
Dafny. Slide set 000 c© Theodore Norvell

Dafny

Dafny is

• An OO programming language similar to Java and C#

∗ With features to express code contracts

• A tool chain for compilation and verification

∗ Verified methods do not crash.

· No null pointer dereferences

· No array index out of bounds

· No divide by zero

· No infinite loops or recursions

∗ Verified methods implement their contracts

Dafny is one of several systems that can be used to

verify code.

• VCC the verifier for concurrent C.

• Microsoft Code Contracts is a system for C# verifica-

tion.

• OpenJML is a system for Java

• System Verilog Assertions – Verilog with property

checking

Typeset February 3, 2020 1

Dafny. Slide set 000 c© Theodore Norvell

The Toolset

Compiler

Dafny Program

⇓ Dafny Compiler

C# Program

⇓ C# Compiler

CIL code (.net)

Typeset February 3, 2020 2

Dafny. Slide set 000 c© Theodore Norvell

Verifier
Dafny Program

⇓ Translator

Boogie IVL program

⇓ Boogie

1st order formulae

⇓ Z3 (SMT prover)

Yes/No/Time out

Boogie IVL is a ‘programming’ language intended only

for verification.

• Lacks heap, classes, modules, and other ‘high level’

concepts

• Unconstrained by the need to be executed.

• Boogie IVL and Boogie are shared by many projects.

• Boogie verifies Boogie IVL by generating “verification

conditions”

∗ I.e. 1st order formulae that need to be shown

universally true.

∗ Boogie uses Z3 to check these verification condi-

tions

Typeset February 3, 2020 3

Dafny. Slide set 000 c© Theodore Norvell

Verifier
Dafny Program

⇓ Translator

Boogie IVL program

⇓ Boogie

1st order formulae

⇓ Z3 (SMT prover)

Yes/No/Time out

Z3 is a satisfaction modulo theories (SMT) automated

theorem prover.

• SMT provers can show a wide range of formulas to be

universally true.

• SMT prover can often generate counter examples

when the VCs are not true.

• Counter examples can provide useful insight to the

programmer.

Typeset February 3, 2020 4

Dafny. Slide set 000 c© Theodore Norvell

Methods and contracts

Methods compute one or more values and may change

state.

Methods declared outside classes are allowed (similar to

C++)

Example

method between(p : int, r : int) returns (q : int)

requires r-p > 1

ensures p < q < r

{

q := (p+r) / 2 ;

}

Note:

• Input parameters, like p and r, are immutable.

• Output parameters, like q, are named.

• The requires clauses of the contract declare precondi-

tions.

• The ensures clauses of the contract declare postcon-

ditions.

• The contract for between guarantees no state is

changed by calling between.

• The int type is infinite (equivalent to Z).

• Comparison operators are ‘chaining’: p < q < r means

p < q && q < r

Typeset February 3, 2020 5

Dafny. Slide set 000 c© Theodore Norvell

The verifier will attempt to prove that the method body

implements the contract.

It does this by calculating the weakest precondition P
such that

{P} q := (p+ r)/2; {p < q < r}

is correct and then proving that the given precondition is

as strong:

∀p, r ∈ Z · r − p > 1 ⇒ P
In this case the weakest precondition P is p < (p+r)/2 <
r. So the prover needs to prove

∀p, r ∈ Z · r − p > 1 ⇒ p < (p + r)/2 < r

In this example, we could replace the method body with

q := p + 1 ; or q := r-1 ;

Typeset February 3, 2020 6

Dafny. Slide set 000 c© Theodore Norvell

Calls

Example

method between(p : int, r : int) returns (q : int)

requires r-p > 1

ensures p < q < r

{

q := (p+r) / 2 ;

}

When a method is called, it is checked that the

precondition is respected. E.g.

var a : int ; // a is initialized to an arbitrary int

var c : int := between(a, a+1);←− Fails

An error is reported because the attempt to prove

∀a ∈ Z · a− (a + 1) > 1

fails. In fact the prover can prove that

¬ (∀a ∈ Z · a− (a + 1) > 1)

After the call, the postcondition, with parameters replaced

by arguments, is assumed to be true.

var a : int ; // a is initialized to an arbitrary int

var c : int := between(a, a+4) ;←− Succeeds

assert a <= c-1 && c <= a+3 ;←− Succeeds

In this case (p < q < r)[p, r, q : a, a+4, c] is a < c < a+4.

The assert command verifies because the prover can

prove

∀a, c ∈ Z · a < c < a + 4 ⇒ a ≤ c− 1 ∧ c ≤ a + 3

Typeset February 3, 2020 7

Dafny. Slide set 000 c© Theodore Norvell

But

var a : int ; // a is initialized to an arbitrary int

var c : int := between(a, a+4) ;←− Succeeds

assert c = a + 2 ;←− Fails

Does not verify because the prover can not prove

∀a,C ∈ Z · a < c < a + 4 ⇒ c = a + 2

I.e., methods are abstraction boundaries
The only information the caller can

use about a method is in its contract.

Typeset February 3, 2020 8

Dafny. Slide set 000 c© Theodore Norvell

Asserts

Use assert commands to document your code.

Asserts (like postconditions) are verified documentation.

Asserts (like pre- and postconditions) are ignored by the

compiler.

So we can put in formulas that would be inefficient or

impractical to run.

Typeset February 3, 2020 9

Dafny. Slide set 000 c© Theodore Norvell

Asserts for debugging

Asserts can also be useful in debugging.

Suppose we have a big long method:

method divideWithRemainder(x : int, y : int)

returns (p : int, m : int)

requires y > 0 &&x >= 0

ensures p*y + m == x && 0 <= m < y

{

var q : int ;

Some code intended to make q ∗ y bigger than x
Some more code

}

But the postcondition doesn’t verify.

