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Preface

Engineering is based on models and these models are usually mathemati-
cal. Engineers use mathematics in order to create mathematical models of
things (systems) and situations (environments). By analyzing the properties
of their mathematical models, engineers predict properties of real things in
real situations. Even when a full analysis is not done, informal modelling and
informal conclusions about the model guide an engineer’s intuitions about de-
sign. For long established engineering disciplines such as Civil Engineering,
Mechanical Engineering, and Electrical Engineering, I think that the preced-
ing statements are not controversial. This book takes as a premise that the
same applies to much of Computer Engineering, Software Engineering, and
Computer Science.

This book is about some of the mathematical modelling techniques that
apply to computing. It focusses particularly on modelling techniques that
can be used to reason about the correctness and the efficiency of computer
programs and digital hardware designs.

The first part of the book is about theories of correctness. We’ll look at
a theory that lets us specify the correct behaviour of a system or program
– we will consider computer programs to be certain kind of system. This
theory is generally known as ‘Predicative Programming’ and it provides an
approach that is very easy to understand but also very general. The theory
also gives us tools to decide whether a system is correct with respect to its
specification and, importantly, it gives us methods to derive correct programs
from their specifications. We also look at the related theories of Hoare-triples
and Proof Outline Logic. The latter is particularly useful for analyzing the
correctness of parallel programs, which is an important and tricky subject.

The second part of the book deals with sequences. Sets of sequences are
called languages and we will look at ways of describing languages and ways
of writing programs that recognize and analyse sequences (parsers).
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xii Preface

The third part of the book deals with efficiency, in particular, asymp-
totic time complexity. The key idea is that by being a bit abstract we can
compare the efficiency of algorithms without assuming much about their im-
plementations. We do this by considering not the actual time that they take
on particular inputs, but rather the way that the time they take increases
as the size of the input increases. If one algorithm takes time proportional
to the square of the size of its input, while another takes time proportional
to the cube of the size of its input, we can see that the first algorithm will
be quicker, for large enough inputs, regardless of implementation details and
the values of the input. We need to know the details of implementation to
know where the cross-over point will be, but not to see that there will be one
and which algorithm will come out as the faster in the long run. We can use
this approach not only to compare algorithms, but also to compare problems.
We can draw the line between easy and hard problems according to whether
the best algorithm for the problem is ‘fast’ or ‘slow’. By defining ‘fast’ to
mean that the time increases as a polynomial function of the input size, we
are led to the theory of NP-completeness and one of the major unsolved
problems of algorithmics, the so-called P = NP problem. Most books that
take the study of computational efficiency as far as NP-completeness do so
using very abstract models of computation, usually Turing Machines. While
this approach may be elegant, it is unnecessary and may be off-putting to
the typical student who is used to using programming languages, not Turing
Machines. My approach is to use ordinary programming notation and ma-
chine models that are closer to common experience to present computational
efficiency and complexity.
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3

Letter conventions for this part of the book

I’ll use variables as follows.

e, f, g, h, w Specifications (or boolean valued functions)

A,B, C, I Boolean expressions

E ,F Expressions or sequences of expressions

V,W Names or sequences of names

Σ Signatures

b, i,m, o Behaviours

σ States

n Natural numbers

Note: variables used inside angle brackets, 〈〉, (and certain other places,
such as between if and then,between while and do, and before and after
the := sign) are state variables and do not follow these conventions. For
example, the variable i is often used as the name of an integer component of
the state. The V and W, on the other hand, are not names themselves, but
mathematical variables that range over names.
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Chapter 0

Modelling (Computing)
Systems

By a model is meant a mathematical construct which, with the addition of
certain verbal interpretations, describes observed phenomena.

John von Neumann

0.0 Systems and Behavioural specifications

A system is any object or collection of objects that imposes constraints on System
some collection of quantities. The collection of quantities is called the system
boundary. For example an amplifier might have as part of its system bound-
ary, the voltages on its supply voltage, input wire and output wire, and also
its temperature and the amount of heat that it radiates. An airplane might
have as part of its system boundary its shape, size, position, velocity, thrust,
and the orientation of its various control surfaces (ailerons, rudder). System
boundaries must be chosen carefully, as we will often think of a system as a
“black box”; that is, we will think only about the system boundary and ig-
nore any quantities within the system entirely. For example, while specifying
a system, we will discuss only the quantities at the system boundary.

Any real engineered product will have a very complex system boundary
and an important part of building a system model is to chose a subset of
the system boundary to model. For example a system model of an airplane,
modelling aerodynamic properties, might ignore the shape and size of the
airplane and focus on how its position, velocity, thrust, and control surfaces
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6 Modelling (Computing) Systems

relate. A system model for an amplifier might ignore the supply voltage, the
temperature and the heat given off.

In Engineering, we use names (variables) to represent actual physical
quantities, things like voltages, currents etc. For example while

V = I ×R

is not necessarily true mathematically (take V = 3, I = 4, and R = 5),
it is true physically, provided V represents the voltage across a resistor, I
represents the current across the same resistor andR represents the resistance
of the resistor, expressed in appropriate units. Often these quantities we give
names to are ones on system boundaries.

Our description of systems and system boundaries, above, is rather vague
and certainly subject to disagreement. To try to be more precise, I’ll define
mathematical concepts that reflect the aspects of systems and system bound-
aries that are of most interest for the purposes of this book. These concepts
are signatures, behaviours, and behavioural specifications.

A signature is a list of the names for a system boundary together with
information about the mathematical type for each name.

Signature
Definition 0 A signature Σ is a partial function from a set of names to
some set of nonempty sets.

Variable
Definition 1 The names in the domain of a signature are variously called
its boundary variables, its state variables, or simply its variables.0

A signature is the mathematical part of a system’s boundary. Consider
for example, an amplifier. Suppose that we choose to ignore such aspects as
heat, current drain, temperature, and focus only on how the voltages on the
input and output wires relate. These voltages change over time so each wire
can be mathematically represented as a function of time. We can use the
real numbers to represent time in seconds and also to represent voltage in

0We call these names variables, following computing tradition, although, mathemati-
cally, they are values. Even within computing, the word variable is used in at least three
senses: first, for a name that is mapped to a value, second, for a name that is mapped to
a memory location, and, third, for a location in a computer’s memory. In this book, we
use the word in the first sense.
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0.0 Systems and Behavioural specifications 7

volts, so each of the two wires will be a function from real numbers to real
numbers. If we choose to call the input “x” and the output “x′’”, then the
signature1 will be

{
“x” �→

(
R

tot→ R
)
, “x′” �→

(
R

tot→ R
)}

.

There is a lot of information not represented in this signature, information
that is not mathematical in nature. For example, that we are using volts
rather than say millivolts for voltage, that we are using seconds rather than
minutes or milliseconds to measure time, what ground is used as a reference
voltage and what instant is used for time zero. Even the facts that the
variable “x” represents the input and the variable “x′” represents the output
are not explicitly a part of the signature. So signatures leave out a lot of
useful information that should be supplied by the engineer, by context, or
by convention. Nevertheless, signatures contain the essential mathematical
information about a system’s boundary and so they will do for the purposes
of this book.

If we observe a system, we can measure the value of each of the quantities
on its boundary. A behaviour consists of a particular value for each variable
of a signature.

Behaviour
Definition 2 A behaviour is a partial function from a set of names. A
behaviour b belongs to a signature Σ iff

dom(b) = dom(Σ) ∧ ∀n ∈ dom(Σ) · b(n) ∈ Σ(n) .

I’ll use the notation b : Σ to mean that behaviour b belongs to signature Σ. Belongs to

A behavioural specification is a kind of a system model; it is a description
of all possible behaviours of a system, as seen from the system boundary.
Because in this book we won’t look at any kinds of specifications that aren’t
behavioural, I’ll just use the word ‘specification’ as a synonymous with ‘be-
havioural specification’ from here on.

The purpose of a (behavioural) specification is to first describe a set of
conceivable behaviours and second to divide the conceivable behaviours of a

1I’m only showing the graph of the signature. The source is a set of names; the target
is some set of sets.
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8 Modelling (Computing) Systems

system into two categories. Behaviours that the system could actually engage
in comprise one category and those that could not comprise the other. We’ll
use a boolean function to split the behaviours into categories.

Specification
Definition 3 Suppose that Σ is a signature and that f is a boolean valued
function, the domain of which includes all behaviours that belong to Σ, then
the pair (Σ, f) is a specification.

b ∈ dom(f) , for all b : Σ

Notation 4 Generally, I’ll write fΣ instead of (Σ, f) for the pair, and, at
times, I’ll omit the subscript and write f , when the signature is clear from
context or doesn’t particularly matter. Furthermore I’ll sometimes write S(b)
to mean f(b) where S = fΣ.

Example 5 Let

Σ =
{
“x” �→

(
R

tot→ R
)
, “x′” �→

(
R

tot→ R
)}

and
f(b) = (∀t ∈ R · b(“x′”)(t) = b(“x”)(t)× 2) .

Then (Σ, f) (which we will also write as fΣ or just f) is a specification for
an amplifier that outputs twice its input signal, at each point in time.

Example 6 Consider a clocked digital circuit where we measure the voltages
on wires at discrete points in time. These points in time are defined by the
rising edges of the clock. We will take time 0 to be the time when the system
is turned on, time 1 to be the first rising clock edge thereafter and so on.
The voltage values don’t matter except in as much as they represent true or
false values. Let’s consider a one-input, one-output device. An appropriate
signature would be

Σ =
{
“d” �→

(
N

tot→ B
)
, “q′” �→

(
N

tot→ B
)}

.

If we define

f(b) = (∀t ∈ N · b(“q′”)(t+ 1) = b(“d”)(t)) ,
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then fΣ is a specification for a simple memory device called a D-flip-flop.
The output of a D-flip-flop is the same as its input in the previous clock
period. The output at time 0 is not defined by f , but we can see from Σ that
it will be either true or false. This specification has two properties that the
amplifier example does not. First, it exhibits memory, which is to say that
the the output at each time may depend on earlier input. Second, it exhibits
nondeterminism, which means that the output is not fully determined by the
input.2

Example 7 Suppose that

Σ = {“x” �→ A, “y” �→ A, “x′” �→ A, “y′” �→ A} .

We will interpret x and y as representing the initial values of program vari-
ables x and y and x′ and y′ as representing their final values. Let

f(b) = (b(“x′”) = b(“y”) ∧ b(“y′”) = b(“y”)) .

Then fΣ models a command that assigns to x the value of y, in other words
the assignment command3 x := y.

Example 8 Let4

Σ = {“in” �→ A∗, “out ′” �→ A∗} ,

where A is some nonempty set, and f be a function

f(b) = (b (“out ′”) = b (“in”) ˆb (“in”)) .

The specification fΣ will describe an “automaton” that reads an input se-
quence and writes it out twice. Chapter 9 will deal with automata as models
of systems.

2At this point our definition of a system model does not distinguish between inputs
and outputs and does not require any notion of time, so the properties of having memory
and of being nondeterministic can’t be defined formally. Later this will be rectified.

3In C , C++, or Java, this would be written

x = y;

In this book, following the tradition starting with the Algol language, I use := for the
assignment operator and save the semi-colon for a more important purpose.

4For any set A, A∗ is the set of finite sequences with items from A. The concatenation
of sequences x and y is written x; y.

Typeset January 22, 2018



10 Modelling (Computing) Systems

0.1 Angle bracket notation

As the examples above show, the notation for specifications is a bit awkward.
Let’s use the following convention for boolean functions of behaviours: We’ll
write the function as a boolean expression with the variables from the signa-
ture as free variables. We’ll write the boolean expression in angle brackets.
The angle brackets are there to remind us that we are dealing with a function,
rather than a boolean expression. This convention is perhaps best further
explained by example.

Example 9 With this convention the specifications from the above four ex-
amples are, respectively

〈∀t ∈ R · x′(t) = x(t)× 2〉Σ ,

〈∀t ∈ N · q′(t+ 1) = d(t)〉Σ ,

〈x′ = y ∧ y′ = y〉Σ , and

〈out ′ = inˆin〉Σ ,

where, in each case, Σ is as given in the corresponding example above.

We’ll call this convention “angle-bracket notation”.Angle-bracket no-
tation

0.2 Uses of Specifications

Specifications are useful for a number of purposes

• Documentation: Given a system that exists, or for which we have a
sufficiently complete understanding, we may wish to describe all the
ways it may behave. A specification can do that.

• Requirements Specification: A specification can be used to describe
all the ways that it is acceptable for a system, which may not yet have
been built, to behave.

• Testing: Once the system has been built, its actual behaviour can be
compared with its intended specification. If the system behaves in a
way that is not acceptable to the specification, then an error has been
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0.2 Uses of Specifications 11

detected. For example, if a behaviour b : Σ is observed, and the system
specification is gΣ, then ¬g(b) indicates an error.

• Verification: A system meets its specification just if every behaviour
that the system could engage in is acceptable to the specification. Sup-
pose specification gΣ describes a system (i.e., it is the documentation
of the system) and that fΣ is a requirements specification. The formula

∀b : Σ · g(b) ⇒ f(b)

says that the the system meets the requirements fΣ. So if we prove the
above formula, we have verified that the systemmeets the requirements.
If ∀b : Σ · g(b) ⇒ f(b), we say specification gΣ refines specification fΣ.

