
Proof-Outline Logic.

(Sequential Programming Edition)

Theodore S Norvell
Electrical and Computer Engineering

Memorial University

Draft typeset January 10, 2020

Abstract

An introduction to proof outlines and Hoare logic.

Contents

0 Preface 1

1 Assertions and logic 1
1.0 Conditions and assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Assertions in C, C++, and Java . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.0 Be an assertive programmer . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Propositional and predicate logic . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Sequential programming 5
2.0 Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Partial correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Some examples of assignments and a rule . . . . . . . . . . . . . . . . . . . . 7
2.3 A bigger example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Proof outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Correctness of proof outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.0 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.1 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Correctness of the example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Note on editions: This is the Sequential Programming edition, designed to support

MUN course Engi-5892 Algorithms: Correctness and Complexity. There is also a Concur-
rent Programming edition, which contains additional sections on concurrent programming.
The Concurrent Programming edition uses a somewhat different notation –one that better
matches Andrews’s text book. [Andrews, 2000].

0



0 Preface

This note provides background on assertions and the use of assertions in designing correct
programs.

The ideas presented are mainly due, for the sequential programming part, to Floyd [Floyd,
1967] and Hoare [Hoare, 1969]. Blikle [Blikle, 1979] presented an early version of proof-outline
logic.

Sections 1 and 2 deal with sequential programming. As such they are an elaboration of
Hoare’s excellent ‘Axiomatic basis’ paper [Hoare, 1969]. I suggest reading Hoare’s paper first.
For sequential programs, proof-outline logic is just like Hoare logic except that commands
contain internal assertions.

1 Assertions and logic

1.0 Conditions and assertions

A condition is a boolean expression with free variables chosen from the state variables of a
program. For example, if variables x and y of type int appear in a program, then the following
are all examples of conditions

x < y

x = y

x+ y = 0

x ≥ 0

x ≥ 0 ∧ x+ y = 0 .

A condition that is expected to be true every time execution passes a particular point
in a program is called an assertion. In this course, assertions are preceded by ## and are
followed by an end-of-line like this:0

int x ;
int y ;
x := 5 ;
y := -5 ;
## x ≥ 0 ∧ x+ y = 0
z := x+z ;

Sometimes I’ll write assertions inside curly brackets like this:

int x ; int y ; x := 5 ; y := -5 ; {x ≥ 0 ∧ x+ y = 0} z := x+y ;

0This fragment uses both the symbol := and =.This is one of those “notational improvements” I mentioned.
I will use := for assignment and either = or == for equality when writing pseudo-code. In C, C++, and Java,
= is used for assignment and == for equality. Andrews follows the C/C++/Java convention. If you want to
be on the safe side of any possible misunderstanding, you can use := for assignment and == for equality.

1



1.1 Assertions in C, C++, and Java

If one is programming in C or C++, then assertions may be written either as comments or
using the assert macro from the standard C library. E.g.

#include <assert.h>
...
int x ;
int y ;
x = 5 ;
y = -5 ;
assert( x >=0 && x+y == 0 ) ;

Assertions written using the assert macro will be evaluated at run time and the program will
come to a grinding halt, should the assertion ever evaluate to false.1

In Java one can easily create one’s own Assert class with a check method in it.2

public class Assert {

public static void check( boolean b ) {

if( !b ) { throw new java.lang.AssertionError() ; }

}

}

This can be used in your code as follows:

int x ;
int y ;
x = 5 ;
y = -5 ;
Assert.check( x >=0 && x+y == 0 ) ;

1.1.0 Be an assertive programmer

Using assertions has several benefits.

• In the design process, they help you articulate what conditions you expect to be true
at various points in program execution.

• In testing, executable assertions can help you identify errors in your code or in your
design.

1By using a different include file, one can, of course, make the action followed on a false assertion be
whatever you like. For example, in a desktop application, one might cause all files to be saved and an error
report to be assembled and e-mailed back to the developers; in an embedded system, one might cause the
system to go into safe mode. If you program in C or C++, I strongly suggest redefining the assert macro in a
way that suits your application. And use it!

