
Dafny. Slide set 020 Arrays c© Theodore Norvell

Arrays

Arrays are objects on the heap.

Arrays are accessed by pointers.

Arrays are sequences of mutable locations: its items.

Arrays have an immutable Length field.

var a := new int[5] ;

a[0], a[1], a[2], a[3], a[4] := 9, 4, 6, 3, 8 ;

var k := 0 ;

while(k < a.Length) { print a[k], "\n" ; k := k+1 ; }

Case study: compare and swap

Let’s write a method to compare two items (possibly the

same) of an int array and swap them so that the smaller

comes first.

Because it changes the contents of the array’s items, it is

a method with side-effects.

Up to now we have not seen methods with side effects.

Let’s look at this contract in detail:

method compareAndSwap(a : array<int>, p : int, q : int)

requires 0 <= p <= q < a.Length

The indices have to be valid.

modifies a

This line declares that the method has the side effect of

potentially changing the items of the array a points to.

Typeset February 5, 2020 1

Dafny. Slide set 020 Arrays c© Theodore Norvell

(When a contract has no modifies clause, it implicitly has

no side effects.)

ensures a[p] <= a[q]

The method ensures that after execution a[p] ≤ a[q].
ensures (a[p] == old(a[p]) && a[q] == old(a[q]))

|| (a[p] == old(a[q]) && a[q] == old(a[p]))

The method ensures that the final values of a[p] and a[q]

are either the same as their initial values or have been

swapped.

• The notation old(E) means the value that expression

E had when the method execution started.

• The parentheses are needed because Dafny puts ||
and && on the same level of precedence.

• This expression could be written more succinctly as

multiset{a[p], a[q]} == old(multiset{a[p], a[q]})

ensures forall i :: 0 <= i < a.Length && i != p && i != q

==> a[i] == old(a[i])

This postcondition ensures that all other items are

unchanged.

• ==> is Dafny’s implication operator

• Note the use of the forall quantifier. In mathematical

notation:

∀i · i ∈ {0, ..a. length} ∧ i �∈ {p, q} ⇒ a[i] = old(a[i])

Typeset February 5, 2020 2

Dafny. Slide set 020 Arrays c© Theodore Norvell

All together the contract looks like this

method compareAndSwap(a : array<int>, p : int, q : int)

requires 0 <= p <= q < a.Length

modifies a

ensures a[p] <= a[q]

ensures (a[p] == old(a[p]) && a[q] == old(a[q]))

|| (a[p] == old(a[q]) && a[q] == old(a[p]))

ensures forall i :: 0 <= i < a.Length && i != p && i != q

==> a[i] == old(a[i])

Typeset February 5, 2020 3

Dafny. Slide set 020 Arrays c© Theodore Norvell

Case Study: Selection Sort

We’ll write a method that sorts an array of ints in place.

Typeset February 5, 2020 4

Dafny. Slide set 020 Arrays c© Theodore Norvell

Some predicates

In order to specify it, we will define some predicates.

We’ll use Dafn’s sequence type in the predicates since

they are a little easier to use than arrays

• A sequence is a sequence of values.

• Sequences are values.

• Arrays are objects.

First we need to be able to say that a sequence is sorted.

predicate Sorted(s : seq<int>)

{

forall i,j : int :: 0 <= i <= j < |s| ==> s[i] <= s[j]

}

(Note |s| is the length of sequence s.)

Also we need to say that one sequence is a permutation

of another.

For this we use Dafny’s multiset type.

A multiset (aka bag) is a collection where order is not

important, but multiplicity is.

The expression multiset(s) is the multiset that has the

same items as s in the same numbers. For example

multiset([1, 1, 2, 1, 2, 3]) contains 1 thrice, 2 twice, and 3

once. It is equal to multiset([1, 1, 1, 2, 2, 3])
predicate PermutationOf(s : seq<int>, t : seq<int>) {

multiset(s) == multiset(t)

}

Typeset February 5, 2020 5

Dafny. Slide set 020 Arrays c© Theodore Norvell

A contract for sorting

Now we can write the contract for SelectionSort

method selectionSort(a : array<int>)

modifies a

ensures Sorted(a[..])

ensures PermutationOf(a[..], old(a[..]))

a[..] is the sequence of values of items of array a.