• Design, derivation, or synthesis: With verification, we start with
two specifications and try to show refinement. When designing, we
start with a specification fΣ and try to find a system design whose
specification gΣ refines fΣ. As we will see later, the process of design
can often by done by a series of small steps, so that we start with a
specification fΣ and then find a series of specifications

fΣ f1Σ f2Σ · · · gΣ

such that each refines the previous and such that the last corresponds
to a system we can obviously build. This method is called step-wise
refinement. In practice, each specification in the sequence differs only
in part from the previous one and we can usually show that it refines
the previous one looking only at the part that differs. We will look
at this idea more closely when we look at top-down design of software
systems in Chapter 2.

• Analysis: Given a design consisting of a set of components, joined
together somehow, we might ask what the system as a whole does. If
we know specifications of the components and how the components are
joined together, then we can calculate a specification of the whole.

• Equivalence testing: Given two systems, we might ask if they are
(behaviourally) equivalent. For example if we replace an expensive
part with a less expensive part, we might wonder if that will change
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12 Modelling (Computing) Systems

the overall behaviour of the system. If the specifications are fΣ and gΣ
we can ask whether

∀b : Σ · f(b) = g(b) .

If the answer is ‘yes’, then fΣ and gΣ are behaviourally equivalent and
we can be sure that one can be replaced by the other. (If the answer
is ‘no’, then further analysis may be needed.)

0.3 Refinement

Suppose that you work for a major operator of vending machines. You need
to order 100 coffee dispensing machines for use at various locations. The
machine will dispense about 200 ml of coffee for 1 dollar into a paper cup
that holds about 220 ml. Now if the machine dispenses too much, it costs
you extra money for the ingredients and more effort to replenish supplies;
also the cup could overflow, which will make customers unhappy. On the
other hand if the machine dispenses too little, customers will be unhappy.
It might be nice to specify that the amount dispensed must be exactly 200
ml. However, it is unrealistic to expect a manufacturer to produce a machine
that dispenses 200 ml exactly, every time, never a microliter more, never a
microliter less. Thus you specify that the amount should be between 200 and
203 ml. Thinking of each cup of coffee as a behaviour, and considering only
the amount dispensed as the system boundary, we have a signature of

Σ = {“amount ′” �→ R} .

We can write this requirement as a specification

fΣ = 〈200 ≤ amount ′ ≤ 203〉Σ .

Now suppose that the manufacturer delivers machines that actually dis-
penses between 201 and 202 ml. The actual machines’ behaviour is described
by

gΣ = 〈201 ≤ amount ′ ≤ 202〉Σ .

Obviously, although the specification of the machines delivered, gΣ, is not
exactly the same as your requirement, fΣ, you can have no complaint against
the manufacturer.
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0.3 Refinement 13

Now suppose that the machines delivered were actually described by any
of the following specifications

g1Σ = 〈201 ≤ amount ≤ 204〉Σ ,

g2Σ = 〈199 ≤ amount ≤ 202〉Σ , or

g3Σ = 〈199 ≤ amount ≤ 204〉Σ .

Clearly in each of these cases the delivered product does not meet out spec-
ification. There is some relationship � such that

fΣ � gΣ and

fΣ � fΣ

but

fΣ �� g1Σ ,

fΣ �� g2Σ , and

fΣ �� g3Σ .

This relationship is essentially backwards implication, but it is backward
implication for all possible behaviours. I.e. we have

(∀b : Σ · f(b) ⇐ g(b)) and (obviously)

(∀b : Σ · f(b) ⇐ f(b))

but

¬ (∀b : Σ · f(b) ⇐ g1(b)) ,

¬ (∀b : Σ · f(b) ⇐ g2(b)) , and

¬ (∀b : Σ · f(b) ⇐ g3(b)) .

For example as evidence that

¬ (∀b : Σ · f(b) ⇐ g1(b))

we can consider
b = {“amount” �→ 203.5}

We call this relationship between specifications refinement and say that fΣ
is refined by gΣ.
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Refinement
Definition 10 Specification fΣ is refined by specification gΣ iff

∀b : Σ · f(b) ⇐ g(b) .

�
Notation 11 We write fΣ � gΣ to mean that fΣ is refined by gΣ. When Σ
is clear from context, we may write f � g.

Example 12 Suppose that Alice needs a subroutine that computes the
square root of a positive number to about 4 decimal places. Calling the
input x and the root x′, we can use the following specification

Σ = {“x” �→ R, “x′” �→ R}
fΣ =

〈
x > 0 ⇒ x− 0.01 ≤ x′2 ≤ x+ 0.01

〉
Σ

.

This specification deserves a bit more explanation.Why the x > 0 ⇒? Well
Alice only cares what the subroutine will do in cases where x is positive, not
when x is nonpositive. Thus it doesn’t matter to Alice, what the behaviour
is when x is nonpositive. To Alice, any behaviour where x is nonpositive
should acceptable. This is exactly what you can say about a specification of
the form 〈x > 0 ⇒ P 〉Σ; without even looking at the details of P , you can see
that this boolean expression will evaluate to true (i.e., acceptable), whenever
x ≤ 0. Note that for each input value (i.e., value for x) there are an infinite
number of values for x′ that will combine with the value for x to make an
acceptable behaviour. Now suppose that Alice assigns the job of writing the
actual code for the subroutine to Bob. The subroutine he writes is unlikely
to be capable of behaving in all the ways that Alice’s specification deems
acceptable. But that’s ok. All we need is that each behaviour that Bob’s
subroutine can exhibit is acceptable to Alice’s specification. Suppose that
Bob creates a subroutine, whose behaviour is described by the following5

gΣ =
〈
(x < 0 ⇒ x′ = 0.0) ∧

(
x ≥ 0 ⇒ x′ =

⌊
+
√

�x× 10, 000 
⌋
/100
)〉

Σ

Now the question of whether Bob’s subroutine meets Alice’s specification
boils down to the question of whether or not

fΣ � gΣ ,

5The notation �x , for real number x means the largest integer not larger than x.
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0.4 Input, Output, Determinism, and Implementability 15

that is whether or not

∀x, x′ ∈ R ·




(x > 0 ⇒ x− 0.01 ≤ x′2 ≤ x+ 0.01)

⇐
(

(x < 0 ⇒ x′ = 0.0)

∧
(
x ≥ 0 ⇒ x′ =

⌊
+
√

�x× 10, 000 
⌋
/100
)
)

 .

After a bit of simplification, the question comes down to

∀x ∈ R · x > 0 ⇒ x− 0.01 ≤
(⌊

+
√

�x× 10, 000 
⌋
/100
)2

≤ x+ 0.01 ,

which is in fact true.

Example 13 Recall Example 6:

Σ =
{
“d” �→

(
N

tot→ B
)
, “q′” �→

(
N

tot→ B
)}

fΣ = 〈∀t ∈ N · q′(t+ 1) = d(t)〉Σ .

This specification allows two behaviours where the input, d, is false at all
times. In one behaviour q′(0) is false and in the other q′(0) is true. Suppose
that I put out a contract for devices that behave as fΣ, and suppose that you
promised to deliver 1000 such devices for 100 dollars. After agreeing to these
terms, I pay the money and receive the parts and find that in fact, they are
described by the specification

gΣ = 〈q′(0) = false ∧ (∀t ∈ N · q′(t+ 1) = d(t))〉Σ .

Do I have a reason to sue you? All behaviours that the delivered flip-flops
engage in are deemed acceptable by the specification, fΣ. So we have fΣ � gΣ
and I would not have any claim against you. On the other hand, if I had
required a D-flip-flop satisfying gΣ and you delivered flip-flops whose actual
range of behaviour was described by fΣ then I should demand my money
back. We do not have gΣ � fΣ.

0.4 Input, Output, Determinism, and Implem-

entability

So far we’ve talked about behaviours without reference to which variables are
controlled by the system and which are controlled from outside the system.
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We call the variables controlled by the system its output variables and those
that are controlled from outside its input variables.

It may seem surprising that we’ve gotten as far as we have without dis-
tinguishing inputs from outputs; in particular, the definition of refinement
does not require inputs and outputs to be distinguished, nor do the notions
of documentation, specification, analysis, design, or equivalence.

The convention used in this book, as you may have noticed, is to write
input variables without any decoration, like this

x, y, d, q

and output variables with ‘prime marks’ like this

x′, y′, d′, q′ .

Each behaviour belonging to a signature can be divided into two aspects:
an input aspect and an output aspect. For example if

b = {“x” �→ 0, “y” �→ 1, “x′” �→ 2, “y′” �→ 3}

is a behaviour, its input aspect is

{“x” �→ 0, “y” �→ 1}

while its output aspect is

{“x” �→ 2, “y” �→ 3}

I’m going to write i † o for the combination of two behaviours i and o.
The combined behaviour i † o is a behaviour which has i as its input aspect
and o as its output aspect. So for example

{“x” �→ 0, “y” �→ 1} † {“x” �→ 2, “y” �→ 3}

gives the behaviour

{“x” �→ 0, “y” �→ 1, “x′” �→ 2, “y′” �→ 3}

Given a behaviour b, we write
←−
b for its input aspect and

−→
b for its output

aspect so that in general

b =
←−
b † −→b
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0.4 Input, Output, Determinism, and Implementability 17

and we’ll use the same notations for signatures so that

Σ =
←−
Σ † −→Σ

Now that we can distinguish between input and output, we can make
some important definitions. Suppose we have a system exactly described
by a specification fΣ. For any particular input (stimulus) there is a set of
possible outputs (responses).

Response set
Definition 14 For a given specification fΣ and an input i :

←−
Σ , the response

set is given by

resp(fΣ, i) �
{
o :

−→
Σ | f(i † o)

}

The sizes of the response sets tell us important things about the system’s
potential response to particular inputs.

Determined

Underdetermined

Overdetermined

Definition 15 Given a specification fΣ we say

• fΣ is determined, for input i, iff |resp(fΣ, i)| = 1.

• fΣ is underdetermined, for input i, iff |resp(fΣ, i)| > 1.

• fΣ is overdetermined,for input i, iff |resp(fΣ, i)| = 0.

We can also describe two important properties of systems in terms of the
sizes of the response sets over all inputs: deterministism and implementabil-
ity.

Determininstic

NondetermininsticDefinition 16 We say that fΣ is deterministic, if it is determined for all
inputs; that is if

∀i : ←−Σ · |resp(fΣ, i)| = 1

When f is not deterministic it is nondeterministic.

Determinism can also be expressed by

∀i : ←−Σ · ∃!o : −→Σ · f(i † o)
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where the notation ∃! means “there exists exactly one”.

While many books on systems, treat only deterministic systems, the the-
ory presented here will work equally well for deterministic and nondetermin-
istic systems. Allowing nondeterministic systems as well as deterministic
ones has a number of nice properties.

• We can specify a range of outputs. For example, if it is not important
what the exact output is, we can specify a range of acceptable outputs.
For example

〈sin x− 0.001 ≤ y′ ≤ sin x+ 0.001〉

• We can avoid specifying the output for input cases we do not care
about. For example

〈
0 ≤ x <

π

2
⇒ sin x− 0.001 ≤ y′ ≤ sin x+ 0.001

〉

• We can omit quantities from the system boundary. For example, con-
sider a pseudo random number generator. If we know the seed, we can
perfectly predict its output. However if we are not interested in know-
ing exactly what the output is, we can omit the seed from the system
boundary and model the generator as 〈y′ ∈ {0, ..100}〉.

• We can freely combine specifications with conjunction, disjunction, im-
plication, and negation. If we dealt only with deterministic systems,
there would be severe restrictions about using any of these operators.

We won’t usually worry about the sizes of the response sets, as long as
they are not of size zero. Empty response sets mean that the system must
do something impossible: it must produce an output chosen from an empty
set of choices. We need to be careful about specifications that have one or
more empty response sets. We give these a name: unimplementable.

Implementable

Unimplementable Definition 17 fΣ is implementable if there is at least one acceptable output
for each possible input; that is

∀i : ←−Σ · |resp(fΣ, i)| > 0
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In other words fΣ is overdetermined for no inputs. If fΣ is not implementable,
we call it unimplementable; which is to say that it is overdetermined for at
least one input

∃i : ←−Σ · resp(fΣ, i) = ∅
.

Another way to express implementability that we will often use is

∀i : ←−Σ · ∃o : −→Σ · f(i † o)

Similarly, a specification is unimplementable exactly if

∃i : ←−Σ · ∀o : −→Σ · ¬f(i † o)

Implementability turns out to be tremendously important for the simple
reason that all physical devices are implementable. Furthermore an unimple-
mentable specification can not be refined by an implementable specification
and hence can not be realized by a physical device. If someone hands you
an unimplementable specification and asks you to design an implementation
of it, they are asking for something impossible. This is useful to know; you
should turn down the job!

Let’s look at the two claims in the last paragraph more closely. First I
claimed that physical systems will always be implementable. The reason is
that a physical system will always behave in some way. If I apply a particular
input, there will always be some kind of behaviour and thus some output.6

The second claim is that an unimplementable specification can not be refined
by an implementable one. I’ll leave the proof of this as an exercise.

An unimplementable specification constrains its inputs in some way. It
says that certain inputs are not possible. An example is

〈x′ < x〉Σ
6Later we will face the question of what the output of a program is, if the program goes

into an infinite loop. Some formalisms (such as Z [[ref]], which is otherwise very similar to
the one presented in this book) take the point of view that an infinite loop has no output.
This is an intuitively appealing point of view. However, it turns out that that approach
requires a more complicated definition of refinement and more complicated definitions for
certain kinds of system composition. We will take the point of view that all actual systems
–even ones that take an infinite amount of time– have an output.
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where
Σ = {“x” �→ N, “x′” �→ N} .