2As of Java 1.4, there is actually an assert keyword in Java. However I don’t recommend its use. Assertion
checking is turned off by default in most (if not all) JVMs. This can be compared to removing the seat belts
from a car’s design once it goes into production. In my own work I use my own assertion checking class. I
recommend you do the same.

2



• In execution, executable assertions –combined with a recovery mechanism– can help
make your program more fault tolerant.

• Assertions provide valuable documentation. Executable assertions are more valuable
than comments, as they are more likely to be accurate.

Whether to code assertions as comments or as executable checks is a question that depends
on the local conditions of the project you are working on. Sometimes it has to be answered on
a case-by-case basis. In this course we will concentrate on the use of assertions in the design
process, rather than on their (nevertheless important) uses in testing, documentation, and in
making systems fault-tolerant. My general advice is to make assertions executable as much
as is practical.3

1.2 Substitutions

Sometimes it is useful to create a new condition by replacing all free occurrences of a variable
x in a condition P by an expression (E). We write P [x : E] for the new condition.4 For
example

(x ≥ 0 ∧ x+ y = 0) [x : z] is (z) ≥ 0 ∧ (z) + y = 0
(x ≥ 0 ∧ x+ y = 0) [x : x+ y] is (x+ y) ≥ 0 ∧ (x+ y) + y = 0
(2y = 5) [y : y + z] is 2(y + z) = 5 .

It is useful to extend this notation to allow simultaneous substitution for more than one
variable. For example

(x ≥ 0 ∧ x+ y = 0) [x, y : z, x] is (z) ≥ 0 ∧ (z) + (x) = 0

Usually we omit the parentheses in contexts where they are not required.

1.3 Propositional and predicate logic

In this section, I will review a little bit of propositional and predicate logic. We use notations ¬
(not), = (equality), ∧ (and), ∨, (or), and⇒ (implication). Precedence between the operators

3 In concurrent programming there is an additional complication in making assertions executable, namely
that they should be evaluated atomically. Consider the assertion

x = 0 ∨ y = 0

if we evaluate this in parallel with the following sequence of assignments

x := 0; y := 1;

it is possible that the assertion will evaluate to false even though there is no time at which it is in fact false.
This problem can be solved by evaluating assertions only when the thread has exclusive access to the data

they refer to.
4A variety of notations are used by authors for substitutions. I like this one because it doesn’t use subscripts

or superscripts.

3



is in the same order. Some of the laws of propositional logic that will be useful are

(P ⇒ Q) = (¬P ∨Q) Material implication
(true ⇒ P ) = P Identity
false ⇒ P Antidomination
P ⇒ P Reflexivity
P ⇒ true Domination
(P ⇒ (Q⇒ R)) = (P ∧Q⇒ R) Shunting
(P0⇒ Q)⇒ (P0 ∧ P1⇒ Q) Subsetting the antecedent
(P ⇒ Q ∧R) = (P ⇒ Q) ∧ (P ⇒ R) Distributivity

Also frequently useful are the one-point laws, which let you make use of information
from equalities. E and F range over expressions of any type, v is a variable of that same
type.

(E = F ⇒ P [v : E]) = (E = F ⇒ P [v : F ])

(E = F ∧ P [v : E]) = (E = F ∧ P [v : F ])

To see that these are true, consider the case where E = F and then the case where E 	= F .
For example

x = X ∧ y = Y ⇒ xy = XY

simplifies, using one-point (and shunting), to

x = X ∧ y = Y ⇒ XY = XY

which then simplifies to
x = X ∧ y = Y ⇒ true

which is then true.
Any condition that is true for all assignments of values to its free variables, is called a

universally true formula. For example, (assuming x and y and z are integer variables) the
following are all universally true

2 + 2 = 4

x < y ∧ y < z ⇒ x < z

x+ 1 > x

However, x2 + y2 = z2 is not universally true, because there is an assignment for which it is
not true; for example 32 + 42 = 62 is not true.

Whether a condition is universally true may depend on the types ascribed to its variables.
For example, if we are using Java and x has type int, then, by the rules of the Java language,
the value of x + 1, when x is 231 − 1, is −231; so x + 1 > x is not universally true when x
represents a Java int and + is interpreted as Java int addition.