Dafny’s slice notation

If a is a sequence (or array)

• a[..] is the sequence of (the values of) all items.

• a[..v] is the sequence of (the values of) the first v items

of a.

• a[u..] is the sequence of all but (the values of) the first

u items of a.

• a[u..v] is the sequence of (the values of) the items a[i]
where u ≤ i < v.

Typeset February 5, 2020 6

Dafny. Slide set 020 Arrays c© Theodore Norvell

Finding an invariant

So far so good. Now we need an invariant.

The idea of selection sort is that we partition the array

into a left side and right side so that

• Every item on the left is ≤ every item on the right.

• The left side is sorted.

We also need that the array remains a permutation of its

original value.

First let’s make a predicate to express the idea that every

item on the left side of a sequence is ≤ every item on the

right side.

predicate Partitioned(s : seq<int>, p : int) {

forall i, j : int :: 0 <= i < p<= j < |s| ==> s[i] <= s[j] }

We are ready to state the invariant

invariant 0 <= p <= a.Length

invariant Sorted(a[0..p])

invariant Partitioned(a[..], p)

invariant PermutationOf(a[..], old(a[..]))

In the last line old(a[..]) refers to the value of a[..] at the

start of the method execution.
Typeset February 5, 2020 7

Dafny. Slide set 020 Arrays c© Theodore Norvell

Writing selection sort

We can start writing the code now

method selectionSort(a : array<int>)

contract as above

{

var p := 0 ;

while(p != a.Length)

invariant 0 <= p <= a.Length

invariant Sorted(a[0..p])

invariant Partitioned(a[..], p)

invariant PermutationOf(a[..], old(a[..])) {

}

}

Now for the loop body: Suppose we have a subroutine

that can find the index in a of the smallest item in the

segment a[p..a.Length]. Then we can write

while(p != a.Length)

invariant as above {

// Let q be an index of the least value in the right part.

var q := select(a, p) ;

assert forall i :: p <= i < a.Length ==> a[q] <= a[i] ;

a[p], a[q] := a[q], a[p] ;

p := p+1 ; }

Note that a multiple assignment

a[p], a[q] := e, f

is problematic if p = q and e �= f . The verifier checks that

this can not be the case.

Typeset February 5, 2020 8

Dafny. Slide set 020 Arrays c© Theodore Norvell

A contract for select

The contract and stub implementation for select is

method select(a : array<int>, p : int) returns (q : int)

requires 0 <= p < a.Length

ensures p <= q < a.Length

ensures Least(a[p..], a[q]) {

}

where Least is a predicate:

predicate Least(s : seq<int>, x : int)

{

forall i :: 0 <= i < |s| ==> x <= s[i]

}

Before we implement select, we can verify selectionSort.

Note that the contract of select has no modifies clause.

• That means it has no side effects.

• In particular it can change no item of the array.

• The verifier uses this information when checking

selectionSort’s loop.

• If we were to add modifies a to select’s contract, the

verifier would be unable to verify, for example, that

the left part of the array remains sorted when select is

called.

Typeset February 5, 2020 9

Dafny. Slide set 020 Arrays c© Theodore Norvell

Implementing select

The implementation of select is a straight-forward linear

search, maintaining that a[q] is the least item in segment

a[p..k]

method select(a : array<int>, p : int) returns (q : int)

requires 0 <= p < a.Length

ensures p <= q < a.Length

ensures Least(a[p..], a[q])

{

q := p ;

var k := p + 1 ;

while(k < a.Length)

invariant 0 <= p <= q < k <= a.Length

invariant Least(a[p..k], a[q])

{

if(a[k] < a[q]) { q := k ; }

k := k + 1 ;

}

}

Typeset February 5, 2020 10