Recall that N = {0, 1, 2, · · · } is the set of natural numbers. The specification
says that the output must be less than the input. When the input is 2, the
output can be 0 or 1; when the input is 1, the output must be 0; but when
the input is 0, there is no possible output. The specification says that the
input must not be 0. But it is not up to the system to determine its input
values.
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Chapter 1

Imperative Programming
Language

In the next few chapters we will apply the theory of behavioural specifica-
tions, as presented in Chapter 0, to imperative programming of noninterac-
tive systems. As we do so, new notations and concepts will be introduced. A
few of these are particular to the application, but a great many of these nota-
tions and concepts can be applied to other areas such as interactive systems
and hardware development.

The key observation is that a command in a programming language can
be considered to be a specification. The specification relates two states: an
initial state and a final state. This chapter looks at how we can understand
programs from a simple programming language as specifications.

1.0 States

We can think of statements in imperative programs as being transformations
on states. A state is simply a mapping from names to values. Assume Σ is
a signature that maps only input variables,0 then Σ is called a state space State space
and any behaviour b : Σ is a state. An imperative specification is then State
a specification with signature Σ † Σ. Throughout this chapter the omitted
subscripts on specifications will be assumed to be Σ † Σ.

0I.e., identifiers without prime marks.
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1.1 A programming language

We will consider a simple programming language with commands of the
following form

skip Skip
V := E Assignment
f ; g Sequential Composition
if A then f else g Alternation
while A do f Iteration
(f) Grouping

The letters in this table are as follows: V a sequence of one or more program
variable names; E is a sequence of expressions; f and g are commands; A is
a boolean expression. For now, we won’t worry about how program variables
are declared, instead, we’ll assume that, for each example, there is a fixed
set of program variables with known types, as given by Σ. We’ll also assume
that each expression is of an appropriate type.

1.1.0 The skip command
skip

The skip command1 means make no change to the state. Thus we have as a
definition

skip(i † o) � (i = o)

For example, suppose that dom(Σ) = {“x”,“y”,“z”}, then

skip = 〈x′ = x ∧ y′ = y ∧ z′ = z〉

1.1.1 Assignment commands
Assignment

Suppose that dom(Σ) = {“x”,“y”,“z”} and E is an expression involving
the variables x, y, and z. An assignment x := E means ‘change the value
of x to the initial value of expression E, while leaving the other variables
unchanged’.2 The final value of x (i.e. the value of “x” in the final state) is

1In C, C++, and Java, the skip command can be written as a semicolon not preceded
by an expression “;”or as an empty pair of braces “{}”.

2In C, C++, and Java assignment commands are written as “x = E;”.
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the initial value of E. The final values of y and z are the same as their initial
values. Viewed as a specification, an assignment statement x := E is

〈x′ = E ∧ y′ = y ∧ z′ = z〉

For example x := y + z is

〈x′ = y + z ∧ y′ = y ∧ z′ = z〉

When dom(Σ) is something other than {“x”,“y”,“z”}, the interpretation
of the assignment statement changes to match.

If you want a single all-purpose definition, here we go: Suppose Σ is a
signature with V in its domain. Suppose g be a function that maps behaviours
over Σ to values in Σ(V) according to the expression E ;3 then V := E is a
specification fΣ†Σ where

f(i † o) � (o(V) = g(i) ∧ (∀W ∈ dom(Σ) · W �= V ⇒ o(W) = i(W)))

You can pronounce V := E as “V is assigned E” or as “V becomes E”.4

1.1.2 Parallel assignments

To the left of the assignment operator we can have a finite sequence of vari-
ables while to the right we can have a finite sequence of expressions of equal
length and corresponding types. For example5

x, y := 1, 2

Assuming that dom(Σ) = {“x”,“y”,“z”} we have

(x, y := 1, 2) = 〈x′ = 1 ∧ y′ = 2 ∧ z′ = z〉
3For example if E is x+ y then g(i) = i (“x”) + i (“y”)
4Some people make the mistake of saying “V equals E”. I’ve heard people say “x equals

x+1”, which is utter nonsense. This bad habit probably originated because early languages
such as Fortran used the notation V = E for assignment. (The first version of Fortran,
introduced in 1956, had no equality operator.) Unfortunately more recent languages such
as C, C++, and Java have copied this notation. The notation V := E was established
with IAL (the International Algebraic Language, also known as Algol58) in 1958.

5In C, C++, and Java, there is no exact equivalent to the parallel assignment. In
general we can write

{T x0=E; y=F ; x=x0 ; }

where T is the type of x.
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Note that both expressions are evaluated in the same initial state. From an
operational point-of-view, we can think of the changes to the two variables
happening after both expressions have been evaluated. For example

(x, y := y, x) = 〈x′ = y ∧ y′ = x ∧ z′ = z〉
In general

(V,W := E ,F) = (W ,V := F , E)

1.1.3 Sequential composition

We can combine two or more specifications to make a new specification.
We can also modify a specification in some way to make a new specifica-
tion. Functions that take one or more specifications as inputs and produce a
specification are called composition operators. Composition operators are to
specifications as arithmetic operators, such as +, −, ×, and ÷, are to num-
bers. The first kind of composition operator we will consider is sequential
composition.

Imperative algorithms are recipes for doing sequences of actions. So far
we’ve seen assignments and skip which are basic actions. Sequential com-
position allows us to sequence actions. If f and g are commands then f ; g is
a command to do f and then to do g.6 More generally, f and g can be any
specifications with signatures Σ † Σ; they don’t need to be commands; if f
and g are commands, then f ; g is a command, otherwise it is not.

What is the formal meaning of f ; g? Let’s assume, for the moment, that
both f and g are implementable and that f is deterministic. Starting from
a state i the command f with transform the system to the (unique) state m
such that f(i †m). Then the command g will transform the system to some
state o such that g(m † o). So we can say

(f ; g) (i † o) = g(m † o), where m is that state such that f(i †m)

Okay, but what if f is not deterministic? Suppose f is underdetermined
for i, then m can be any state such that f(i †m). We have

(f ; g) (i † o) = (∃m : Σ · f(i †m) ∧ g (m † o))
6In C, C++, and Java, we could write this as {f g}. Note there is a significant difference

between how C, C++, and Java use the semicolon and how it is used in this book: In C,
C++, and Java, the semicolon is used to terminate some kinds of commands (expression
commands, return commands, break, continue, etc.) and declarations. In this book the
semicolon is used as a binary operator on specifications: sequential composition.
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It turns out that this definition also makes sense in the cases where f and or g
are not implementable.7 Thus we will take this as the definition of sequential
composition

Sequential compo-
sitionDefinition 18 The sequential composition of fΣ†Σ and gΣ†Σ is a specification

hΣ†Σ where

h (i † o) = (∃m : Σ · f(i †m) ∧ g (m † o)) , for all i, o : Σ (0)

Notation 19 We denote the sequential composition of fΣ†Σ and gΣ†Σ by
fΣ†Σ; gΣ†Σ.

If the specifications to be composed are given using angle-bracket nota-
tion, we can give a simple definition of sequential composition. We’ll assume
Σ = {“x” �→ S, “y” �→ T, “z” �→ U}

〈A〉 ; 〈B〉 = 〈∃ẋ ∈ S, ẏ ∈ T, ż ∈ U · A[x′, y′, z′ : ẋ, ẏ, ż] ∧ B[x, y, z : ẋ, ẏ, ż]〉

(Recall that A[x′, y′, z′ : ẋ, ẏ, ż] means the expression A with variables x′, y′,
and z′ replaced by variables ẋ, ẏ, and ż. See Section A.6.0 in appendix A for
details.) The expression A[x′, y′, z′ : ẋ, ẏ, ż] relates the initial to the middle
state, while the expression B[x, y, z : ẋ, ẏ, ż] relates the middle state to the
final state.

Example 20 For this example, the operand specifications are both deter-
ministic. Take Σ = {“x” �→ Z, “y” �→ Z, “z” �→ Z}. Take

f = (x := x+ 1) = 〈x′ = x+ 1 ∧ y′ = y ∧ z′ = z〉

and

g = (y := 2× x) = 〈x′ = x ∧ y′ = 2× x ∧ z′ = z〉
7We won’t have much reason to use sequential composition to combine unimple-

mentable specifications, but let’s consider what happens if we do. If resp(f, i) = ∅ then
resp((f ; g) , i) = ∅. The case where resp(g,m) = ∅ is more interesting. In that case m is,
in a sense, rejected by g. It is up to the command f to find a middle state m that will
not be rejected by g. This corresponds to “backtracking”, such as is found in the Icon,
SNOBOL, and PROLOG programming languages.
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1: += xx
xy ×= 2:

x

y

z

x
x

y
y 'y'y

'y

z z 'z
'z'z

'x 'x

'x

Figure 1.0: The sequential composition of x := x+ 1 with y := 2× x.

We have

f ; g

=“Definitions of f and g”

x := y + z; y := 2× x

=“Definition of assignment”

〈x′ = y + z ∧ y′ = y ∧ z′ = z〉 ; 〈x′ = x ∧ y′ = 2× x ∧ z′ = z〉
=“Definition of sequential composition”
〈

∃ẋ ∈ Z, ẏ ∈ Z, ż ∈ Z· (x′ = y + z ∧ y′ = y ∧ z′ = z) [x′, y′, z′ : ẋ, ẏ, ż]
∧ (x′ = x ∧ y′ = 2× x ∧ z′ = z) [x, y, z : ẋ, ẏ, ż]

〉

=“Making the substitutions”

〈∃ẋ ∈ Z, ẏ ∈ Z, ż ∈ Z · ẋ = y + z ∧ ẏ = y ∧ ż = z ∧ x′ = ẋ ∧ y′ = 2× ẋ ∧ z′ = ż〉
=“One point”

〈x′ = y + z ∧ y′ = 2× (y + z) ∧ z′ = z〉
=“Definition of assignment”

x, y := y + z, 2× (y + z)

Figure 1.0 illustrates this example.
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1.1.4 The analogy between imperative specifications
and matrices

We can think of imperative specifications as being very much like square
matrices. Imperative specifications describe transformations on states, while
matrices specify transformations on vectors. Just as matrix multiplication
composes transformations represented by matrices, sequential composition
composes transformations on states.

Example 21 To illustrate this analogy, let’s consider Example 20 again. To
f and g we can associate matrices

F =




0 1 1
0 1 0
0 0 1




G =




1 0 0
2 0 0
0 0 1




So that F (x, y, z)T = (y + z, y, z)T and G (x, y, z)T = (x, 2 × x, z)T. The
sequential composition of F and G is given by

GF =




0 1 1
0 2 2
0 0 1




so that GF (x, y, z)T = (y+ z, 2× (y+ z), z)T. Note that the (most common)
convention for matrices is to work from right to left (the first transformation
applied is on the right) whereas for programming we work from left to right
(the first transformation applied is on the left).

We can see that skip is the unit or identity element of sequential compo-
sition in the sense that

skip; f = f = f ; skip

So skip is analogous to the identity matrix.
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Just as matrix multiplication is associative8, so is sequential composition

(f ; g) ;h = f ; (g;h)

In general f ; g is not the same as g; f , although it may be for certain f
and g. For example we have

(x := 0; y := 0) = (y := 0; x := 0)

but
(x := y; y := 0) �= (y := 0; x := y)

This is to say that sequential composition is not commutative, in general.
The same is true of matrix multiplication.

Just as some matrices (but not all) have inverses, some specifications (but
not all) have inverses. For example, if the type of x is Z and

f = (x := x+ 1)

then f ’s inverse is
f̆ = (x := x− 1)

as
f ; f̆ = skip = f̆ ; f

Specification inversion is not used much in programming.
There are three ways that specifications are more general than matrices:

• Matrices are limited to state spaces that are homogeneous and numer-
ical. I.e. each dimension has the same type and that type is a type of
number.9

• Matrices are deterministic.

• Matrices specify linear transformations.

8That is
A(BC) = (AB)C

9If you know what a “ring” is, then you may recognize that I’m not being entirely
truthful here. Generally matrices contain the elements of rings or even semirings, that
is algebras that have both an “addition” operator and a “multiplication” operator. The
elements of a ring may be numbers, but also might not be.
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These differences make it hard to carry the analogy very far. For example,
while we can add matrices, we can not (in general) add specifications, since
the underlying data types may not have an addition operation. And there
are operations on specifications that don’t make sense on matrices. Next we
look at two such operations.

1.1.5 Conjunction and Disjunction

Before tackling the if-then-else operator, it is useful to consider two simpler
ways of combining specifications.

Definition 22 Consider two specifications f and g. The disjunction of f
and g is the specification f ∨ g where

(f ∨ g) (b) � f(b) ∨ g(b) , for all b

The conjunction of f and g is the specification f ∧ g where

(f ∧ g) (b) � f(b) ∧ g(b) , for all b

These definitions are even simpler using angle-bracket notation

(〈A〉 ∨ 〈B〉) = 〈A ∨ B〉
(〈A〉 ∧ 〈B〉) = 〈A ∧ B〉

Similarly we can define implication and negation on specifications:

(〈A〉 ⇒ 〈B〉) = 〈A ⇒ B〉
(〈A〉 ⇐ 〈B〉) = 〈A ⇐ B〉

and
¬ 〈A〉 = 〈¬A〉

It’s important to remember that, in each case, the result of combining
specifications with these operators is again a specification. It doesn’t make
sense, for example, to say that

〈a ≤ b′〉 ⇒ 〈a < b′〉
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is false. It is a specification that is true of some behaviours and false of
others.

