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Greedy Algorithms

Greed, for lack of a better word, is good. Greed is

right. Greed works. — Gordon Gekko

If only things were so simple.

As we will see, sometimes greed works and sometimes

it doesn’t.

Making change

(All variables are of type N or set of N.)

Input: An amount of money t in cents. A set of coins S,

each of which is a quarter, a nickel, or a penny.

∀x ∈ S · value(x) ∈ {1, 5, 25}

Solutions: Subsets C of S such that∑

x∈C

value(x) = t

Optimality: We want to minimize the total number of coins

output, |C|.
Output: An optimal solution, if there is one. Otherwise a

message.
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An algorithm

var g := t // Remaining amount of money

var C := ∅ // The Committed set. Coins chosen

var R := S // The Remaining set. Coins not yet chosen nor

rejected

inv: C ∪R ⊆ S ∧ C ∩R = ∅ ∧ g = t−
∑

x∈C value(x)
inv: If a solution exists, an optimal solution is reachable

// I.e. if a solution exists, there is an optimal solution that

// * includes all coins in C and

// * only includes coins in C ∪ R
while R contains a coin do

let x be the most valuable coin in R
if g ≥ value(x)
then

C := C ∪ {x} g := g − value(x)
end if

R := R− {x}
end while

{ if a solution exists, C is an optimal solution }

if g = 0 then output C
else output “no solution” end if
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At each point, each coin is in one of three piles

• Committed. C Definitely part of the solution

• Rejected. S −R− C. Not part of the solution

• Remaining R. Not yet considered.

Each iteration considers a coin x and either

• moves from R to C, or

• moves it from R to S −R− C

Why does it work?

• As we will see, no choice made in the loop body

precludes an optimal solution.

• I.e., the statement

An optimal solution is reachable

is preserved by the loop body.

• However we can’t use that as an invariant, since we

don’t know a priori that a solution exists.

• A loop invariant

If a solution exists, an optimal solution is reachable
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Narrowing the search space.

So what does it mean that “an optimal solution is

reachable”?

It means there is an optimal solution that

• includes all coins from C

• excludes all coins from S −R− C

In other words there is an optimal solution in the search

space SS

SS = {X | C ⊆ X ⊆ R ∪ C}

Initially SS = {X | X ⊆ S} = 2S.

At termination, R = ∅ and SS = {C}.

Each decision made narrows the search space

• If an item x is kept, C gets bigger while R∪C remains

the same. We remove from SS all sets that don’t

contain x

SS := {X | C ∪ {x} ⊆ X ⊆ R ∪ C}

• If an item x is rejected, R ∪ C gets smaller while C
remains the same. We remove from SS all sets that

contain x.

SS := {X | C ⊆ X ⊆ (R ∪ C)− {x}}

(This is a kind of binary search, isn’t it?)
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Proving the algorithm

Establishing the invariants

All straight forward.

Proving the invariants C ∪ R ⊆ S and C ∩ R = ∅ and

g = t−
∑

x∈C value(x) ≥ 0 are preserved

These are straight forward

Proving the invariant “If a solution exists, an optimal

solution is reachable” is preserved.

If a solution does not exists, the invariant is preserved

trivially.

Suppose a solution does exist.

• We must show that

∗ If an optimal solution is reachable at the top of the

loop body,

∗ then an optimal solution is reachable at the bottom

of the loop body.
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Here we go.

• Let O be an optimal solution reachable at the top of

the loop

∗ C ⊆ O and O ⊆ R ∪ C

∗ g =
∑

x∈O−C value(x)

• Suppose the algorithm is about to commit to a quarter

x to C, then g ≥ 25 and so O − C must contain coins

that add up to at least 25.
∗ Case O − C contains a quarter y.
· (Note: y may, but might not, equal x).

· Let O′ = O − {y} ∪ {x}.
– (Note: if x = y, then O′ = O.)

·
∑

z∈O′ value(z) =
∑

z∈O value(z) = t.

· |O′| = |O|. So O′ is an optimal solution.

· C ∪ {x} ⊆ O′ and

· O′ ⊆ R ∪ C = (R− {x}) ∪ (C ∪ {x}).

· So O′ will be reachable at the bottom of the loop.

· So after, committing to x, an optimal solution (O′)
can be reached.

∗ Case O − C does not contain a quarter.

· Then O−C must contain some subset of nickels

and pennies that add up to 25 exactly — since

any set of nickels and pennies that adds up to

≥ 25 must have a subset that adds up to 25
exactly. Furthermore this subset contains at

least 5 coins. Now replace such a subset with
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the quarter x to obtain a solution O′′. Since

O′′ has fewer coins than O, O is not optimal.

