
Algorithms: Correctness and Complexity. Slide set 17. Recursive Baktracking Search c© Theodore Norvell

Recursive search for optimal costs

Longest Path

Suppose we have a directed simple acyclic graph in

which edges are labeled with distances.

We need to find the distance of the longest path from s

to t. Each edge (u, v) has a distance w(u, v).

Define dlp(u, t) to be the distance of the longest path

from u to t: dlp(u, t) = max
p|u

p
→t distance(p) where

distance([u0, e0, u1, e1, ..., en−1, un]) = Σi∈{0,..n}w(ui, ui+1)

Consider max ∅ to be −∞ so dlp(u, t) = −∞ if there is

no path from u to t.

Contract

procedure distanceOfLongestPath(u : V, t : V ) :
Int ∪ {−∞}

postcondition result = dlp(u, t)

Typeset April 6, 2020 1



Algorithms: Correctness and Complexity. Slide set 17. Recursive Baktracking Search c© Theodore Norvell

Algorithmic idea: For each edge leaving u, find the length

of the longest path to t that starts with that edge. Pick

the best.

procedure distanceOfLongestPath(u : V, t : V ) :
Int ∪ {−∞}

postcondition result = dlp(u, t)
if u = t then

return 0;
else

var best := −∞
for v | u→ v do

val cost := w(u, v)+distanceOfLongestPath(v, t)
if cost > best then best := cost end if

end for

return best

end if

end distanceOfLongestPath

Now call distanceOfLongestPath(s, t).

If the answer is −∞ then there is no path, else it’s the

distance of the longest path.

Typeset April 6, 2020 2



Algorithms: Correctness and Complexity. Slide set 17. Recursive Baktracking Search c© Theodore Norvell

To find the longest path, we can return the longest path

along side its distance

procedure longestPath(u : V, t : V ) :
((Int ∪ {−∞})×Seq 〈E ∪ V 〉)

postcondition: result = (c, p) where c = dlp(u, t) and p

is a path from u to t of distance c.
if u = t then

return (0, [t])
else

var bestCost : Int := −∞
var bestPath := nil
for v | u→ v do

val (cost ,p) := longestPath(v, t)
if cost + w (u, v ) > bestCost then

bestCost := cost + w(u, v)
bestPath := [u, (u, v)]ˆp

end if

end for

return (bestCost , bestPath)
end if

end longestPath

Typeset April 6, 2020 3



Algorithms: Correctness and Complexity. Slide set 17. Recursive Baktracking Search c© Theodore Norvell

Minimum edit distance

Given two sequences, how many operations are needed

to transform one into the other?

Each operation is one of

• Delete an item

• Insert an item

• Replace one item with another

Example: This edit sequence has 7 operations:

Is this minimal?

Typeset April 6, 2020 4



Algorithms: Correctness and Complexity. Slide set 17. Recursive Baktracking Search c© Theodore Norvell

Applications:

• communicating and storing differences between

versions of files.

• Showing the user the changes between two versions

of a file.

• Finding similarity between DNA or protein sequences

• Ranking corrections for misspelled words.

Working left to right:

For any solution, there is an equivalent solution that

works from left to right.

Why?

We can exchange instructions (with minor adjustments)

until they are ordered from left to right.

Consider changing “FRED” to “REND”. We could

“FRED”
insert(‘D’,4)
−→ “FREDD”

replace(‘N’,3)
−→ “FREND”

delete(0)
−→ “REND”

Exchanging delete and replace

“FRED”
insert(‘D’,4)
−→ “FREDD”

delete(0)
−→ “REDD”

replace(‘N’,2)
−→ “REND”

Exchange delete and insert

“FRED”
delete(0)
−→ “RED”

insert(‘D’,3)
−→ “REDD”

replace(‘N’,2)
−→ “REND”

Exchange insert and replace

“FRED”
delete(0)
−→ “RED”

replace(‘N’,2)
−→ “REN”

insert(‘D’,3)
−→ “REND”

Typeset April 6, 2020 5



Algorithms: Correctness and Complexity. Slide set 17. Recursive Baktracking Search c© Theodore Norvell

Example: Changing x =“FRED” to y =“REND”. All

possible left to right routes.