All the usual laws of propositional logic extend to specifications. So, for
example, we have the following distributive law

f ∧ (g ∨ h) = (f ∧ g) ∨ (f ∧ h)

Disjunction is used to indicate that a system can behave in accordance
with either of two specifications..

Example 23 For example, if we have

f =
〈
x ≥ 0 ⇒ x′ = +

√
x
〉

g =
〈
x ≥ 0 ⇒ x′ = −

√
x
〉

f specifies that the output should be the positive square root of the input,
while g specifies that the output should be the negative root of the input. If
we don’t care which root is computed, we can use f ∨ g as the specification.

Conjunction is used to build a specification of a system that must behave
simultaneously according to several specifications. Conjunction is often used
to separately specify different parts of the output.

Example 24 For this example, the signature is

{a �→ Z, b �→ Z, q �→ Z, r �→ Z}

Suppose f specifies the value of q′ to be the integer quotient of two integer
numbers

f = 〈b �= 0 ⇒ q′ = �a÷ b 〉
while

g = 〈b �= 0 ⇒ r′ = amod b〉
specifies r′ to be the remainder of the same two numbers. The conjunction
f ∧ g specifies a system that computes both the quotient and the remainder.
After a bit of simplification

f ∧ g = 〈b �= 0 ⇒ q′ = �a÷ b ∧ r′ = amod b〉

Figure 1.1 illustrates this conjunction.
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 a
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Figure 1.1: Conjunction of specifications with disjoint outputs.

Conjunction can also be used to combine specifications that constrain
output under different circumstances.

Example 25 Consider

f = 〈a < 0 ⇒ a′ = −1〉
g = 〈a > 0 ⇒ a′ = 1〉

Note that f only constrains the output value for inputs with a < 0, while
g only constrains the output value for inputs with a > 0. The conjunction
f ∧ g of the specifications specifies a value for the output in both cases, but
not for the case of a = 0. If

h = 〈a = 0 ⇒ a′ = 0〉
then f ∧ g ∧ h is the deterministic specification

〈(a < 0 ⇒ a′ = −1) ∧ (a > 0 ⇒ a′ = 1) ∧ (a = 0 ⇒ a′ = 0)〉
Figure 1.2 illustrates this conjunction
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1'0 −=⇒< aa

1'0 =⇒> aa

0'0 =⇒= aa

a

a

a

a

'a

'a

'a

'a

Figure 1.2: Conjunction of specifications that control the same output vari-
able.

We have to be a bit careful with conjunction as it can lead to unimple-
mentable specifications.

Example 26 Consider

f = 〈a ≤ 0 ⇒ a′ = −1〉
g = 〈a ≥ 0 ⇒ a′ = 1〉

This time f and g both constrain the output when a = 0 and actually
contradict each other. The conjunction is

f ∧ g = 〈(a ≤ 0 ⇒ a′ = −1) ∧ (a ≥ 0 ⇒ a′ = 1)〉
= 〈(a < 0 ⇒ a′ = −1) ∧ (a > 0 ⇒ a′ = 1) ∧ (a = 0 ⇒ a′ = 0 ∧ a′ = 1)〉
= 〈(a < 0 ⇒ a′ = −1) ∧ (a > 0 ⇒ a′ = 1) ∧ (a = 0 ⇒ a′ = 0 ∧ a′ = 1)〉
= 〈(a < 0 ⇒ a′ = −1) ∧ (a > 0 ⇒ a′ = 1) ∧ (a = 0 ⇒ false)〉
= 〈(a < 0 ⇒ a′ = −1) ∧ (a > 0 ⇒ a′ = 1) ∧ (a �= 0)〉
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This specification specifies that its input will not be such that a = 0 and
hence is an unimplementable specification.

1.1.6 Alternation

Two-way alternation Let A be a boolean expression with free variables
that are a subset of the variables of Σ. The specification 〈A〉 accepts or rejects
a behaviour depending only on the input aspect of the behaviour. For each
such expression, we have a binary operator on specifications if A then _ else _
defined by

if A then f else g � (〈A〉 ∧ f) ∨ (¬ 〈A〉 ∧ g)
This is called a two-way alternation or a two-way if.

Example 27 Supposing dom(Σ) = {“x”, “y”}, what is if x ≥ 0 then y :=
x else y := −x in angle-bracket form

if x ≥ 0 then y := x else y := −x
=

(〈x ≥ 0〉 ∧ (y := x) ∨ 〈x < 0〉 ∧ (y := −x))
=

(〈x ≥ 0〉 ∧ 〈y′ = x ∧ x′ = x〉 ∨ 〈x < 0〉 ∧ 〈y′ = −x ∧ x′ = x〉)
=

〈x ≥ 0 ∧ y′ = x ∧ x′ = x ∨ x < 0 ∧ y′ = −x ∧ x′ = x〉

Exercise 28 Show that

if A then f else g = (〈A〉 ⇒ f) ∧ (¬ 〈A〉 ⇒ g)

Exercise 29 Show that

if A then f else if B then g else h

= (〈A〉 ∧ f) ∨ (¬ 〈A〉 ∧ 〈B〉 ∧ g) ∨ (¬ 〈A〉 ∧ ¬ 〈B〉 ∧ hΣ)

Multiway alternation A generalization of the two-way alternation, that
is sometimes useful, is this: Let A0, A1, ..., A n−1 be n boolean expressions
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with free variables that are a subset of the variables of Σ and let f0, f1, ...,
fn−1, g be specifications. Now

if A0 then f0
� A1 then f1
...

...
...

...
� An−1 then fn−1
else g

is a specification that is defined to be equal to

(〈A0〉 ∧ f0)
∨ (〈A1〉 ∧ f1)
...

...
∨ (〈An−1〉 ∧ fn−1)
∨ (¬ 〈A0〉 ∧ ¬ 〈A1〉 ∧ · · · ∧ ¬ 〈An−1〉 ∧ g)

Note that the order of the expression/specification pairs is not important:
I.e. we can switch Ai and fi with Aj and fj for any i, j. Thus

if A then f else if B then g else h

is not (in general) the same as

if A then f � B then g else h

With the former, when A and B are both true of the input, the output is
determined by f , whereas, with the latter, the output could be determined
by either f or g.

It may be that g can not be reached. This happens when A0 ∨A1 ∨ · · · ∨
An−1 is universally true. In such a case, it doesn’t matter what g is, and we
can omit the “else g”.10

10The nondeterministic if-command generalizes Dijkstra’s if-fi command as well as the
if-then-else.With Dijkstra’s command, the g is always abort (see section 1.1.7), and is
implicit. (Notationally, the “else g” part is replaced with “fi”, in Dijkstra’s notation.)
With the if-then-else construct in languages such as Algol, Pascal, C, C++, and Java,

the “else g” part is optional, with the missing specification assumed to be skip.
The question then arises, of whether we should allow the else-clause of the if-construct

to be omitted and, if so, whether the missing else-clause should be assumed to be “else
skip” or “else abort”. For this book, I’m going to come down squarely on the fence: I’ll
either include an else-clause or ensure that the missing clause is unreachable. Any other
choice would create an inconsistency with one or the other established notation.
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1.1.7 abort and magic

For a given signature Σ we have two specifications at the extremes. We call
these abort and magic.

Definition 30 abort is equivalent to 〈true〉. magic is equivalent to 〈false〉.

abort accepts every possible behaviour; for any input, it allows any out-
put. The system that is described by abort is completely unreliable in that
it could produce any output whatsoever. It is easy to implement abort, as
all specifications refine it

abort � f , for all f

magic, on the other hand, accepts no behaviours at all. Note that it is
overdetermined for every input and hence (as there is always at least one
possible input) is unimplementable. One curious property of magic is that
it refines any other specification at all.

f � magic, for all f.

magic is not part of the programming language.
There is no harm in including abort in a programming language. The

programmer can use abort at points in their code that they expect to be
unreachable. The implementer of the language could implement abort to
behave in any way they want; one particularly pragmatic way is to stop the
program and alert the operating system, the user, and/or the developer. We
can define a programming construct

assert A to mean if A then skip else abort

1.1.8 Iteration

An important property of iteration is that an iteration is equivalent to its
unrolling: A loopwhile A do h that will iterate 4 times should be equivalent
to h;h;h;h. In general we don’t know ahead of time howmany times to unroll
the loop, but we can say a loop w = while A do h should be such that

w = if A then (h;w) else skip
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Using this equation, we can unroll the loop as many times as we want. For
example we can derive that

w = if A then (h; if A then (h; if A then (h;w) else skip) else skip) else skip

Unfortunately, defining while A do h to be that x such that

x = if A then (h; x) else skip (1)

makes a poor definition of the while loop because x occurs on both sides of
the equation. By analogy, defining φ to be the solution to the equation

x = 1/x+ 1

is a poor definition of the real number φ: there are two solutions. Consider
the case of h = skip and 〈A〉 = 〈true〉. In this case equation (1) simplifies to
x = x, which obviously has many solutions (every specification is a solution).

So how do we define the while loop? If w0 and w1 are two different
solutions to equation (1) with w0 � w1, then w1 is rejecting some behaviours
without any reason that can be derived from A and h. We’ll take the point
of view while A do h accepts all behaviours accepted by any solution to
equation (1). With this definition behaviours are only rejected if there is a
good reason.

Definition 31 while A do h is defined to be that specification w such that

• w = if A then (h;w) else skip and

• for any specification x, such that x = if A then (h;x) else skip, we
have w � x.

This definition says that the while loop is the least refined solution to
equation (1).11

11You might wonder if this definition is sufficient. Is it the case that for any given A
and h, is there one and only one specification w that fits the definition. It is fairly easy to
see that this is the case. Let X be the set of all x such that

x = if A then (h;x) else skip

The disjunction of any two members of X will also be in x. In fact the disjunction of any
set (even an infinite set) of solutions is also a solution. The disjunction of all members
of X will be a solution and is refined by any other solution. Thus the disjunction of all
members of X is the unique least-refined solution of (1).
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1.2 Properties of the specification operators

Definition 32

• A unary operator � on specifications is said to preserve implementabil-
ity iff for all implementable specifications f , such that �f is well
defined, �f is implementable.

• A binary operator � on specifications is said to preserve implementabil-
ity iff for all implementable specifications f and g, such that f �g is
well defined, f � g is implementable.

• In general, an n-ary operator � on specifications is said to preserve
implementability iff for all implementable specifications f0, f1, ..., fn−1,
such that � (f0, f1, ..., fn−1) is well defined, � (f0, f1, ..., fn−1) is imple-
mentable.

In Example 26 we saw that conjunction does not preserve implementabil-
ity.

Exercise 33 Show that disjunction preserves implementability.

Exercise 34 Define that a specification fΣ is independent of a state variable
v if f(b0) = f(b1) whenever b0 and b1 agree on all variables other than v.
Define that two specifications f and g are output disjoint if, for each output
variable v′, either f or g is independent of v′. Show that f∧g is implementable
if f and g are output disjoint and both f and g are implementable.

Exercise 35 Show that if A then _ else _ preserves implementability.

Exercise 36 Show that sequential composition preserves implementability.

Exercise 37 Show that while A do _ preserves implementability.

With numbers we say that + is monotonic with respect to ≤ since a ≤ b
implies that a+ c ≤ b+ c for all a, b, c.
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For specifications, refinement is the key relation and so we define monotonic-
ity with respect to refinement.

Definition 38

• A unary operator � is monotonic iff for all f0, f1 such that f0 � f1, we
have �f0 � �f1.

• A binary operator � is monotonic in its left operand iff for all f0, f1, g
such that f0 � f1, we have f0 � g � f1 � g.

• A binary operator � is monotonic in its right operand iff for all f0, f1, g
such that f0 � f1, we have g � f0 � g � f1.

• In general, an n-ary operator is monotonic in operand i iff for all
f0, f1, g0, g1, ..., gi−1, gi+1, ..., gn−1 such that f0 � f1, we have �(g0, g1,
..., gi−1, f0, gi+1, ..., gn−1) � �(g0, g1, ..., gi−1, f1, gi+1, ..., gn−1)

Exercise 39 Show that disjunction and conjunction are both monotonic in
both operands

Exercise 40 Show that if A then _ else _ is monotonic in both operands.

Exercise 41 Show that sequential composition is monotonic in both operands.

Exercise 42 Show that while A do _ is monotonic.
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Chapter 2

Derivation of nonlooping
programs

In this chapter we look at techniques for deriving commands from specifica-
tions. That is we start with a specification f and derive a command g such
that f � g. We will develop commands step-by-step so that each step is
fairly small and is easily verified. It should be said off the top that this is
not a mechanical process. Far from it. Creativity is required.

The plan of the chapter is this. We’ll look at some of the laws of pro-
gramming for each of the programming constructs and how to apply these
laws to deriving programs from specifications.

2.0 Strengthening and monotonicity

We start with some very general laws.