Sometimes expressions are undefined, for example, supposing x and y are rational vari-
ables, x/y is undefined when y is 0. This raises the question of whether 1 = x/x is universally
true. We’ll say that such an expression is not universally true because sometimes it is unde-
fined. However, the expression x 	= 0⇒ 1 = x/x is universally true; if we consider the case of
x = 0, we have false⇒ ?, and, applying the principle of antidomination, this is true whether
the ? represents something true or false.

4



We will follow the C, Java, C++ and Dafny languages by considering the Boolean opera-
tors ∧, ∨, and⇒ as being undefined if (and only if) their left operand is undefined or if their
left operand is defined, their right operand is undefined, and the value of the left operand
does not determine a value. Using ? to represent an unknown or undefined truth value, we
can fill in truth tables for the propositional logic as follows

¬

false true

? ?

true false

∧ false ? true

false false false false

? ? ? ?

true false ? true

∨ false ? true

false ? ? true

? ? ? true

true true true true

⇒ false ? true

false true true true

? ? ? ?

true false ? true

Note that, in this logic, the “and” and “or” operators are not necessarily commutative.
Before applying the commutative laws, we should convince ourselves that both operands are
defined. Furthermore the identity, reflexivity, and domination laws for implication only hold
when it is known that P is defined.

2 Sequential programming

2.0 Contracts

A specification for a component indicates the operating conditions (i.e. the conditions under
which the component is expected to operate) and the function of the component (i.e. the
relationship between the component’s inputs and outputs). For example we might specify a
resistor by saying that the relationship between the voltage and current across the resistor is
given by

953I ≤ V ≤ 1050I ,

provided
0 ≤ V ≤ +10 .

The latter formula gives the operating conditions, the former the relation between inputs and
outputs.

In programming, we can use a pair of assertions as a specification or “contract” for a
command or subroutine. The first assertion is the so-called precondition, it specifies the
operating conditions, that is, the state of the program when the command begins operation.
The second assertion specifies the state of the program when (and if) the command ends
operation. For example, the following pair of conditions specifies a command that results in
x being assigned the value 5, provided that y is initially 4

[y = 4, x = 5] ,

where x and y are understood to be state variables of type int. One solution to this particular
contract is

5



{y = 4}
x := y + 1
{x = 5} .

Such a triple, consisting of a precondition, a command, and a postcondition, is called aHoare
triple after C.A.R. Hoare, who introduced the idea to programming. Here is another solution:

{y = 4}
x := 5 ;
{x = 5} .

Here is one more:

{y = 4}
y := y + 1 ;
x := y ;
{x = 5} .

Nothing in the contract says that y must not change!
If you do want to specify that a variable does not change, then ‘constants’ can be used.

Constants are conventionally written with capital letters. The following contract specifies
that, provided y is initially less than 100, y must not change and the final value of x must be
larger than that of y:

[y < 100 ∧ y = Y, y = Y ∧ x > y]

where it is understood that x and y are state variables of type int, while Y is a constant5 of
type int.

2.1 Partial correctness

Consider a Hoare triple {P} S {Q}. We define that the triple is partially correct if and
only if, for all possible values of all constants, whenever the execution of S is started in a
state satisfying P , the execution of S does not crash and can only end in a state satisfying
Q.6

5The word ‘constant’ is the traditional term to use. In the mathematical sense, Y is a variable. We use the
term ‘constant’ to distinguish such mathematical variables from “program variables” which refer to components
of the program state. The point is that Y can’t be changed by the execution of the program so Y represents
the same value in both the precondition and in the postcondition. Since the precondition implies y = Y and
the postcondition implies y = Y , it is clear that y has the same value in the final state as it has in the initial
state.

