
Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Algorithms: Correctness and Com-

plexity

By the end of this course you will

• Have a better understanding of how to design algo-

rithms.

• Have a better understanding of how to design algo-

rithms that work

• and that you can demonstrate work.

• Have a better understanding of how to compare the

efficiency of algorithms.

• Have a better understanding of how to design efficient

algorithms.

• Be better able to recognize problem patterns.

• Be better able to apply solution patterns.

• Understand the limits of algorithms:

∗ Some problems have no algorithmic solution.

∗ Some problems have no efficient algorithmic

solution.

Typeset January 6, 2020 1

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

3 Problems

The map colouring problem

In 1852 Francis Guthrie noticed that he could colour a

map of the counties of England using only 4 colours

without two adjacent counties being coloured the same.

We ignore bodies of water, as they are usually assigned

an extra colour (not counted) not used for territories.

Exclaves: An exclave is a part of a territory separated

from the main part.

(For example Kalingrad Oblast is an exclave of Russia,

creating borders with Lithania and Poland that otherwise

it would not have.)

Typeset January 6, 2020 2

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Some questions?

• Can all maps (without exclaves) be coloured with 4

colours?

∗ (This is the 4-color conjecture.)

• How can we find a colouring or decide that there isn’t

one, given a map (possibly with exclaves) and a set of

colours?

Note:

• The first question is a yes/no question.

• An answer to the second question is an algorithm.

Given this map

and 4 colours, the algorithm should find a 4-colouring or

declare that none exists.

Typeset January 6, 2020 3

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

The exam scheduling problem

A medium sized university has 20,000 students taking

1,800 courses with 1,500 final exams.

There are 48 (nonoverlapping) exam slots.

• Can the exams be scheduled so that no student has

two exams at the same time?

• What is the minimum number of time slots required?

In general:

• How can we find an assignment of exams to slots,

given a set of exams, a set of slots, and the set of pairs

of exams that share at least one student, or determine

that there isn’t one?

Typeset January 6, 2020 4

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

The register allocation problem

Many compilers generate assmbly (or machine) code in

multiple passes. Here is a typical pass structure

• Parse: Parse the code to create a tree representation

of the source code.

• Analyse: Analyse the tree, looking for errors and

inferring types for nodes.

• Generate: Generate machine code, pretending that

the machine has an unbounded set of registers

{p0, p1, p2, ..p∞}

• Register allocation: For each pretend register, assign

a real register from {r0, r1, r2, .., rk} to represent it.

And if that is not possible introduce “register spilling

code” and try again until successful. Then rewrite the

code.

Typeset January 6, 2020 5

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

We’ll look at the Register Allocation pass.

Here is an example of output from the Generate pass.

The “live range” of each register is shown at right.
p0 p1 p2 p3 p4 p5 p6 p7

p0← const 0 �p1← fetch 104 | �
p2← const 0 | | �

l0 : p3← fetch 96 | | | �
p4← comp p2 p3 | | | ⊥

�
blt p4 l1 | | | ⊥
p5← mul p2 4 | | | �
p6← add p1 p5 | | | ⊥

�
p7← fetch p6 | | | ⊥

�
p0← add p0 p7 | | | ⊥
p2← add p2 1 | | |
br l0 | ⊥ ⊥

l1 : store p0 108 ⊥

Can we renumber the registers so that only 4 register are

used without chaning the meaning of the code?

To avoid changing meaning, no two contemporaneous

pretend register can be assigned to the same real

register.

Typeset January 6, 2020 6

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Yes! This mapping will work




p0 �→ r0,

p1 �→ r1,

p2 �→ r2,

p3 �→ r3,

p4 �→ r3,

p5 �→ r3,

p6 �→ r3,

p7 �→ r3






p0 ← const 0 r0← const 0
p1 ← fetch 104 r1← fetch 104
p2 ← const 0 r2← const 0

l0 : p3 ← fetch 96 l0 : r3← fetch 96
p4 ← comp p2 p3 r3← comp r2 r3
blt p4 l1 blt r3 l1
p5 ← mul p2 4 r3← mul r2 4
p6 ← add p1 p5 r3← add r1 r3
p7 ← fetch p6 r3← fetch r3
p0 ← add p0 p7 r0← add r0 r3
p2 ← add p2 1 r2← add r2 1
br l0 br l0

l1 : store p0 108 l1 : store p0 108

The problem:

• How can we find an assignment of pretend registers to

real registers, given a set of pretend registers, a set of

real registers, and the set of pairs of pretend registers

that are contemporaneous, or determine that there

isn’t one?

Typeset January 6, 2020 7

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Problem abstraction

We can see that the following problems are equivalent

• Colour a map with k colours.

• Assign exams to k slots.

• Renumber the registers of machine code to k registers.

We’ll represent all these problems with a new problem:

Node colouring a graph

Given an undirected graph (V,E) and a number k, is

there a mapping from V to a set of k colours so that

no two nodes connected by an edge are mapped to the

same color.

∀ (p, q) ∈ E ·m(p) �= m(q)
Nodes Edge between Colours

Territories Border between Colours

Courses Share student Slots

Pretend registers Contemporaneous Real Registers

These problem instance are equivalent

Typeset January 6, 2020 8

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

A solution to one instance is a solution to all.

An algorithm for one problem will work for all.

Can we find an algorithm?

Typeset January 6, 2020 9

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

A backtracking algorithm

Represent a map from nodes to colours by a set of

node/int pairs. {(v0, 0), (v1, 0), (v2, 1)

Represent failure with a special value Failure and

success by a set M representing a map.

This algorithm exhaustively searches for a solution.

fun color(V : Set [Node], E : Set [Edge], k : Int)
if V = ∅ then return ∅
else

let v be any member of V

return colorRec(V − {v} , E, {(v, 0)})

fun colorRec(V ′, E, k,M : Set [Node × Int])
if V ′ = ∅ then

returnM

else

let v be any member of V ′

for c ∈ {0, ..k} // from 0 up to (but not including k)

if no edge in E joins v to a node u such that

(u, c) ∈M
letM ′ :=M ∪ {(v, c)}
let r := colorRec(V ′ − {v} , E, k,M ′)
if r �= Failure then // It’s a success

return r

return Failure

Typeset January 6, 2020 10

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Simulate the algorithm on the previous page for this

graph and 2 colours.

Typeset January 6, 2020 11

Algorithms: Correctness and Complexity. Mathematical Preliminaries. c© Theodore Norvell

Some questions about this algorithm and the

node colouring problem?

Does the algorithm work?

• How can we define what “work” means?

• How could we prove that it works?

Is the algorithm efficient?

• What counts as efficient?

• How many steps does it take (worst case) attempt to

colour a graph with n nodes with k colours?

• What flavour is this function: linear? cubic? worse?

Can we prove that there is no efficient algorithm?

Can we prove that, if there is an efficient algorithm for

this problem, then there are efficient algorithm for some

other problem that is generally regarded as difficult?

Is there an efficient algorithm that is approximately

correct?

• E.g., one that might fail when it shouldn’t, but always

succeeds when k is twice the ‘chromatic number”.

• (The chromatic number χ(G) of a graph G is the

minumum number of colours needed to colour G.)

Is there an efficient algorithm that works for some

graphs?

• E.g., one that works for all planar graphs?

• (Planar graphs can be drawn on a plane with no two

edges crossing.)
Typeset January 6, 2020 12