As explained in Section A.6.3, a boolean expression B is stronger than a
boolean expressionA exactly if B ⇒ A is universally true (i.e., true regardless
of the values of the variables).

When a specification is in angle-bracket form we can refine by replacing
the expression with a stronger one. I.e. we have

Theorem 43 (Strengthening) 〈A〉 � 〈B〉 exactly if B is stronger than A.

From this we have the following corollaries.
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Corollary 44 (Strengthening)

〈A ∨ B〉 � 〈A〉
〈B ⇒ A〉 � 〈A〉

〈A〉 � 〈A ∧ B〉

Corollary 45 (Monotonicity) If 〈A〉 � 〈B〉

〈A ∧ C〉 � 〈B ∧ C〉
〈A ∨ C〉 � 〈B ∨ C〉
〈C ⇒ A〉 � 〈C ⇒ B〉

Corollary 46 (Antimonotonicity) If 〈B〉 � 〈A〉 then

〈¬A〉 � 〈¬B〉
〈A ⇒ C〉 � 〈B ⇒ C〉

More generally we have the following monotonicity laws regardless of the
form of the specification.

Theorem 47 If f , g, and h are specifications such that f � g, we have

• f ∧ h � g ∧ h

• f ∨ h � g ∨ h

• h⇒ f � h ⇒ g

• f ;h � g;h

• h; f � h; g

• if A then f else h � if A then g else h

• if A then h else f � if A then h else g

• while A do f � while A do g
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2.1 Programming with skip and assignments

Earlier we saw that skip can refine specifications of the form 〈x′ = x ∧ y′ = y〉.
But skip will also refine other specifications, such as 〈k > 0 ⇒ k′ ≥ 0〉; if k
is initially greater than 0, then, after not changing, k will still be greater
than 0 and thus greater or equal to 0. If A is an expression, we’ll write Ã
for the expression we get by erasing all the prime marks in A. So if A is the
expression k > 0 ⇒ k′ ≥ 0 then Ã would be the expression k > 0 ⇒ k ≥ 0.
This particular expression, k > 0 ⇒ k ≥ 0, has the property that it is true
for all values of its variables. A boolean expression with this property is
called universally true. In general we have the following law universally true

Theorem 48 (The erasure law for skip) 〈A〉 � skip exactly if Ã is uni-
versally true.

I won’t prove this law in general, but consider the case where the variables
are x and y.

〈A〉 � skip

=“Definitions of refinement and skip”

∀x, y, x′, y′ · x′ = x ∧ y′ = y ⇒ A
=“One-point”

∀x, y · A[x′, y′ : x, y]

=“Definition of erasure”

∀x, y · Ã
=“Definition of universally true”

Ã is universally true

The substitution
notation is covered
in Section A.6.0.Typeset January 22, 2018
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If we take this same line of reasoning and apply it to the assignment
statement x := E , where E does not contain any primed variables, we get

〈A〉 � x := E
=“Definitions of refinement and assignment

∀x, y, x′, y′ · x′ = E ∧ y′ = y ⇒ A
=“One-point”

∀x, y · A[x′, y′ : E , y]
=“y′ does not occur free in E”

∀x, y · A[x′ : E ][y′ : y]
=“x′ does not occur free in A[x′ : E ]

∀x, y · A[x′ : E ][x′, y′ : x, y]
=“Definition of erasure”

∀x, y · Ã[x′ : E ]
=“Definition of universally true”

Ã[x′ : E ] is universally true

which leads us to

Theorem 49 (The erasure law for assignment) 〈A〉 � V := E exactly

if ˜A[V ′ : E ] is universally true.

For example, if k is of type Z, then 〈k′ > k〉 � k := k+42, as (k′ > k) [k′ :
k + 42] is k + 42 > k which is universally true.

This law also extends to parallel assignment.

Theorem 50 (The erasure law for parallel assignment) 〈A〉 � V0,V1, ...,Vn :=

E0, E1, ..., En exactly if ˜A[V ′0,V ′1, ...,V ′n : E0, E1, ..., En] is universally true.

For example, let’s work out whether the following refinement holds.

〈x′ = y ∧ y′ = x ∧ z′ ≥ z〉 � x, y := y, x

After making the multiple variable substitution

(x′ = y ∧ y′ = x ∧ z′ ≥ z) [x′, y′ : y, x]
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and erasing the remaining prime, we have y = y ∧ x = x ∧ z ≥ z, which is
universally true, so the refinement holds.

2.2 The substitution laws

For introducing sequential composition, there is a very useful law

Theorem 51 (The forward substitution law) 〈A[V : E ]〉 = (V := E ; 〈A〉)

I won’t prove this in general, but again, consider the case of a two variable
state space

(x := E ; 〈A〉)
=“Definitions of assignment and sequential composition”

〈∃ẋ, ẏ · ẋ = E∧ẏ = y ∧A[x, y : ẋ, ẏ]〉
=“One-point”

〈A[x, y : ẋ, ẏ][ẋ, ẏ : E , y]〉
=“No dotted variables in A”

〈A[x, y : E , y]〉
=“No substitution for y”

〈A[x : E ]〉

The substitution law is very useful for introducing sequential composition
into programs.

Example 52 Consider the following specification to implement

〈x′ = y ∧ y′ = x〉

We will assume that multiple assignments are not allowed. We’ll also assume
that there is a variable t of appropriate type. Can we derive a sequential
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composition of single assignments that does the job?

〈x′ = y ∧ y′ = x〉
= Forward substitution law

t := x ; 〈x′ = y ∧ y′ = t〉
= Forward substitution law

t := x ; x := y ; 〈x′ = x ∧ y′ = t〉
� Erasure law for assignment

t := x ; x := y ; y := t

Note how the last step also uses a monotonicity law. We generally won’t call
attention to uses of monotonicity laws. They are used implicit.

There is also a law for introducing an assignment statement at the end
of a sequential composition.

Notation 53 Suppose E is an expression with all free variables unprimed.
We’ll write E ′ for the same expression, except with primes added to all free

variables, and
�

E for the same expression except with a dot added to each
variable.

Theorem 54 (The backward substitution law) 〈A〉 � (〈A[V ′ : E ′]〉 ;V := E)

Example 55 Consider swapping again. Again, we’ll assume there is a vari-
able t that we can use.

〈x′ = y ∧ y′ = x〉
�“Backward substitution”

〈x′ = y ∧ t′ = x〉; y := t

�“Backward substitution”

〈y′ = y ∧ t′ = x〉; x := y; y := t

�“Erasure law”
t := x; x := y; y := t
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I won’t prove this law in detail, but looking at the case of two variables
should be convincing

〈A[x′ : E ′]〉 ;x := E
=“Definition of assignment”

〈A[x′ : E ′]〉 ; 〈x′ = E ∧ y′ = y〉
=“Definition of sequential composition”
〈
∃ẋ, ẏ · A[x′ : E ′][x′, y′ : ẋ, ẏ] ∧ x′ =

�

E ∧ y′ = ẏ

〉

=“Since the primes in E ′ will be replaced with dots”
〈
∃ẋ, ẏ · A[x′, y′ :

�

E , ẏ] ∧ x′ =
�

E ∧ y′ = ẏ

〉

=“One point”
〈
∃ẋ, ẏ · A[x′, y′ :

�

E , y′] ∧ x′ =
�

E
〉

=“It’s safe to assume that x′ =
�

E”
〈
∃ẋ, ẏ · A[x′, y′ : x′, y′] ∧ x′ =

�

E
〉

=“Null substitution”
〈
∃ẋ, ẏ · A ∧ x′ =

�

E
〉

=“Distributivity; no dots in A”

〈A〉 ∧
〈
∃ẋ, ẏ · x′ =

�

E
〉

Now since

(
〈A〉 ∧

〈
∃ẋ, ẏ · x′ =

�

E
〉)

= (〈A[x′ : E ′]〉 ; x := E ), we have,

by strengthening, the backward substitution law:

〈A〉 � 〈A[x′ : E ′]〉 ; x := E
Note that 〈A[x′ : E ′]〉 ;x := E may be a stronger requirement than 〈A〉;

the ‘extra’ bit

〈
∃ẋ, ẏ · x′ =

�

E
〉
says that the value of x′ is in the range of the

expression. Consider refining

〈x′ = 4 ∨ x′ = 5〉
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using backward substitution and x := 2× x, where x is an integer variable.
We have

〈x′ = 4 ∨ x′ = 5〉
�“Backward substitution”

〈2× x′ = 4 ∨ 2× x′ = 5〉 ; x := 2× x

=“x is an integer variable”

〈x′ = 2〉 ; x := 2× x

=“Definitions of sequential composition and assignment”

〈x′ = 4〉

You can see that there is a reduction in nondeterminism, the output of x =
5 is accepted by 〈x′ = 4 ∨ x′ = 5〉, but is not compatible with the chosen
assignment.

This reduction in nondeterminism may mean that the law takes us from
an implementable 〈A〉 to an unimplementable 〈A[x′ : E ′]〉.

Consider the specification 〈x′ = 5〉. If we apply backward substitution
with x := 2× x, we get

〈x′ = 5〉
�“backward substitution”

〈2× x′ = 5〉 ; x := 2× x

At this point, the remaining problem, 〈2× x′ = 5〉, is unimplementable.
Thus, for practical application, we should be careful how we use back-

ward substitution, so as not to venture into the territory of unimplementable
specifications.

The forward substitution law does not suffer from this problem: If 〈A[V : E ]〉
is implementable, then so is 〈A〉.

2.3 Weakest prespecification and weakest post-

specification

This section is optional reading.
[[And not yet written!]]
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2.4 Alternation

Once we have checked a condition, it can become a precondition. This idea
is captured in the alternation law

Theorem 56 (alternation law)

f = if A then (〈A〉 ⇒ f) else (¬ 〈A〉 ⇒ f)

The alternation problem allows us to replace a problem f with two new
problems. The trick, of course is to pick an expression A so that both the
new problems are easier to solve than the original.

Example 57 (Finding the minimum) We know that

min(a, b) = a, if a ≤ b (0)

min(a, b) = b, if b ≤ a (1)

Suppose we wish to implement

f = 〈a′ = min(a, b)〉

f

=Alternation law

if a ≤ b then (〈a ≤ b〉 ⇒ f) else (〈a > b〉 ⇒ f)

We can implement the first case as follows

〈a ≤ b〉 ⇒ f

=Defn of f

〈a ≤ b⇒ a′ = min(a, b)〉
=By (0)

〈a ≤ b⇒ a′ = a〉
�Erasure law
skip
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The second case is implemented by

〈a > b〉 ⇒ f

=Defn of f

〈a > b ⇒ a′ = min(a, b)〉
�Strengthening
〈
a ≥ b⇒ a′ = min(a, b)

〉

=(1)

〈a ≥ b⇒ a′ = b〉
�Erasure law
a := b

Now we have

f

=Alternation law

if a ≤ b then (〈a ≤ b〉 ⇒ f) else (〈a > b〉 ⇒ f)

�Above results
if a ≤ b then skip else a := b

2.4.0 Nondeterministic alternation

Theorem 58 (alternation law)

f � if A0 then 〈A0〉 ⇒ f
� A1 then 〈A1〉 ⇒ f
...

...
...

...
� An−1 then 〈An−1〉 ⇒ f
else ¬ 〈A0 ∨ A1 ∨ · · · ∨ An−1〉 ⇒ f
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Chapter 3

Derivation of Loops

3.0 The recursive refinement approach

3.0.0 While law (incomplete version)

For specifications h and 〈A〉, let tA,h be a function

tA,h(g) = if A then (h; g) else skip

Let
w = while A do h

Now w is a fixed point of tA,h, that is

w = if A then (h;w) else skip

A specification g, such that g � if A then (h; g) else skip, will, in many
cases, be implemented by w

While law (incomplete version): For any g, h, and A, such that ... if

g � if A then (h; g) else skip

then
g � while A do h

Later we will complete this law (fill in the “...”) with extra conditions
that ensure it is valid for particular g, h, and A.

This gives us an approach to refining a specification g with a while loop.
We derive an if command such that its else branch is refined by skip. In
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refining the then-part, if we come to a point where all that remains to be
done is described by g, we simply stop. Now we have

g � if A then (h; g) else skip

Then (subject to some conditions we will see later), we have g � while A do h.

3.0.1 Summation of an array

For this problem, we calculate the sum of all the elements in an array of
integers a of size n (a fixed natural number)

f =

〈
s′ =



∑

k∈{0,..n}

a(k)



〉

It turns out that f is not suitable for directly applying the while law.

The strategy is to find a generalization of the problem g that can serve
as the specification of a loop:

f

�Substitution law

i, s := 0, 0 ; g

where

g =

〈
s′ = s+



∑

k∈{i,..n}

a(k)



〉

Now the problem remaining is to derive a program for g.