6This definition is incomplete because it assumes that the reader has an understanding of what it means
for a program to execute starting from a given state. This can be formalized mathematically by giving a
“semantics” to our programming language.
Such a semantics would define, for each statement S, a boolean function s so that s(σ, σ′) is true if and only

if a computation executing S, started in state σ, could terminate in a state σ′. (I say could terminate, to allow
for nondeterminism.) We use a special state ⊥ to mean that the computation has crashed, so s(σ,⊥) means
that a computation executing S,started in state σ, could terminate by crashing.
Let’s suppose that the expression P corresponds to a boolean function p such that p(σ, x1, x2, . . . xk) is true

only when P describes state σ and constants x1, x2, . . ., and xk; and that Q corresponds similarly to a boolean
function q. We assume that p and q are false when the state is ⊥.
We can define ‘partially correct’ in a more formal way by saying that {P}S {Q} is partially correct if and

only if, for all states σ and σ′, and for all values x1, x2, . . ., and xk, if p(σ, x1, x2, . . . xk) and s(σ, σ
′), then

6



Note that the definition of partial correctness does not require that S should terminate.
Thus the following triple is partially correct even if we interpret x to have the type Z, that
is, to range over all mathematical integers

{true} while x 	= 0 do x := x− 1 end while {x = 0} .

If we consider initial states where x is positive or zero, then eventually the while-loop will
terminate and the program will halt in a state where x = 0, satisfying the postcondition. If
we start the while-loop in an initial state where x is negative, then the while-loop will never
terminate and so execution “can only end in a state satisfying” the postcondition by virtue
of the fact it never ends at all!

In concurrent programming, we are often interested in processes that do not terminate
(e.g., in embedded systems) so dealing with partial correctness is an appropriate and desirable
thing to do. If termination is important, we can deal with it as a separate concern. From here
on, we won’t be worried about any other kind of correctness, so we will just say “correct”.

2.2 Some examples of assignments and a rule

Here are some small examples of Hoare triples. In each case the variables should be understood
to be integers

{x+ 1 = y} x := x+ 1 {x = y}

Is this triple correct? (Answer for yourself before reading on...) If initially y is x+ 1 and we
change x to x+1, then finally both x and y will equal the original value of x+1, and so they
will equal each other. Yes, it is correct.

How about
{2x = 3y} x := 2x {x = 3y}

Is this correct? Well, if initially 2x is 3y, then, after changing x to 2x, finally x will be 3y.
These two examples suggest a general rule, which is: for any condition Q, variable v, and

expression E,
{Q[v : E]} v := E {Q} is correct.

When Q is the postcondition of an assignment v := E, we call Q[v : E] the substituted
postcondition.

The rule above is sound, but it does not let us show that

{2x < 3y} x := 2x {x ≤ 3y}

is correct. The substituted postcondition is (x ≤ 3y)[x : 2x], which is 2x ≤ 3y, but the
precondition is not that, it is 2x < 3y. This motivates a more general rule: for any conditions
P and Q, variable v, and expression E,

{P} v := E {Q} is correct if P ⇒ Q[v : E] is universally true.

There is one more aspect to assignment that should be mentioned. This is that the
expression might not always be defined. For example, if we divide by 0, this may be an error

q(σ′, x1, x2, . . . xk).
This definition is still incomplete since I haven’t defined how a function s is derived from each statement S,

but I’ll leave that as an exercise.

7



and we should consider that, if this happens, the program has crashed.7 Since a command
that crashes is not partially correct, we should really ensure that our rule for assignments
includes checking that the expression is well defined. Let’s suppose that, for each expression
E, there is a condition df[E] that says that E is well-defined, i.e. does not crash when
evaluated. For example, df[x/y] might be y 	= 0. Now the improved assignment rule is

{P} v := E {Q} is correct if P ⇒ df[E] is universally true
and P ⇒ Q[v : E] is universally true

(assignment rule)

In many cases df[E] is simply true, and so it is trivial that P ⇒ df[E] is universally true.
This rule generalizes to simultaneous assignments to multiple variables. For two variables

it is

{P} v, w := E,F {Q} is correct if P ⇒ df[E] ∧ df[F ] is universally true
and P ⇒ Q[v,w : E,F ] is universally true

(assignment rule)
For example

{x < y} x, y := y, x {y ≤ x}

The substituted postcondition is (y ≤ x) [x, y : y, x], which is x ≤ y; this is implied (for all
values of x and y) by x < y.