↓ deletion. → insertion. ↘ replace. � no edit.

y = R E N D

x i�j 0 1 2 3 4

= 0 FRED → RFRED → REFRED → RENFRED → RENDFRED

F ↓ ↘ ↓ ↘ ↓ ↘ ↓ ↘ ↓
1 RED → RRED → RERED → RENRED → RENDRED

R ↓ � ↓ ↘ ↓ ↘ ↓ ↘ ↓
2 ED → RED → REED → RENED → RENDED

E ↓ ↘ ↓ � ↓ ↘ ↓ ↘ ↓
3 D → RD → RED → REND → RENDD

D ↓ ↘ ↓ ↘ ↓ ↘ ↓ � ↓
4 → R → RE → REN → REND

Note that, at entry (i, j), we have replaced x[0, ..i] by

y[0, ..j]: that is the entry is y[0, ..j]ˆx[i, ..x.length].

To find the optimal cost, work backward from y[0, ..j] to

x[0, ..i], considering the last change to be made.

Typeset April 6, 2020 6



Algorithms: Correctness and Complexity. Slide set 17. Recursive Baktracking Search c© Theodore Norvell

Suppose x and y are sequences and 0 ≤ i ≤ x.length
and 0 ≤ j ≤ y.length

Define med(i, j) to be the minimal cost to transform

x[0, ..i] to y[0, ..j].

To change x[0, ..i] to y[0, ..j], there are the following

possibilities.

• If i = j = 0, no edit is needed.

∗ Cost: 0

• If i = 0, then j insertions is optimal.

∗ Cost: j

• If j = 0, then i deletions is optimal.

∗ Cost: i

• If i, j > 0, pick the cheapest of the following:

∗ Edit x[0, ..i− 1] to look like y[0, ..j − 1]
· Cost: med(i− 1, j − 1)

· But only works if x(i− 1) = y(j − 1),

∗ Edit x[0, ..i− 1] to look like y[0, ..j − 1]; then replace

x(j − 1) with y(j − 1)
· Cost: med(i− 1, j − 1) + 1

∗ Edit x[0, ..i− 1] to look like y[0, ..j]; then delete x(j)
· Cost: med(i− 1, j) + 1

∗ Edit x[0, ..i] to look like y[0, ..j − 1]; then insert

y(j − 1) at j − 1
· Cost: med(i, j − 1) + 1

Typeset April 6, 2020 7



Algorithms: Correctness and Complexity. Slide set 17. Recursive Baktracking Search c© Theodore Norvell

Thus

med(i, j) =






0 if i = 0 = j
j if i = 0
i if j = 0
min(med(i− 1, j − 1), if i, j > 0 and

med(i− 1, j − 1) + 1, x(i− 1) = y(j − 1)
med(i− 1, j) + 1,
med(i, j − 1) + 1) )

min(med(i− 1, j − 1) + 1, if i, j > 0 and

med(i− 1, j) + 1, x(i− 1) �= y(j − 1)
med(i, j − 1) + 1) )

Exercise: Show that, for all i, j > 0,

med(i− 1, j − 1) ≤ med(i− 1, j) + 1

and

med(i− 1, j − 1) ≤ med(i, j − 1) + 1

End Exercise.

Therefore, if i, j > 0 and x(i− 1) = y(j − 1), none of the

last three possibilities can cost less than simply editing

x[0, ..i− 1] to look like y[0, ..j − 1]. So:

med(i, j) =






...

med(i− 1, j − 1) if i, j > 0 and

x(i− 1) = y(j − 1)
...

Typeset April 6, 2020 8



Algorithms: Correctness and Complexity. Slide set 17. Recursive Baktracking Search c© Theodore Norvell

Recall med(i, j) is the minimal cost to transform x[0, ..i]
to y[0, ..j].

procedureminEditDistance(i, j) : Int
precondition 0 ≤ i ≤ x.length ∧ 0 ≤ j ≤ y.length
postcondition result = med(i, j)

if i = j = 0 then return 0
elsif i = 0 then return j

elsif j = 0 then return i

elsif x(i− 1) = y(j − 1) then

return minEditDistance(i− 1, j − 1)
else

val rCost := 1+ minEditDistance(i− 1, j − 1)
val dCost := 1 +minEditDistance(i− 1, j)
val iCost := 1 +minEditDistance(i, j − 1)
return min(rCost , dCost , iCost)

