
Algorithms: Correctness and Complexity. Slide set 20. Incomputability c© Theodore Norvell

Algorithms and correctness

Formal correcness proofs

• Assertions

• Proof outline logic

• The inference rules

∗ A system of reducing program correctness (P.O. va-

lidity) to the validity of a set of boolean expressions.

• Assignments: P ⇒ R[x : e] ensures {P}x := e {R}

• Loops

{P} A {I} while G do {Q} B end while {R}

∗ The invariant must be established by initialization

code: {P}A {I} must be a valid PO

∗ The invariant must be preserved by the loop body

(assuming the guard true): {Q} B {I} must be a

valid PO

∗ The invariant together with the negation of the

guard imply the loop’s postcondition ¬G ∧ I ⇒ R
must be a valid boolean expression.

• Loops should terminate. Use a variant: An expression

such that I ⇒ E ≥ 0 and that is decreased with each

iteration.

Object invariant and data refinement

Using one set of variables to represent another

Typeset December 4, 2014 1



Algorithms: Correctness and Complexity. Slide set 20. Incomputability c© Theodore Norvell

Contracts for procedures and recursion

Preconditions

• Obligation of caller

• Benefit to callee

Postconditions

• Obligation of the callee

• Benefit to the caller

• Conventions

∗ Use x0 for initial values and

∗ result for the result.

Recursion

Make sure that some variant expression is getting smaller

with each recursive call.

Typical pattern

• Divide the problem instance into (0 or more) subin-

stances

• Solve the subinstance

• Combine the solutions to the subinstances to make a

solution to the instance.

In some cases we can just start by solving a lot of small

instances and work our way up to bigger instances until

we reach the one we really want to solve.

Typeset December 4, 2014 2



Algorithms: Correctness and Complexity. Slide set 20. Incomputability c© Theodore Norvell

Loops and recursion

Every loop can be rewritten as a recursive routine. Thus

techniques for writing recursive routines can be used

instead of the invariant method.

Context free grammars

(A,N,P, nstart)

One step replaces one nonterminal n with one string α
such that (n→ α) ∈ P .

The language defined by (A,N, P, nstart) is all strings in

A∗ reachable from nstart in one or more steps.

A parse tree gives a summary of a proof that its fringe is

reachable from nstart in zero or more steps.

Context free grammars allow one to express the

underlying tree structure of a text.

Recursive descent parsing

Assume s ∈ A∗ and $ /∈ A. Main code

f := true s := sˆ[$] nstart() f := f ∧ (s(0) = $)

Each nonterminal n becomes a routine n that tries to

remove a prefix that matched n from s. And that may

signal an error.

• Precondition: s is nonempty and ends with a $.

• Postcondition: Either

∗ Error: f = false and s still ends with a $.

∗ Success: A prefix of s0 that matches n has been

Typeset December 4, 2014 3



Algorithms: Correctness and Complexity. Slide set 20. Incomputability c© Theodore Norvell

removed from s.

• How to choose.

∗ If f0 = false then Error

∗ If there is no prefix of s matching n then Error

∗ If there is a good prefix of s matching n then

Success (and the prefix removed from s must be

good)

∗ Otherwise: Either result is acceptable.

• A good prefix is one that will lead to a successful

parse. Technically u is good if there are v, t ∈ A∗ so

that s0 = ut$ and nstart$
∗
=⇒ vs0.

• The “Otherwise” case happens when there is a prefix

that matches n but it is not good. Sometimes it is hard

to tell that no prefix good. In this case, it is acceptable

to just remove any prefix that matches n, because the

error will be found eventually.

Typeset December 4, 2014 4


