The Sockets API

[Walit! If you are not familiar with file descriptors and the
UNIX read and write system calls, read chapter 10 of
Bryant and O’Hallaron and/or my summary before going
on.]

In this section we take a closer look at how to use TCP
from C using the UNIX interface.

In UNIX and POSIX, TCP is accessed via the Sockets
interface.

Sockets can be used with a number of networking
protocols, not just TCP.
The main data structures include.

e struct sockaddr — includes
x an |IP address and

x a port number
e struct sockaddrinfo — includes
* a sockaddr
x a family (e.g. IPv4 or IPv6)
* a socket type (e.g. streaming or datagram)
x a protocol (e.g. TCP or UDP)
e file descriptors
x As with disk files, file descriptors are integers that

are obtained from the operating system and that
can be used with the read and wr ite functions.

Making things confusing sockaddr structures look
quite different depending on whether IPv4 or IPv6 is

being used. The calls use pointers of type struct
sockaddr, but the actual objects should be stored in
a struct sockaddr_storage structure, to ensure
there is enough space.

Some useful functions in the API include

® getaddrinfo
«x Does DNS lookup

x Input:
- A host name. E.g. "server.black.com"

- A port number.
- A set of restrictions. E.g. must be TCP.

x Output:
- A'list of sockaddrinfo records

x It returns a list because a single host name may
map to several IP addresses and the host may
support both IPv4 and IPv6 and TCP and UDP.

® socket
x Creates, but does not open, a “socket”
x Input:
- a family (e.g. IPv4 or IPv6)
- a socket type (e.g. streaming or datagram)
- a protocol (e.g. TCP or UDP)

x Output:
- a file descriptor for the socket

® connect
«x Used by the client to create a connection.

x Analogous to open for the client
x Input:
- a file descriptor for a socket

- the socket address (struct sockaddr) for the
service

e bind
x Used by the server to connect a server socket to a
port number.

x Input:
- a file descriptor for a socket

- the socket address (struct sockaddr) for the
service

e listen
x Used by the server to initiate listening on a port
x Input:
- a file descriptor for a bound socket

- the number of connection requests that may be
queued

® accept
« Used by the server to create a new connection

x Analogous to open for the server

x Waits until a connection is requested by a client and
the connection is established

x Input:
- a file descriptor for a server socket that is listening

x Output:

- A file descriptor for a new socket.
- The socket address of the new client.

e read
« Walts until there is at least one byte can be read or
the connection is closed.
x Input
- A file descriptor for a socket.

+ Output
- A sequence of 0 or more bytes.

x 0 bytes means the connection was closed.

e write
x Input:
- A file descriptor for a socket.

- A sequence of bytes to send.
® close

x Input:
- A file descriptor

x Half closes the connection

® select
x Input
- A set of file descriptors

+ Output
- A set of file descriptors that can be read from

x select blocks until at least on file descriptor in the
set can be read

x The output is a subset of the input.

x Calling read on any file descriptor in the output set
will not block.

Some examples

The following images illustrate use of the sockets
interface in UNIX

Legend

e Solid horizontal arrows represent calls from the
application the OS.

e Dashed horizontal arrows represent returns from
those calls.

e Diagonal solid arrows represent TCP messages.

e The thin yellow rectangles show activities. For
example the execution of a subroutine.

Establishing a connection

Client

Application

Client OS

8: socket

9: file descriptor

10: connect(80)

- ——mm s m—m =1

AN

The client's
socket is now
associated with
port 61,234 on
this end and
port 54,321 on
the other.

Server OS

.-

—1

—

11: SYN
13: SYN-AC

|
|
|
T |
|
|

15: ACK

Server Application

1: socket

2: file descriptor

—1
I
|
|
|
I
|
I
|
|
|
|
I
I
|
I
|
|
I
\L;

7. accept

Server is
_____ blocked
waiting for a
SYN message.

I
|
|
|
|
|
|
|
|
|
I
|
| IS >
|
|
i

12: file descriptor

A new socket has
been created.

The new socket is
associated with
port 54,321 on this
end and port

61,234 on the other.

AN

Buffered communication.

It is important to understand that each socket endpoint
has two buffers one for sending and one for receiving.

e read calls transfer data from the read buffer to the
application.

e write calls transfer data from the application to the
write buffer.

e The OSs use TCP to transfer from the write buffer on
one host to the read buffer on the other.

The follow image shows reading and writing

Client Client OS Server 0S Server Application
Application

|
1: write("hello") I

. : 3: "hello”
Write returns | ;= > .
without delay ! 5: ACK 4: write("ni hao")
' 6: 6
________________ :_:,

: Here the
implementation
of write

L 10: ACK decided to send
|
11: read() '\Q two packets.
..J_

Note that the amount read by each read may not relate to
the amount written. In this case, the server sends ‘ni hao’
with one write, but it takes 2 reads to read everything
written.

Nonblocking writes: Calls to write might not write the
entire message. We may have to call write many times
to completely transfer our message to the write buffer.

Client
Application
!

Client OS

Server OS

L

1: write("supercalifragilistic")

I
|
I__
|
|

H

Only 4 bytes were
accepted by the OS.
The application must
send the rest later.

___Buffer is "iIiticexpi"%

bytes.

Buffer is empty }
~-land can hold 24 |
|

|

|

|

--45ize = 20

Buffer is "supercalifragilistic” ﬁ

__ |Buffer is "supercalifragilisticexpi"
Size = 24

|
- "supercalifrag” |
|

6: ACK

Size = 10

Buffer is "ilisticexpialidocious” %

" |Size is 20

9: "ilisticexpialidocious",
|

Buffer is empth

Blocking reads. read will block (i.e. wait) until one of the
following happens

e There is a positive number of bytes it can read.
e The socket is closed.
e An error happens.

The diagram below shows the first two cases

Client Client OS Server OS Server Application

Application ;
} Suppose both }
| read buffers |

1: read() ._I _____ are empty to 12 write("bonjour")

€L

start.

The read calls ______3_3 ______ =
are blocked i

until there is k’i’};.gllw/ﬂ

data or a FIN. I

50 ACK |
6: "bonjour" \J‘

I I 7: read()
! 1
|

Closing a connection

Client Client OS
Application

k §
I~

Server OS Server Application
1: write("bye")
2:3
_______ Tdose 7
4:
____________________T‘:;.

all sends are

sending FIN.

The server OS must
wait until its send
buffer is empty and

acknowledged before

|Because the other side
has closed the
connection, this read
returns nothing. That

stream.

does not block. Instead it

indicates the end of the

%

Each process closes its endpoint.

End of networks-02.

———