In the case where i ≥ n the problem is easy to solve

g

�
if i < n
then 〈i < n〉 ⇒ g
else 〈i ≥ n〉 ⇒ g
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Tackling the second problem first we have

〈
i ≥ n ⇒ s′ = s+



∑

k∈{i,..n}

a(k)



〉

=“If i ≥ n, then {i, ..n} = ∅”
〈
i ≥ n ⇒ s′ = s+

(
∑

k∈∅

a(k)

)〉

=The sum over an empty set is 0

〈i ≥ n ⇒ s′ = s + 0〉
�“Erasure”
skip

In the second case

〈
i < n⇒ s′ = s+



∑

k∈{i,..n}

a(k)



〉

=“If i < n we can rewrite {i, ..n} as {i} ∪ {i+ 1, ..n} ”
〈
i < n⇒ s′ = s+




∑

k∈{i}∪{i+1,..n}

a(k)



〉

=“Split the summation”
〈
i < n⇒ s′ = s+ a(i) +



∑

k∈{i+1,..n}

a(k)



〉

�“Strengthen”
〈
s′ = s+ a(i) +



∑

k∈{i+1,..n}
a(k)



〉

=“Substitution law”

i, s := i+ 1, s+ a(i) ; g
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Putting these results together (with monotonicity) we get that

g

�
if i < n
then 〈i < n〉 ⇒ g
else 〈i ≥ n〉 ⇒ g

�Above calculations
if i < n
then (i, s := i+ 1, s+ a(i); g)
else skip

Now we apply the while law

g � while i < n do i, s := i+ 1, s+ a(i)

and thus (by monotonicity)

f � i, s := 0, 0;
while i < n do

i, s := i+ 1, s+ a(i)

3.0.2 Greatest Common Denominator

For any natural numbers a and b, we write a | b iff a divides b, i.e. iff there
exists a q ∈ N such that aq = b. Note that

a | 0, for all natural numbers a (0)

The greatest common denominator of two natural numbers a and b is a
natural number gcd(a, b) with the following properties.

gcd(a, b) | a, for all natural numbers a, b
gcd(a, b) | b, for all natural numbers a, b
if c | a and c | b then c | gcd(a, b),

for all natural numbers a, b, c
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From these properties we can derive the following facts (proof left as exercise)

gcd(a, 0) = a, (1)

for all natural numbers a, where a �= 0

gcd(a, b) = gcd(b, amod b), (2)

for all natural numbers a, b where b �= 0

From (0) it is clear that gcd(0, 0) is not defined, since there are an in-
finite number of common divisors. Therefore, it makes sense to use as a
precondition that at least one argument is not zero. Let

g = 〈a �= 0 ∨ b �= 0 ⇒ a′ = gcd(a, b)〉

This is ready for implementation as a loop.

g

=Alternation

if b �= 0
then 〈b �= 0〉 ⇒ g
else 〈b = 0〉 ⇒ g

In the else part we have (after shunting)

〈b = 0 ∧ (a �= 0 ∨ b �= 0) ⇒ a′ = gcd(a, b)〉
= One point and identity law for ∨

〈b = 0 ∧ a �= 0 ⇒ a′ = gcd(a, 0)〉
=Fact (1)

〈b = 0 ∧ a �= 0 ⇒ a′ = a〉
�Erasure
skip
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In the then part we have (after shunting)

〈b �= 0 ∧ (a �= 0 ∨ b �= 0) ⇒ a′ = gcd(a, b)〉
=Domination law for ∨

〈b �= 0 ∧ true⇒ a′ = gcd(a, b)〉
=Identity law for ∧

〈b �= 0 ⇒ a′ = gcd(a, b)〉
=Fact (2)

〈b �= 0 ⇒ a′ = gcd(b, amod b)〉
�Strengthening

〈b �= 0 ∨ amod b �= 0 ⇒ a′ = gcd(b, amod b)〉
=Forward substitution

a, b := b, amod b ; g

Now putting the two cases together we get

g

�
if b �= 0
then a, b := b, amod b ; g
else skip

So by the while loop law we have

g � while b �= 0 do a, b := b, amod b

3.1 Loop Termination

In order to use while loops in programming, we need to be able to prove
statements such as

g � while A do h

So we need to know under what conditions this refinement holds. Earlier we
saw an incomplete law

While law (incomplete version): For any g, h, and A, such that ... if

g � if A then (h; g) else skip
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then
g � while A do h

But we still need to fill in the “...”
It turns out that what is missing is that we must require the loop to

terminate. Consider two loops where x is a natural number program variable

while x > 0 do x := x− 1

and
while x �= n do x := x+ 1

The first definitely terminates, while the second may not. How can we show
that a loop terminates?

In the case of while x > 0 do x := x − 1, we can find an expression,
for example x, such that the number of remaining iterations, never exceeds
that expression. Such an expression is called a bound on the number of re-
maining iterations, that is an expression E such that the number of iterations
remaining is no more than E .

In the case of while x �= n do x := x + 1, we can not find any such
expression. The expression n − x will act as bound in some states (those
where n ≥ x), but not in all states.

If we can find a bound for a loop, then it always terminates.

3.1..0 A better iteration law

While law (better version): For any g, h, and A, such that while A do h
always terminates, if

g � if A then (h; g) else skip

then
g � while A do h

3.1..1 An even better iteration law

In practice, we do not require that loops terminate regardless of the ini-
tial state. We only require that they terminate when started in states that
matter. For example, we would expect that, for an integer i,

〈i ≤ n ⇒ i′ = n〉 � while i �= n do i := i+ 1
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even though, the loop does not terminate when started with an initial value
of i that is larger than n.

To show this sort of refinement we need an even better law. We will use
a program variable τ of type Z to count the number of repetitions of loops.
You can think of this variable as representing time. You might expect that
every operation will take some amount of time and so we should imagine the
time variable increasing with each operation. That would be a more realistic
approach to time, but also a more complicated one. For many purposes, it
is sufficient to consider how time

Let us strengthen the example specification to include information about
the maximum number of repetitions allowed

g = 〈(i ≤ n ⇒ i′ = n ∧ τ ′ ≤ τ + (n− i))〉
Now we show

g � if i �= n then (i := i+ 1; τ := τ + 1; g) else skip

While law (final version): For any g, h, and A, where g is of the form
〈B ⇒ C ∧ τ ′ ≤ τ + E〉 and E is a natural number expression, if

g � if A then (h; τ := τ + 1; g) else skip

then
g � while A do h

(E is called the bound for the loop.)
Practically, what this means is that when A and E > 0 are true initially,

h needs to decrease the value of E by at least 1.

3.1..2 Summation revisited

In the summation problem above we had to refine
〈
i ≤ n ⇒ s′ = s+



∑

k∈{i,..n}

a(k)



〉

with a loop. In that case the bound can be n− i, so we should refine
〈
i ≤ n ⇒ s′ = s+



∑

k∈{i,..n}

a(k)


 ∧ τ ′ ≤ τ + n− i

〉

by a while loop.
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3.1..3 GCD revisited

In the GCD problem we had to refine

〈a �= 0 ∨ b �= 0 ⇒ a′ = gcd(a, b)〉

in this case we can use b as the bound. We can show that

〈a �= 0 ∨ b �= 0 ⇒ a′ = gcd(a, b) ∧ τ ′ ≤ τ + b〉

is implemented by

while b �= 0 do a, b := b, amod b

since amod b < b.
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Chapter 4

Loop invariants

4.0 Square root

Suppose x is a natural number. We wish to find the integer part of its square
root.

f =
〈
y′2 ≤ x < (y′ + 1)

2
〉

=
〈
y′2 ≤ x ∧ x < (y′ + 1)

2
〉

Our aim is to implement f using a loop. If we have already searched the first
y natural numbers we know y2 ≤ x. Let’s call this expression I.

I is y2 ≤ x

We can generalize f by adding I as an antecedent.

g = (〈I〉 ⇒ f)

We have
f � y := 0; g

I is called the loop’s invariant.
Note that I is one of the conjuncts of f,except with the primes erased.

Let’s take the other conjunct, negate it, and erase primes; we get (y+1)2 ≤ x;
we’ll use this expression as a guard. Applying the alternation law we have

g � if (y + 1)2 ≤ x then g0 else g1
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where the else-clause is

g1 =
〈
y2 ≤ x < (y + 1)2 ⇒ y′2 ≤ x < (y′ + 1)

2
〉

We have a specification of the form 〈A ⇒ B〉 such that A is the same as B̃.
By the erasure law, such a specification can always be implemented by skip.

For the "then" clause we have:

g0 =
〈
I ∧ (y + 1)2 ≤ x⇒ y′2 ≤ x < (y′ + 1)

2
〉

We need to find a specification h so that

g0 � h; g

The following will do

h =
〈
I ∧ (y + 1)2 ≤ x⇒ I ′ ∧ x′ = x

〉

where I ′ is the same as I, but with primes:

I ′ is y′2 ≤ x′

The key point about h is that its job is to preserve the invariant.

h = 〈I ∧ · · · ⇒ I ′ ∧ · · · 〉
That is, if h starts in a state where I holds, it must end in a state where I
holds.

Exercise 59 Prove that g0 � h; g using the definition of sequential compo-
sition.

Now all that remains is to implement h.

h

= By definition
〈
I ∧ (y + 1)2 ≤ x⇒ I ′ ∧ x′ = x

〉

� Strengthening and assignment laws

y := y + 1

To show that the loop terminates, we can use x− y2 as a bound.
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4.1 The method of loop invariants

Let’s try to separate the method used to solve the last problem, from the
details of the problem.

The general form of the solution is

f � m; g

g � while A do h

The key to the method is the notion of an invariant I, which is a condition
on the initial state.

Suppose f = 〈B〉 and B depends on a list of input variables x̄. We choose
an invariant I and generalize f = 〈B〉 to g = 〈I ⇒ B〉.

The role of the initialization statement m, is to establish the invariant,
that is to make I true at the start of the loop. This suggests

〈I ′〉

However, that is not enough, m must not change any of the variables x̄ whose
initial value is used in B.

m = 〈I ′ ∧ x̄′ = x̄〉

Exercise 60 Exercise: Show that f � m; g

Next, we turn our attention to implementing g = 〈I ⇒ B〉withwhile A do h.
In the case where A is false, the while loop will do nothing, so the final state
will be the same as the initial state. We can assume that I is true in the
initial state. So we need that ¬A ∧ I implies that B relates the initial state
to itself: I.e. we need that

I ∧ ¬A ⇒ B̃, is universally true

The role of the loop’s body h is to preserve the invariant ; that is

〈I ⇒ I ′〉

We can assume that A is true to start with, so h needs to implement

〈A ∧ I ⇒ I ′〉
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However, h should not change variables whose initial value is used in B. We
have

h = 〈A ∧ I ⇒ I ′ ∧ x̄′ = x̄〉
To ensure termination, the loop’s body should also decrease a bound.

Exercise 61 Show that g � 〈A〉 ⇒ (h; g)

4.2 Examples of using loop invariants

4.2.0 Square Root by Binary Search

The floor �a , of a real number a is the largest integer that is not larger than
a. We have �a < i iff a < i, for all integers i and real numbers a.

The problem is (again) to find the integer part of the square root of a
nonnegative real number x: f =

〈
y′2 ≤ x < (y′ + 1)2

〉
. Rewrite f as

f =
〈
y′2 ≤ x < (y′ + 1)

2
〉

= Monotonicity of squaring nonnegative reals
〈
y′ ≤ √

x < y′ + 1
〉

= Facts about floor
〈
y′ ≤
⌊√
x
⌋
< y′ + 1

〉

=
〈
y′ =
⌊√
x
⌋〉

Our plan is to use the method of invariants.

Picking an invariant. The first thing to do is to pick an invariant.
We obtain I by replacing the expression y′ + 1 in f with a new variable, z,
and erasing all primes.

I : y ≤
⌊√
x
⌋
< z

g =
〈
I ⇒ y′ =

⌊√
x
⌋〉

In terms of sets I = (�√x ∈ {y, ..z}). The invariant says that the answer
we seek is somewhere between y (inclusive) and z (exclusive)
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0 · · · · · · �√x · · · · · · x+ 1
↑ ↑
y z

It is a fact that, for all x ∈ N

0 ≤
⌊√
x
⌋
< x+ 1

So

f

= Fact just mentioned
〈
0 ≤
⌊√
x
⌋
< x+ 1 ⇒ y′ =

⌊√
x
⌋〉

= Substitution

y, z := 0, x+ 1; g

Picking a Guard When z = y + 1 , according to the invariant, �√x 
is in the set {y, ..y + 1} = {y}. That is z = y+1 together with the invariant
implies that �√x = y, and so there is nothing left to do:

〈
z = y + 1 ∧ I ⇒ y′ =

⌊√
x
⌋〉

� skip

So use z �= y + 1 as the loop guard. Given the invariant, this is the same as
z > y + 1. So we have

g

�
if z > y + 1 then 〈z > y + 1〉 ⇒ g else 〈z = y + 1〉 ⇒ g

�
if z > y + 1 then 〈z > y + 1〉 ⇒ g else skip

Preserving the invariant We need a body that preserves the invariant
but doesn’t change x.

h =
〈⌊√

x
⌋
∈ {y, ..z} ∧ z > y + 1 ⇒

⌊√
x′
⌋
∈ {y′, ..z′} ∧ x′ = x

〉

The idea is to consider two parts of the set {y, ..z}. If w ∈ {y, ..z},
then {y, ..w} ∪ {w, ..z} = {y, ..z}. Since (according to the invariant) �√x ∈
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{y, ..z}, �√x must be in one of the subsets {y, ..w} and {w, ..z}. If we can
figure out which one, we can preserve the invariant by setting y and z to the
upper and lower bounds of the appropriate subset. If our bound expression
is z − y, i.e. the size of the set {y, ..z}, we should pick w so that y < w < z.