Now a call to minEditDistance(x.length, y.length)
computes the minimum edit distance

Typeset April 6, 2020 9



Algorithms: Correctness and Complexity. Slide set 17. Recursive Baktracking Search c© Theodore Norvell

Exercise: Modify the algorithm so it returns a pair (c, p)
where p is a list of instructions that will transform x[0, ..i]
to y[0, ..j].

procedureminEditSequence(i, j) : (Int× Seq 〈String〉)
precondition 0 ≤ i ≤ x.length ∧ 0 ≤ j ≤ y.length
postcondition: result = (med(i, j), p) where p is a list of

instructions of length med(i, j) that will transform x[0, ..i]
to y[0, ..j].

For example if x = “FRED” and y = “REND” then

minEditSequence(i, j) returns

(2, [delete(0), insert (‘N’, 2)])

Typeset April 6, 2020 10



Algorithms: Correctness and Complexity. Slide set 17. Recursive Baktracking Search c© Theodore Norvell

A schematic algorithm

These algorithms follow a common pattern

The optimal solution for an instance can be found by:

• Determining a set of subinstances

∗ In the longest path problem the set of subinstances

for (u, t) is

· {(v, t) | u→ v} if u �= t

· ∅ if u = t

∗ In the minimum edit distance problem the set of

subinstances for (i, j) is

· ∅ if i = 0 or j = 0

· {(i− 1, j − 1)} if x(i− 1) = y(j − 1)

· {(i− 1, j − 1) , (i, j − 1) , (i− 1, j)} otherwise

• Finding optimal solutions for the subinstances by

recursion

• Finding an optimal solution from those solutions

Typeset April 6, 2020 11



Algorithms: Correctness and Complexity. Slide set 17. Recursive Baktracking Search c© Theodore Norvell

procedure recursiveSearch(I) : Cost × Solution
postcondition: result = (c, s), where c is the cost of the

optimal solutions and s is an optimal solution.

var optCost

var optSol

if I is a leaf then

compute and return (optCost , optSol)
else

letK be the number of subinstances

var optSubCost : {0, ..K} → Cost

var optSubSol : {0, ..K} → S

for k ← {0, ..K} do

(optSubCost(k), optSubSol(k)) :=
recursiveSearch(subinstancek)

end for

compute (optCost , optSol) from optSubCost and

optSubSol

end if

return (optCost , optSol)

Efficiency

The efficiency of recursive search is typically exponential.

If n is the depth of the recursion and b is the number of

choices at each level, then the time is

Θ(bn)

Typically the time is 2Θ(n).

Typeset April 6, 2020 12



Algorithms: Correctness and Complexity. Slide set 17. Recursive Baktracking Search c© Theodore Norvell

Computing only the cost.

In many cases, we can compute the optimal cost without

computing the solution.

procedure recursiveSearch(I) : Cost

postcondition: result =the cost of the optimal solution(s).

var optCost

if I is a leaf then

compute optCost directly

else

letK be the number of subinstances of I

var optSubCost : {0, ..K} → Cost

for k ← {0, ..K} do

optSubCost(k) := recursiveSearch(subinstancek)
end for

compute optCost from optSubCost

end if

return optCost

Typeset April 6, 2020 13



Algorithms: Correctness and Complexity. Slide set 17. Recursive Baktracking Search c© Theodore Norvell

In many cases, the optimal solution is built from the

solution to only one subinstance.

Then we don’t need to store the costs of the

subinstances.

procedure recursiveSearch(I) : Cost

postcondition: result =the cost of the optimal solution(s).

var optCost

if I is a leaf then

compute optCost directly

else

letK be the number of subinstances of I

optCost := +∞
for k ← {0, ..K} do

var optSubCost :=
recursiveSearch(subinstancek)

+ the minimum cost of transforming an optimal

solution to subinstancek into a solution to I

if optSubCost ≤ optCost then

optCost := optSubCost
end if

end for

end if

return optCost

Typeset April 6, 2020 14