Contradiction. This case can’t happen.

• Suppose the algorithm is about to reject a quarter x.

Then g < 25 and so O − C has a value of < 25 and

must not contain a quarter. Thus x /∈ (O − C), and so

O ⊆ C ∪ R − {x}. So rejecting the quarter leaves O
reachable.

• Similar arguments for nickels and pennies.

(This is what Edmonds calls a “fairy godmother

argument”’. O is the fairy godmother’s solution. Cormen,

Leieserson, Rivest, and Stein call it a “cut and paste

argument”: we cut y out of the fairy godmother’s solution

and paste in x to obtain an optimal solution that the

algorithm can still reach.)
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Proving the invariants imply the postcondition

When no coins remain, the only reachable solution is C.

R = ∅ ⇒ {X | C ⊆ X ⊆ R ∪ C} = {C}

So “if a solution exists, an optimal solution is reachable”

simplifies to

if a solution exists, C is an optimal solution. (1)

or equivalently

if C is not an optimal solution, no solution exists (2)

After the loop

Consider if g = 0

g = 0

⇒ By g = t−
∑

x∈C

value(x)

C is a solution

⇒

a solution exists

⇒ By (1)

C is an optimal solution

Consider if g �= 0

g �= 0

⇒ By g = t−
∑

x∈C

value(x)

C is not a solution

⇒ By (2)

no solution exists

Typeset November 22, 2016 8



Algorithms: Correctness and Complexity. Slide set 16. Greedy Algorithms c© Theodore Norvell

Why is it called “greedy”?

What makes this algorithm “greedy”?

• The algorithm builds a partial solution. (In the example

the C set.)

• At each point we make a ‘locally optimal choice’.

(Accept or reject a largest coin.)

• Earlier choices can not be reversed. (Once we have

committed to 3 quarters, the solution found will contain

at least 3 quarters.)

A Schematic Problem

Problems solved by greedy algorithms often involve

making selections from a set to obtain an optimal subset

that meets some criteria.

• The change making example fits this stereotype.

Schematic Problem (Optimal subset)

input: a set of things S and maybe some other information

solution: a subset of S that meets some validity criterion v
optimality: The solution should be least according to some

comparison operator �
output: if there is a solution, an optimal solution; otherwise

a message

[Aside: Formally

• There is a solution if the set T = {X ⊆ S | v(X)} is

nonempty.

• A solution X is optimal if X ∈ T and ∀Y ∈ T ·X � Y
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end of aside]

Usually the optimality operator can be expressed by an

“objective function” f so that

X � Y ⇔ f(X) ≤ f (Y )

Filling in the slots for the change making problem:

• Things is the set of all quarters, nickels, and pennies

• Other information is the goal amount t.

• The validity criterion is that the value of the subset

equals t

• The objective function is the number of coins.

Filling in the slots for the single-source, shortest paths

problem

• Things are edges in a graph

• Other information are the edge weights and a start

node s

• The validity criterion is that a set of edges be a tree

rooted at s that reaches every node reachable from s.

• the comparison operator is that tree X is better than

(�) a tree Y if for each node u, reachable from s,
the distance from s to u in X is less or equal to the

distance from s to u in Y .

Typeset November 22, 2016 10



Algorithms: Correctness and Complexity. Slide set 16. Greedy Algorithms c© Theodore Norvell

A schematic algorithm

Our search space will be all subsets of S that include all

committed items and no rejected items..

{X | C ⊆ X ⊆ R ∪ C}

Narrow the search space by taking away from R and

possibly adding to C.

Schematic Algorithm

The greedy optimal subset selection algorithm scheme

var C := ∅ // Committed set

var R := S // Remaining set.

inv: C ∪R ⊆ S ∧ C ∩R = ∅
inv: If a solution exists, an optimal solution is in

{X | C ⊆ X ⊆ R ∪ C}

while there is a suitable item in R do

pick a best suitable item x in R
if

committing to x does not preclude an optimal solution

then

C := C ∪ {x}
end if

R := R− {x}
end while

{ a solution exists⇒ C is an optimal solution }

if C is a solution then output C
else output ‘no solution’ end if
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Filling in the additional slots for the change making

example

• all coins are suitable.

• a best item is one that is worth the most money

No backsies. At each stage of the algorithm, we either

commit to an item x or reject it.

• Committed items C must be part of the solution.

• Rejected items S − R − C will not be part of the

solution

Adaptive vs fixed priority. In picking the best, we can

look all available information including the commitments

so far.