Here is one last example of an assignment; it will be of use later.

{y ≥ 0 ∧ x = X ∧ y = Y } z := 1
{
y ≥ 0 ∧XY = z × xy

}

First we find the substituted postcondition

y ≥ 0 ∧XY = 1× xy

which simplifies to
y ≥ 0 ∧XY = xy

This (using one-point laws) is implied by the precondition y ≥ 0 ∧ x = X ∧ y = Y .

2.3 A bigger example

Here is another example. I claim that

{y ≥ 0 ∧ x = X ∧ y = Y } S
{
z = XY

}
, (0)

is correct, where

S � (z := 1;while( y > 0 ) T )

T � if odd(y) then U else V end if

U � (z := z × x; y := y − 1; )

V � (x := x× x; y := y div 2; ) .

Here all variables are integers. y div 2 means the integer part of y/2, so if y is even, y div 2 =
y
2
.
To show that this triple is correct, we’ll need to deal with constructs other than assign-

ments. For that we introduce a new idea: proof outlines.

7This particular example depends on the language. In C and C++, dividing by 0 is considered ‘undefined
behaviour’, which means anything can happen. In this case, we might as well assume the worst possible
outcome. For the purpose of this essay, we’ll assume this is crashing the program. In Java, on the other-hand,
a floating point division by 0 is perfectly well defined.

8



{y ≥ 0 ∧ x = X ∧ y = Y }
z := 1 ;{
y ≥ 0 ∧XY = z × xy

}

while y > 0 do{
XY = z × xy ∧ y > 0

}

if odd(y) then{
XY = z × xy ∧ y > 0 ∧ odd(y)

}

z := z × y{
y − 1 ≥ 0 ∧XY = z × xy−1

}

y := y − 1

else{
XY = z × xy ∧ y > 0 ∧ even(y)

}

x := x× x{
even(y) ∧ y/2 ≥ 0 ∧XY = z × x

y

2

}

y := y div 2

end if

end while{
z = XY

}

Figure 0: An example proof outline.

2.4 Proof outlines

A proof outline is a command that is annotated with assertions. It represents the outline
of a proof of the program. Figure 0 is a proof outline for the example of the last section.

A proof outline is not a proof; it is a summary of a proof. This is why it is called a ‘proof
outline’.

2.5 Correctness of proof outlines

2.5.0 Definition

We define that the proof outline {P} S {Q} is partially correct if and only if, for all
possible values of all constants, whenever the execution of S is started in a state satisfying
P , the execution of S does not crash and can only end in a state satisfying Q and that each
time an internal assertion is encountered, it is true. Note that an assertion that comes right
before a loop must be true each time the loop condition is checked.

Suppose {P} S {Q} is a partially correct proof outline. Let Ŝ be formed by deleting all
assertions from S or by treating them as comments. Now {P} Ŝ {Q} is a partially correct
Hoare triple.

2.5.1 Rules

Earlier we saw a rule for assignment; here I’ll give rules for all proof outlines.

9



Assignment Rule: {P} v := E {Q} is a partially correct proof outline if

P ⇒ Q[v : E] is universally true and P ⇒ df[E] is universally true .

Skip Rule: {P} skip {Q} is a partially correct proof outline if

P ⇒ Q is universally true .

(Sequential) Composition Rule: {P} S {Q} T {R} is a partially correct proof
outline, provided

• that {P} S {Q} is a partially correct proof outline, and

• that {Q} T {R} is a partially correct proof outline.

2-Tailed If Rule: {P} if( E ) {Q0} S else {Q1} T {R} is a partially correct proof
outline, provided

• that {Q0} S {R} is a partially correct proof outline,

• that {Q1} T {R} is a partially correct proof outline,

• that P ⇒ df[E] is universally true,

• that P ∧E ⇒ Q0 is universally true, and

• that P ∧ ¬E ⇒ Q1 is universally true.

1-Tailed If Rule: {P} if( E ) {Q} S {R} is a partially correct proof outline, provided

• that {Q} S {R} is a partially correct proof outline,

• that P ⇒ df[E] is universally true,

• that P ∧E ⇒ Q is universally true, and

• that P ∧ ¬E ⇒ R is universally true.