The fastest way to make progress is to pick w about half way between
y and z. Since, at the start of the body, z > y + 1, z − y is at least 2,
so �(z − y)/2 is at least 1. Let w stand for y + �(z − y) /2 . Note that
y < w < z, as needed. We have {y, ..z} = {y, ..w} ∪ {w, ..z}. From I we
have �√x ∈ {y, ..w} ∨ �√x ∈ {w, ..z}

If w ≤ �√x then �√x ∈ {w, ..z}, and we can set y to w without making
the invariant false.

0 · · · · · · · · · �√x · · · · · · x+ 1
↑ ↑ ↑
y w z

If w > �√x then �√x ∈ {y, ..w}, and we can set z to w without making
the invariant false.

0 · · · · · · �√x · · · · · · · · · x+ 1
↑ ↑ ↑
y w z

In both cases the bound z − y is decreased by at least one. We have

h

=

〈I ∧ z > y + 1 ⇒ I ′ ∧ x′ = x〉
� if w ≤ �√x 

then y := w
else z := w

But, we can’t use the test w ≤ �√x , as we can’t easily calculate �√x .
(If we could easily calculate �√x there wouldn’t be any point designing this
algorithm.) Can we find an equivalent expression? Yes:
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w ≤
⌊√
x
⌋

= Since w is an integer

w ≤ √
x

= Squaring both sides.

w2 ≤ x

The final algorithm is

f

� y, z := 0, x+ 1;
// inv. y ≤ �√x < z
while z > y + 1
do var w := y + �(z − y) /2 ·

if w2 ≤ x
then y := w
else z := w

Let’s take a moment to look back at how the algorithm works. The
invariant says the desired answer is in the set {y, y + 1, ..., z − 1}. We call
this set the “search space”

In each iteration of the loop, we reduce the size of the search space by
roughly 2. This technique is called binary search.

Since the size of the search space is roughly halved with each iteration,
and the initial size of the search space is x, the number of iterations is
roughly log2 x. For large x, log2 x is considerably smaller than

√
x. Consider

x = 1012 ∼= 240.
√
x = 106. log2 x

∼= 40.

4.2.1 Searching for a pattern

In this section we look at a somewhat more difficult problem.
Consider the problem of searching for a pattern sequence p within a target

sequence t. For example, if p is “sip" and t is “Mississippi”, then the answer
is true. But if the pattern were “ips” the answer would be false. We are
looking to see if there is a place i such that p(0) = t(i) and p(1) = t(i + 1)
and so on up to (and including) p(‖p‖−1) = t(i+‖p‖−1). I’ll write t[i, ..i+j]
to mean the segment of t that starts at i and that has length max(j, 0); For
example if t is “abcd”, then t[1, ..3] is “bc”.
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4.2.1.0 Formalizing the problem

Let us define match(i, j) to mean that the first j items of p match the j items
of t starting at position i, where 0 ≤ j ≤ ‖p‖ and 0 ≤ i:

match(i, j) = (i+ j ≤ ‖t‖ ∧ p[0, ..j] = t[i, ..i+ j])

Now we can specify our problem as

f = 〈(b′ = ∃i ∈ {0, .. ‖t‖ − ‖p‖+ 1} ·match(i, ‖p‖)〉

For the rest of this section, I’ll regard t and p as mathematical variables
rather than state variables, and so I won’t explicitly specify that they must
not be changed by the initialization code and the loop body.

4.2.1.1 Developing an invariant and guard

Note that there are ‖t‖ − ‖p‖ + 1 places that the pattern could be found.
Suppose we search from left to right using an index k that ranges from 0 up,
and we have established that there is no match in the first k places. Then
we know I0 ∧ I1 where

I0 is k ≥ 0

I1 is ¬∃i ∈ {0, ..k} ·match(i, ‖p‖)

Suppose we further know that, at position k, the first j items of the pattern
match, i.e. we also know I2 ∧ I3 where

I2 is j ∈ {0, .., ‖p‖}
I3 is match(k, j)

All of these invariants are easy to establish by setting k and j to 0.
What about a guard? If k > ‖t‖ − ‖p‖, then, by I1, we know that the

pattern exists nowhere in the target and so b should be set to false; the loop
can stop. On the other hand, if j = ‖p‖, then, by I3, there is a match at
position k and so b should be set to true; again the loop can stop. This
suggests that the guard G be k ≤ ‖t‖ − ‖p‖ ∧ j < ‖p‖.

In summary, so far we have

f � k, j := 0, 0; 〈I ⇒ I ′ ∧ G′〉 ; b := j = ‖p‖

where I is I0 ∧ I1 ∧ I2 ∧ I3.

Typeset January 22, 2018



4.2 Examples of using loop invariants 67

4.2.1.2 Developing a loop body

We can implement 〈I ⇒ I ′ ∧ G′〉 with a loop

while G do h

where h = 〈G ∧ I ⇒ I ′〉, provided we also decrease a bound, so it remains
to implement h while decreasing a bound.

If G ∧ I holds, we have 0 ≤ k ≤ ‖t‖ − ‖p‖ and 0 ≤ j < ‖p‖, so it is
safe to compare t(k + j) with p(j); neither subscript is out of bounds. If
t(k + j) = p(j), incrementing j preserves all invariants. If t(k + j) �= p(j),
incrementing k preserves all invariants if we also set j to 0. Thus we have

h � if t(k + j) = p(j) then j := j + 1 else k, j := k + 1, 0

The whole algorithm is

k, j := 0, 0;
while k < ‖t‖ − ‖p‖+ 1 ∧ j < ‖p‖ do

if t(k + j) = p(j) then j := j + 1 else k, j := k + 1, 0;

b := j = ‖p‖

As a bound we can use (‖t‖ − k) ‖p‖+ ‖p‖ − j.

4.2.1.3 Speed

Is this a good algorithm? Consider for example a pattern “aaaaaaaaab” and
a target than is “aa· · · a”. The algorithm behaves quite badly in this case: it
makes 10 comparisons for each value of k ∈ {0, .., ‖t‖ − 10}. In general, the
algorithm makes ‖p‖ × (‖t‖ − ‖p‖+ 1) item comparisons, in the worst case.

4.2.1.4 Improving the algorithm

Is there a better way? When there is a match, it seems hard to improve on
advancing j. When there is a failure and j = 0, the best way to make progress
is to increment k, while leaving j at 0. What if there is a failure when j > 0?
The algorithm has already made j successful comparisons and that tells a
lot about the target string that is simply forgotten if k is incremented and j
is set to 0. We will look at three examples to figure out a way to use that
information
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Consider the case where the pattern p is “aaab”. Suppose that, for some
t and k, the match fails on the “b” –i.e. we have j = 3 and t(k+3) �= p(3).
The algorithm above sets j back to 0 and k to k + 1, so that the next
comparison will be between t(k + 1) and p(0). We can see that p(0) is “a”
by looking at p. We can see that t(k + 1) is “a” by consider I3 which says
that p[0, ..j] = t[k, ..k + j] and thus that t(k + 1) = p(1). Since both items
are “a”, there is no need to compare them. Similarly, both p(1) and t(k+2)
are “a” and so there is no reason to compare them. We can just set j to 2
and k to k + 1.

k k + j
↓ ↓

· · · a a a ? · · ·
a a a b

↑
j

slide by 1

k k + j
↓ ↓

· · · a a a ? · · ·
a a a b

↑
j

Now consider the case where the pattern p is “abcd”. Suppose that
for some t and k, the match fails on the “d” –i.e., we have j = 3 and
t(k + 3) �= p(3). From I3 we know that p[0, ..j] = t[k, ..k + j]. And thus
t[k, ..k + 3] is “abc”. There is no point trying for a match at position k + 1;
we know that t(k + 1) contains a “b”, while p(0) contains an “a”. Similarly
there is no point trying for a match at position k+2, as we know that t(k+2)
is a “c”. In this case we can set k to k + 3 and j to 0.

k
↓

· · · a b c ? · · ·
a b c d

↑
j

slide by 3

k
↓

· · · a b c ? · · ·
a b c d
↑
j

Finally, consider the case where the pattern p is “ababc” and the match
fails on the “c” when j is 4. This tells us that t[k + 1, ..k + 4] is “bab”. So
there is no point sliding the pattern 1 place to the right. But if we slide it
two places to the right, the first two items of p will match. So we should
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increment k by 2 and set j to 2.

k k + j
↓ ↓

· · · a b a b ? · · ·
a b a b c

↑
j

slide by 2

Note that in all three of these cases, we increment k and decrement j by the
same amount so that j + k remains the same

Given the pattern p, we can work out for each j ∈ {1, .. ‖p‖}, how much
can we slide the pattern in case the match process fails at point j without
breaking any invariants. This will be the smallest number m > 0 such that
p[0, ..j − m] = p[m, ..j]; this m is in {1, .., j}. For each j ∈ {1, .. ‖p‖}, let
mj = (minm ∈ {1, .., j} | p[0, ..j −m] = p[m, ..j]). For j ∈ j ∈ {1, .. ‖p‖},
we have

I3
=

t[k, ..k + j] = p[0, ..j]

⇒
t[k +mj , ..k + j] = p[mj, ..j]

⇒ Since p[0, ..j −mj] = p[mj , ..j]

t[k +mj , ..k + j] = p[0, ..j −mj ]

=

I3 [k, j : k +mj , j −mj]

This means we will not violate I3 by assigning k, j := k +mj, j −mj. I1
will not be violated by this assignment, since, if it were, we could show that
m is not minimum. The other invariants are trivially not violated.

The new loop body is

h � if t(k+j) = p(j) then j := j+1 else if j = 0 then k := k+1 else k, j := k+mj , j−mj

We can precompute the value of mj, based only on the pattern p.The
improved algorithm is
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var m : {1, .. ‖p‖} tot→ {1, .. ‖p‖} ·
for each j ∈ {1, .. ‖p‖}
do m(j) := (minm ∈ {1, .., j} | p[0, ..j −m] = p[m, ..j])
k, j := 0, 0;
while k < ‖t‖ − ‖p‖+ 1 ∧ j < ‖p‖ do

if t(k + j) = p(j) then j := j + 1
else if j = 0 then k := k + 1
else k, j := k +m(j), j −m(j);

b := j = ‖p‖

Is this really more efficient? Since mj > 0, we can see that each iteration
decreases 2 (‖t‖ − k)+(‖p‖ − j). In total the number of item comparisons is
no more than 2 ‖t‖ + ‖p‖. There is also some time required to compute the
mj values based on p, but this time depends only on ‖p‖, not on ‖t‖. For
longer patterns this represents a significant improvement in time.

Let’s reflect a bit on what we had to consider and what we didn’t have
to consider in making this improvement. The invariant for the improved
algorithm is the same as the invariant for the earlier version. So, we could
confidently make changes to the body of the loop, subject only to the con-
straint that it preserves the invariant. In making these changes we did not
have to think about the guard or the initialization or the code after the loop,
nor to come up with a different invariant. The only thing we had to think
about was how to get from one state where the invariant and the guard both
hold to a state where the invariant holds.

Exercise 62 Show in detail that invariant I1 is preserved by the improved
loop body.

Exercise 63 Describe in detail an algorithm to compute the values of mj

into an array.

Exercise 64 There is still information not used in the improved algorithm.
When there is a failure, we not only know that t[k, ..k+ j] = p[0, ..j], but we
also know that t[k+ j] �= p[j]. Can we also make use of this additional fact?

Exercise 65 Suppose that the items can be used to index an array. When
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a match fails, can we use the value of t[j + k] together with the value of j
as the indeces to a 2 dimensional array that gives information about how to
increment k and alter j? It should be possible, then, to create an algorithm
that only reads each item of t once.

4.3 Finding invariants

[[To do: Add material from slides 6a]]
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Chapter 5

Data Transformation

[[TO DO Rewrite this chapter. Currently it is just my slides.]]

5.0 A slightly faster (and smaller) square root

Consider the square root problem

f =
〈
y′2 ≤ x < (y′ + 1)

2
〉

and its solution

Iis y2 ≤ x

g = (〈I〉 ⇒ f)

f � y := 0; g

g � while (y + 1)2 ≤ x do y := y + 1

On many computers, multiplications are slow. In hardware, multipliers
are large, slow, or both.

Do we really need to multiply?
Introduce a new variable z and redefine the invariant as

I : y2 ≤ x ∧ z = (y + 1)2

As before define

g = (〈I〉 ⇒ f)
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Now we must change the two places where the invariant is established.
Note that

(y + 2)2 = y2 + 4y + 4 = (y + 1)2 + 2(y + 1) + 1

We get

f � y, z := 0, 1; g

g � while z ≤ x
do y, z := y + 1, z + 2(y + 1) + 1

Although there is still a multiplication by 2, such a multiplication is fast
in software and trivial in hardware. (Just shift the binary representation to
the left.)

[Exercise: Do this derivation in detail.]

In both the above solutions we augmented the state space with a variable
z and constrained the relationship of z to the other variables by strengthening
the invariant.

This is an example of a data transformation. In a data transformation,
we replace one set of variables with another while specifying an invariant
relationship between the two state spaces.

In both examples we replaced {“x”, “y”} with {“x”, “y”,“z”} the added
relationships being

z = (y + 1)2

and
y ≤
⌊√
x
⌋
< z

respectively.
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5.0..5 A challenge:

The Square Root by Binary Search algorithm above still has a multiplication
operation in each iteration. For hardware implementation, this will use up
considerable time and area, for software implementation, it uses time.