• In the change making example this is not required.

• For making change, the best item can be determined

by consulting only R.

If only R needs to be consulted, we say that the priority

is fixed and we can make the algorithm more efficient by

first sorting S according to bestness.

• In the change making algorithm, the priority is fixed,

so we can sort the coins at the beginning.

No lookahead. You can always make the greedy solution

work, if you are willing to spend enough time picking

the best item. We generally want to have some way of

finding a best item that does not require very much work.
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Dijkstra’s algorithm as a greedy algorithm

The single-source shortest paths problem also fits this

pattern

• Things are edges of a graph (V,E)

• Other information are the edge weights and a start

node s

• The validity criterion is that a set of edges be a tree

rooted at s that reaches every node reachable from s.

• The comparison operator is that tree X is better than

(�) a tree Y if for each node u, reachable from s, the

distance from s to u in X is less or equal to the the

distance from s to u in Y .

Here is Dijkstra’s algorithm as an adaptive greedy

algorithm.

• Note that a solution always exists.

• Suitable edges are edges in R that start at nodes that

are reachable from s following only committed edges.

∗ Thus the algorithm will grow a tree of committed

edges rooted at s

∗ So each suitable edge x represents a path that

∗ starts at s, follows 0 or more committed edges, and

finally follows x

• Among suitable edges, the best is the one that

represents the shortest path

• To improve efficiency, I added two tracking variables

∗ H tracks vertices reachable from s following only
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committed edges. That is it is the set of all v such

that v is reachable from s via a path consisting only

of edges in C.

∗ SE tracks suitable edges (Edges in R starting from

H)

The cost of an edge x is the distance of the path starting

at s, consisting of edges in C and ending with x.

Dijkstra’s shortest paths algorithm

var C := ∅ // Committed edges

varH := {s} // Reachable from s by edges in C
// SE is the set of suitable edges

var SE := the set of edges leaving s
ghost var R := E // Remaining edges.

inv: C ∪R ⊆ E ∧ C ∩ R = ∅

inv: H =
{
v | ∃p in (V,C) · s

p
→ v

}
∧ SE =

{e ∈ R | ←−e ∈ H}
inv: there is an optimal tree in {X | C ⊆ X ⊆ R ∪ C}
while SE �= ∅ do

let x be a least “cost” edge in SE
if x ends at a vertex not inH then

C := C ∪ {x} // Add to the tree

H := H ∪ {−→x }// Add to the tree

// Edges that leave the target of x are now suitable.

SE := SE ∪ {e | ←−e = −→x }
end if

R := R− {x} ; SE := SE − {x}
end while

output (H,C)
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Edges are in one of several states.

(R− SE) −→ SE
↗

↘

C
E − C −R

• Undiscovered edges: R− SE

• Suitable edges: SE ⊆ R. Source in H, but not yet

committed or rejected.

• Committed edges: C.

• Rejected edges: E − C −R
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To speed the implementation, we can implement SE with

a priority queue.

(This is still a bit different from the classic Dijkstra’s

algorithm which uses a priority queue of vertices. Here

we use a priority queue of edges.)

Correctness: Assume that (H,C) is a tree that is optimal

for trees build from edges considered so far (E −R).

There are three possibilities

• No edge in R starts from a node in H.

∗ Then (H,C) can not be extended.

∗ All reachable nodes are reached.

∗ The postcondition of the loop has been established,

so an exit is appropriate.

• The best remaining edge x goes to a node w in H
∗ The cost of reaching w by this edge can’t be better

than the path already in (H,C).

∗ Discarding x from R preserves that the tree is

optimal for trees build from edges considered so far.

• The best edge x goes to a node w not in H.

∗ This is the first edge considered that reaches w so

∗ any other path from s to w is represented by an

edge in SE that has a priority at least as large as

x’s priority and thus that path is at least as long as

the path represented by x.

∗ Moving x from R to C restores that the tree is

optimal for trees build from edges considered so far.
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Efficiency of Dijkstra’s shortest path algorithm:

• Implement SE as a priority queue with the priority of

each edge being its cost.

• The size of SE can be as big as |E| (and no bigger).

• So adding edges to and removing edges from SE is

Θ(log |E|).

• Each edge is added and removed from the queue at

most once.

• In the worst case, each edge is added to the queue.

• So the whole algorithm is Θ(|E| × log |E|).

• Compare to Θ(|E| × log |V |) for the version in slide set

13.

An optimization:

• Suppose we add an edge to SE that ends at a node y
and there is already an edge in SE that ends at y.