Iteration Rule: {P} while( E ) {Q} S {R} is a partially correct proof outline, provided

• that P ⇒ df[E] is universally true,

• that P ∧E ⇒ Q is universally true,

• that P ∧ ¬E ⇒ R is universally true, and

• that {Q} S {P} is a partially correct proof outline.

10



By the way, the loop’s precondition, P , is called an invariant of the loop. Loop invariants
are crucial in designing and documenting loops. Note that, provided it is true when the while
command starts, the invariant will be true at the start of each iteration and when the loop
terminates. Loop invariants allow us to analyze the effect of a loop by considering only the
effect of a single iteration.

From here on we will write “correct” in place of “partially correct”, as we won’t be
concerned with any other sort of correctness.

In a proof outline, all commands will be preceded by an assertion. This is its precondi-
tion. In the example, the precondition of y := y/2; is

even(y) ∧ y/2 ≥ 0 ∧XY = z × xy/2

and the precondition of x := x× x; is

XY = z × xy ∧ y > 0 ∧ even(y) .

A proof outline is provably correct if it can be shown to by correct using just the rules
of this section (plus whatever rules or techniques are needed to show that conditions are
universally true. Not all correct proof outlines are provably correct. For example

{x = 1} x := x+ 1 {x > 0} x := x+ 1 {x = 3}

is correct, but it is not provably correct.

2.6 Correctness of the example

There is a little, but not much, work left to show that the example proof outline in Figure 0
is correct. First a recall that a boolean formula is said to be universally true if it evaluates to
true regardless of the values chosen for its free variables (including our so-called constants).

Let’s call the loop invariant I.

I � y ≥ 0 ∧XY = z × xy

• Because of the first assignment, we must show

y ≥ 0 ∧ x = X ∧ y = Y ⇒ I[z : 1]

is universally true. After substitution we have

y ≥ 0 ∧ x = X ∧ y = Y ⇒ y ≥ 0 ∧XY = 1× xy

which (using a one-point law) we can easily see is universally true.

• From the rule for while-loops, we must show

I ∧ y > 0⇒ XY = z × xy ∧ y > 0

I ∧ ¬ (y > 0)⇒ z = XY

are each universally true. Both are fairly straight-forward.

11



• From the rule for 2-tailed if commands, we must show

XY = z × xy ∧ y > 0 ∧ odd(y)⇒ XY = z × xy ∧ y > 0 ∧ odd(y) and

XY = z × xy ∧ y > 0 ∧ ¬odd(y)⇒ XY = z × xy ∧ y > 0 ∧ even(y)

are each universally true. Both are trivial.

• The four assignments in the loop body give rise to four expressions that should be shown
to be universally true:

XY = z × xy ∧ y > 0 ∧ odd(y) ⇒
(
y − 1 ≥ 0 ∧XY = z × xy−1

)
[z : z × y]

y − 1 ≥ 0 ∧XY = z × xy−1 ⇒ I[y : y − 1]

XY = z × xy ∧ y > 0 ∧ even(y) ⇒
(
even(y) ∧ y/2 ≥ 0 ∧XY = z × x

y

2

)
[x : x× x]

even(y) ∧ y/2 ≥ 0 ∧XY = z × x
y
2 ⇒ I[y : y div 2]

Each of these can be shown to be true using the usual laws of arithmetic.

References

[Andrews, 2000] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and distributed

programming. Addison Wesley Longman, 2000.

[Blikle, 1979] Andrzej J. Blikle. Assertion programming. In J. Bečvář, editor, Mathematical

Foundations of Computer Science 1979, number 74 in Lecture Notes in Computer Science,
pages 26—42, 1979.

[Floyd, 1967] Robert Floyd. Assigning meanings to programs. In Proceedings of Symposia in

Applied Mathematics, Volume XIX, 1967.

[Hoare, 1969] C. A. R. Hoare. An axiomatic basis for computer programming. Communica-

tions of the ACM, 12(10):576—580, 583, 1969.

12