Bisect the code with an assert:

method divideWithRemainder(x : int, y : int)

returns (p : int, m : int)

requires y > 0 &&x >= 0

ensures p*y + m == x && 0 <= m < y

{

var q : int ;

Some code intended to make q ∗ y bigger than x
assert q*y > x ;

Some more code

}

If the assert verifies, all bugs are in the second half.

Typeset February 3, 2020 10

Dafny. Slide set 000 c© Theodore Norvell

Dafny vs. proof outline logic

In POL, although correct, the following is not provably

correct —i. e., it is not verifiable using only the rules

presented earlier—

{a = 1 ∧ b = 1}
b := a + b
{Even(b)}
a := a + b
{a = 3}

because {Even(b)} a := a + b {a = 3} is not correct.

Dafny verifies

var a := 1 ; var b := 1 ;

b:=a+b ;

assert Even(b) ;←− Succeeds

a:=a+b ;

assert a == 3 ;←− Succeeds

because it tries to verify

{a = 1 ∧ b = 1}
b := a + b
{Even(b) ∧ P}
a := a + b
{a = 3}

where P is the weakest condition such that

{P} a := a + b {a = 3} is correct.

In other words: In Dafny, adding an assert can’t hurt.1

1 In practice extra asserts may increase verification time and lead to a timeout.
Typeset February 3, 2020 11

Dafny. Slide set 000 c© Theodore Norvell

Loops

While loops should include an invariant and a variant.

Consider

method root(x : int) returns (p : int)

requires x >= 0

ensures p*p <= x < (p+1)*(p+1)

{

p := 0 ;

var r := x + 1 ;

while p+1 != r

invariant p+1 <= r

invariant p*p <= x < r*r

decreases r-p

{

var q := between(p, r) ;

if q*q <= x { p := q ; } else { r := q ; } } }

Typeset February 3, 2020 12

Dafny. Slide set 000 c© Theodore Norvell

Inferring variants

In fact the verifier can often guess the variant on

For the example above, we can get away with

while p+1 != r

invariant p+1 <= r

invariant p*p <= x < r*r

{...}

The verifier fills in the variant with its best guess.

Typeset February 3, 2020 13

Dafny. Slide set 000 c© Theodore Norvell

Inferring invariants

The verifier will also infer some invariants and effectively

rewrite your code to add them in before generating

verification conditions.

For example, this loop verifies:

while p+1 != r

invariant p*p <= x < r*r

{

var q := between(p, r) ;

if q*q <= x { p := q ; } else { r := q ; } } }

even though, the precondition of between does not follow

from

p + 1 �= r ∧ p× p ≤ x < r × r
(Consider p = 0, r = −2.) So the verifier must have

inferred (or guessed) some additional invariant, such as

p + 1 ≤ r.

Omitting necessary invariants makes your loops harder

to read.

Advice:

• State all invariants needed to prove the loop, whether

or not the verifier can infer them.

• Do not state invariants that are irrelevant to the

correctness of the loop.

Typeset February 3, 2020 14

Dafny. Slide set 000 c© Theodore Norvell

Assertions as Hints

Sometimes an assertion can guide the prover to consider

facts it otherwise wouldn’t.

(WARNING: This example is now out of date as Dafny

can now verify the orginal version.)

Consider the Russian Peasant Multiplication algorithm

method mult(a0 : int, b0 : nat) returns (c : int)

ensures c == a0 * b0

{

c := 0 ;

var a := a0 ;

var b : nat := b0 ;

while b != 0

invariant a0*b0 == c + a*b←− Times out

decreases b ;

{

if b%2==1 {

c := c + a ;

b := b - 1 ; }

b := b/2 ;

a := 2*a ; }

}

The prover used to time out trying to show that the

indicated invariant is maintained by the loop.

Typeset February 3, 2020 15

Dafny. Slide set 000 c© Theodore Norvell

Where is the problem?

We bisect the loop body with an assertion.

if b%2==1 {

c := c + a ;

b := b - 1 ; }

assert a0*b0 == c + a*b ;←− Succeeds

b := b/2 ;

a := 2*a ;

The assertion verifies, but not the invariant. So the

problem must be that the verifier can not deduce that

b := b/2 ;

a := 2*a ;

maintains the invariant.

But, this is only the case if b is even prior to b := b/2 ;

Perhaps the verifier has failed to use the fact that b is

even prior to b := b/2 ;

We use an assertion to force the verifier to prove that b

is even after the if.

if b%2==1 {

c := c + a ;

b := b - 1 ; }

assert b % 2 == 0 ;

b := b/2 ;

a := 2*a ;

Having proved that b is even, the verifier will try to make

use of that information.

The loop now verifies.

Typeset February 3, 2020 16

Dafny. Slide set 000 c© Theodore Norvell

Soundness and spurious errors

Dafny is intended to be sound:

If the verifier reports no errors for a method:

• The method is correct.

• I.e., it meets its specification and terminates.

Dafny is not complete:

If the verifier reports at least one “verification failure”

• Either the method is not correct,

• or the method is correct, but the verifier can not prove

it (spurious failure).

Sources of spurious failures

• Loop invariants are too weak.

• The verifier needs more guidance.

Example traces

• When verification fails, the verifier produces an

example trace.

• The verifier can not prove the trace is not a counter-

example.

• Even spurious failures produce traces.

• In the VS environment, the Boogie Verification

Debugger displays the example.

• Often it is useful to consider these examples to find

the reason for failure.

Typeset February 3, 2020 17

