(v) = the weight of the best path from s to v
found so far.

e A* d(v) = h(v)+ the weight of the best path from s to v
found so far.