• If they have different costs, the edge with higher cost

can not be part of an optimal tree.

• If they have the same costs, one is as good as the

other, and we only need to keep one.

• So either way, we can immediately remove the/a one

that is not cheaper than the other.

• If we do this, the size of |SE| is bounded by |V |.

• The algorithm’s complexity is Θ(|E| × log |V |), same

as the version in slide set 13.
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Scheduling a meeting room

Set of things.

• S is a set of meetings, each with a start time and an

end time

Validity criterion

• There must be no overlap of meeting times

Comparison operator

• We want to schedule as many meetings as possible

Possible meanings for “best”

• Shortest meetings are best.

∗ Intuitively appealing, but one short meeting might

conflict with two nonconflicting long meetings

• ‘Earliest start time’ (First come—first served)

∗ An early long meeting could block many short

meetings.

∗ Latest finish time is the same

• ‘Earliest finish time’

∗ Works.

∗ Earliest finish time gives the most time after for

more meetings

∗ Suppose that we have an optimal schedule up to

time t and that

∗ x is the meeting that starts at or after t which ends

earliest.

∗ How could an alternative y be better?
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∗ y ends at the same time or later.

∗ Maybe we could squeeze in another meeting z that

ends before y begins?

∗ No. Because then z ends before x and that

contradicts that x ends at the earliest time.
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The algorithm

All meetings are suitable.

The empty set is a solution, so we know there is a

solution

The best meeting is one that ends the earliest

Greedy meeting scheduling

Input: A set of meetings S
var C := ∅ // Committed set

var R := S
var t := −∞ //

inv: C ∪R ⊆ S ∧ C ∩R = ∅
inv: t = maxw∈C w.endTime
inv: every meeting in R ends after t
inv: There is an optimal solution in

{X | C ⊆ X ⊆ R ∪ C}

while there is a meeting in R do

pick a meeting x in R that ends the earliest

if x.startTime ≥ t then

C := C ∪ {x}
t := x.endTime

end if

R := R− {x}
end while

output C
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A “cut and paste” proof that the 4th invariant is

maintained

Suppose O is an optimal solution reachable from the

current state at the top of the loop body.

I.e. C ⊆ O ⊆ R ∪ C

Let x be the meeting the algorithm picks.

• Case: The algorithm will add x to C.

∗ (We need to show that, even if O is no longer

reachable after adding x to C, another optimal

solution O′ is.)

∗ Then x.startTime ≥ t = maxw∈C w.endTime

∗ Since C ∪ {x} is a solution, there is a solution of

size |C| + 1.

∗ Since O is optimal, |O| ≥ |C| + 1.

∗ So, as O ⊆ R ∪ C and |O| ≥ |C| + 1, we know that

O contains at least one item in R− C.

∗ Of those items, let y be the one that finishes earliest.

∗ (Comment: x = y is possible.)

∗ Let O′ = (O − {y}) ∪ {x} (Cut and paste.)

∗ From this definition and C ⊆ O ⊆ R ∪ C, we have

C ∪ {x} ⊆ O′ ⊆ (R− {x}) ∪ (C ∪ {x}) and so O′ is

reachable once x moves from R to C.

∗ It remains to show O′ is an optimal solution.

∗ (If x = y, then O′ = O and so O′ is an optimal

solution by assumption. However, there is no need

to consider the cases x = y and x �= y separately;

so I won’t.)
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∗ Since it is as big as O, we only need to show O′ is

a solution.

∗ Let z be any item in (O − {y}).

∗ Since O is a solution, z can not interfere with any

other meeting in O.

∗ It remains to show that z can not interfere with x
either.

∗ Case: z in C.

· x interferes with nothing inC (since x.startTime ≥
maxw∈C w.endTime).

∗ Case: z not in C and not in R.

· can’t happen as z is in O and O ⊆ R ∪ C

∗ Case: z in R− C.

· Then x.endTime ≤ y.endTime, by the way x was

chosen

· And y.endTime ≤ z.endTime, by the way y was

chosen

· But as z does not interfere with y, it must start

after y finishes: y.endTime ≤ z.startTime.

· We have x.endTime ≤ y.endTime ≤ z.startTime.
No interference.

• Case: The algorithm rejects x.

∗ Then x.startTime < t

∗ Since x ∈ R, it ends after t. Thus x spans t. (Which

is thus finite.)

∗ Since t represents the end time of some meeting in

C, x interferes with a meeting in C and hence in O.
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∗ Therefore x is not in O. Thus C ⊆ O ⊆ R−{x}∪C.

After removing x from R, O is still reachable.
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