Can you eliminate the multiplication in the Square Root by Binary Search?
Hint: Use data transformation.

• Add one or more variables to track quantities that are expensive to
calculate.

• Strengthen the invariant to indicate the relationship between these vari-
ables and the quantities they track.

5.0.0 An Abstract Binary Search algorithm

We can abstract away from the particulars of the square root problem to
obtain a general search problem. Suppose G is a constant, nonempty, “goal
set”. (In our square root application G is {�√x }.)

By constant, I mean that it does not depend on any variables that are
changed.

We wish to find at least one member of the goal set.

f = 〈S ′ ⊆ G ∧ S ′ �= ∅〉

We can abstract away from the particulars of the solution to the square
root problem to obtain an Abstract Binary Search algorithm. The key is
the invariant, which says that a set variable S always contains at least one
member of the goal set.

I : S ∩G �= ∅
g = 〈I ⇒ f〉
f � S := some set such that S ∩G �= ∅ ; g

g � while |S| > 1
do var S0,S1 | S0 ∪ S1 = S·

if S0 ∩G �= ∅ then S := S0
� S1 ∩G �= ∅ then S := S1

The var construct introduces two new variables S0 and S1and initializes
them such that S0 ∪ S1 = S before executing the body of the var command.
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Note that either S0 ∩G �= ∅ or S1 ∩G �= ∅ or both since

S0 ∩G �= ∅ ∨ S1 ∩G �= ∅
= De Morgan

¬ ((S0 ∩G = ∅) ∧ (S1 ∩G = ∅))
= Since A = ∅ ∧B = ∅ iff A ∪B = ∅
¬ ((S0 ∩G) ∪ (S1 ∩G) = ∅)
= Distributivity

¬ ((S0 ∪ S1) ∩G = ∅)
= Since S0 ∪ S1 = S

= ¬ (S ∩G = ∅)
Definition of I
I

The loop bound is the size of S, so we should ensure that both S0 and
S1 are smaller than S. For efficiency it is best if S0 and S1 are disjoint
(S0 ∩ S1 = ∅) and approximately the same size. In that case the loop will
iterate Θ(log |S|) times.

5.0.0.0 Applying the general square root algorithm.

Our Square Root by Binary Search algorithm can be obtained from the Ab-
stract Binary Search algorithm by the following data transform

G =
{⌊√

x
⌋}

S = {y, ..z}
S0 = {y, ..w}
S1 = {w, ..z}

where w = y + �(z − y) /2 
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Letter conventions for this part of the book

I’ll use variables as follows

S an alphabet

a, b, c, d, e ∈ S
s, t, u, v, w ∈ S∗

M,N ⊆ S∗

x, y regular expressions over S

Q a set of states

p, q, r ∈ Q
R,F ⊆ Q

T a set of transitions

V a set of nonterminal symbols

A,B,C,D,E ∈ V (A is also used for finite state machines)

α, β, γ, δ, η, κ ∈ (V ∪ S)∗

P a set of productions
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Chapter 7

Strings, Languages, and
Regular Expressions

In this chapter, we will be concerned with what are called “formal languages”.
Now the word “language” usually means something quite complex with syn-
tax, semantics, and pragmatics. However a “formal” language is a fairly
simple thing, simply a set of sequences. We’ll worry about questions such
as: “How can you describe a language?” “How do these ways of describing
languages relate?” “Are some more powerful than others?” “How can you
“recognize” whether a particular sequence is in a language?”

Although the idea of a language is simple –“a set of sequences”–, in-
dividual languages can be quite complex. That is they can be difficult to
describe or difficult to recognize. In fact, formal language theory was one
of the first places where ideas about complexity were studied and remains
important to understanding complex systems. One particularly intriguing
question is whether we can describe a language is so complex that recog-
nizing members of the language is beyond the capability of any imaginable
computer.

7.0 Strings
alphabet

symbol
Definition 66 An alphabet set S is simply a nonempty set of things we will
call symbols.

So an alphabet is a set of symbols and a symbol is some member of an
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alphabet. Most of the time, we’ll make use only of finite alphabets, such as
{‘0’, ‘1’} of {‘a’, ‘b’, ‘c’}.

A string is finite sequence of symbols.

string
Definition 67 A string of length n over an alphabet S is a function from

{0, ..n} tot→ S.

We use the notation Sn for the set of all strings of length n over alphabet
S. By definition

Sn =
(
{0, ..n} tot→ S

)

If s ∈ Sn we say that its length is n and write ‖s‖ = n.length

Note that there is one element of {0, ..0} tot→ S. This is the function that
has ∅ as its domain, S as its co-domain, and ∅ as its graph. Regardless of S
we’ll write this function as ε.0.empty string

There are |S| elements of S1. For example, if S = {‘a’, ‘b’, ‘c’}, the three
elements of S1 are

({0} , S, {0 �→ ‘a’}) = [‘a’]

({0} , S, {0 �→ ‘b’}) = [‘b’]

({0} , S, {0 �→ ‘c’}) = [‘c’]

We will write these strings as “a”, “b”, and “c”.There are 4 elements of S2,
where S = {0, 1}.

{[0, 0] , [0, 1] , [1, 0] , [1, 1]}
In general there are |S|n elements of Sn.

The set of all strings over S is

S∗ =
⋃
n ∈ N·Sn

If S = {‘a’, ‘b’, ‘c’} then S∗ is an infinite set

S = {ε, “a”, “b”, “c”, “aa”, “ab”, “ac”, “ba”, “bb”, “bc”, “ca”, “cb”, “cc”,
“aaa”, “aab”, “aac”, “aba”, “abb”, “abc”, “baa”, “bab”, “bac”, · · · }

Note that, while the size of S∗ is infinite, the length of each element of S
is finite.concatenate

0This is the greek letter epsilon. Please don’t confuse it with the set membership
symbol ∈. Thus we can write that ε ∈ S0.
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We can concatenate two strings s and t to get a string sˆt. Such that

sˆt ∈ S‖s‖+‖t‖ and thus

‖sˆt‖ = ‖s‖+ ‖t‖ . Furthermore
(sˆt) (i) = s(i), if 0 ≤ i < ‖s‖ , and

(sˆt) (‖s‖+ i) = t(i), if 0 ≤ i < ‖t‖
For example “ab”ˆ“ca” = “abca”.

7.0.0 Languages

A language or formal language over S is any subset of S∗.
We can overload the concatenation operation to languages; if M and N

are languages over S.

MˆN = {s ∈M, t ∈ N · sˆt}
For example if

M = {“a”, “aa”, “ab”} and N = {ε, “b”} then

MˆN = {“a”, “aa”, “ab”, “aab”, “abb”}
For each i ∈ N we can consider M i to be MˆMˆ · · · ˆM where there are

i Ms. A string is in M i exactly if it can be cut into i pieces, each of which
is in M .

For example if

M = {“a”, “aa”, “ab”} then

M1 = {“a”, “aa”, “ab”}
M2 = {“aa”, “aaa”, “aab”,“aaaa”, “aaab”,“aba”, “abaa”, “abab”}
M3 = {“aaa”, “aaaa”, “aaab”,“aaaaa”, “aaaab”,“aaba”, “aabaa”, “aabab”,

“aaaaaa”, “aaaaab”,“aaaba”, “aaabaa”, “aaabab”,
“abaa”, “abaaa”, “abaab”,“abaaaa”, “abaaab”,“ababa”, “ababaa”, “ababab”}

Note that, while the size ofM is 3, the size ofM2 is 8, not 9. This is because
the string “aaa” is generated in two different ways.

By convention, M0 is {ε}. So we can define M i by

M0 = {ε}
M i+1 =MˆM i, for all i ∈ N
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We can define the Kleene closure, M∗, of M as the set of all finite strings
that can be generated by catenating together strings from M .1 So if M =
{“a”,“bb”} then

M∗ = {ε, “a”, “bb”, “aa”, “abb”, “bba”, “bbbb”,
“aaa”, “aabb”, “abba”, “abbbb”,
“bbaa”, “bbabb”, “bbbba”, “bbbbbb”, · · · }

A string is in M∗ exactly if it can be cut into a finite number of pieces, each
of which is in M .

Formally we can define

M∗ =
⋃
i ∈ N·M i

Note that ε ∈M∗ regardless of M . For example ∅∗ = {ε}.

7.1 Regular language

Given that M and N are languages over S, consider three ways to make
languages

• Union: M ∪N – the language that contains all strings either in M or
in N

• Concatenation:MˆN – the language of strings s that can be split into
two parts s = tˆw, where t ∈ M and w ∈ N .

• Kleene closure: M∗– the language of strings s that can be split into
some number (including 0) of parts, each of which is in M .

If we start with one of more finite languages we can build more languages
by applying one or more of the operations above. Here are some examples
useing the alphabet {0, 1}:

• {[0]} ∪ {[1]} ∪ {ε} = {ε, [0], [1]}

• {[0]} ˆ {[1]} = {[0, 1]}
1After the logician Stephen Kleene. “Kleene” is pronounced “cleany”.
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• {[0]}∗ = {ε, [0], [0, 0], [0, 0, 0], . . .}

• {[0]}∗ ∪ {[1]}∗ = {ε, [0], [1], [0, 0], [1, 1], . . .}

• {[0]}∗ ˆ {[1]}∗ = { ε
[0], [1],
[0, 0], [0, 1], [1, 1],
[0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1], . . .}

A regular language over S is any language that can be formed from the
finite languages over S using the three operations of union, concatenation,
and Kleene closure. regular language

Next we look at a nice syntax for describing regular languages.

7.2 Regular expressions

A regular expression over S is a kind of expression that defines a language
over S. Each regular expression itself is simply a string in a language over an regular expression
alphabet that includes S and the seven additional symbols {ε, ∅, |, ;, ∗, (, )}. 2

7.2.0 Syntax

Given a set of symbols S, a regular expression over S is a string formed by
finite application of the following six rules:

• For each a ∈ S, a is a regular expression

• ε is a regular expression.

• ∅ is a regular expression.

• If x and y are regular expressions then

— (ˆxˆ | ˆyˆ) is a regular expression (alternation)

— (ˆxˆ;ˆyˆ) is a regular expression (concatenation)

2For simplicity we’ll assume that S contains none of the seven symbols in
{ε, ∅, |, ;, ∗, (, )}. If S is set of characters, we’ll consider, for example the character ‘(’
to be distinct from the symbol (.
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— (ˆxˆ∗) is a regular expression (repetition)

Some examples:

• 0 is a regular expression over {0, 1}.

• (0; (((1∗) | (0∗)); 1)) is a regular expression over {0, 1}.

• ((‘(’∗); (‘)’∗)) is a regular expression over {‘(’, ‘)’}.

Underlining:

• I’ve underlined regular expressions to make it clear that that is what
they are. For example, ε is a regular expression and so is a string of
length 1 in the language of regular expressions, whereas ε is a string
of length 0. I could have written regular expressions in double quotes
(e.g. “ε”) to emphasize that regular expressions are strings, but that
leads to some awkwardness.

• Some programming languages use the similar convention of writing
regular expressions between slashes. E.g. /(b|(a*))/ is a regular ex-
pression in Perl, whereas I’ll write (‘b’| (‘a’∗)).

• When it’s clear that we have a regular expression, the underlining isn’t
needed.

Parentheses:

• Parentheses can be omitted with the understanding that ∗ has higher
precedence than ; and that ; has higher precedence than |. Thus.

(a; (b∗)) can be abbreviated by a; b∗,

whereas
(a; b)∗

needs its parentheses. And

((a; b) | (c; d)) can be abbreviated by a; b | c; d,

whereas
a; (b | c) ; d

needs its parentheses.
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• We can write x; y; z to mean (x; y); z

• Similarly, we can write x | y | z to mean (x | y) | z.

• Redundant parentheses can be added. E.g. (((‘b’) | ((‘a’)∗))).

(The operators |, ; and ∗ are analogous to +, ×, and exponentiation both
in precedence and in some algebraic properties.)

7.2.1 Semantics

As mentioned above, regular expressions are used to define languages.
We can define the “meaning” of regular expressions over an alphabet S

by defining a function L from regular expressions to languages.3

• L(a) = {[a]}, for each a ∈ S.

• L(ε) = {ε}

• L(∅) = ∅

• If x and y are regular expressions then

— L((x;y)) = L(x)ˆL(y)

— L((x | y)) = L(x) ∪ L(y)
— L((x∗)) = (L(x))∗

3In mathematics we often gloss over the distinction between expressions and their
meanings. For example, we might say “(x+ y) (x− y) is x2 − y2” and we might say
“x2 − y2 is in sum of products form”, but we would not say “(x+ y) (x− y) is in sum of
products form”. In the first case we mean that the meaning of (x+ y) (x− y) is the same
as the meaning of x2 − y2. In the second case we mean that the expression x2 − y2 is in
sum of products form.
When we refer to regular expressions, we really mean the expression itself. The vari-

ables x and y range over expressions, not (as in ordinary mathematics) meanings. The
expressions (‘a’ | ‘b’) ;‘c’ is not the equal to the exression ‘a’;‘c’|‘b’;‘c’ even though they
have the same meaning.
The reason for carefully distinguishing between expressions and meanings is that we are

interested in various representations of languages. Regular expressions are just one. In the
next chapter we will meet finite recognizers and we will want to be able to clearly express
that the meaning of a regular expression is the same as the meaning of a finite recognizer.
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If s ∈ L(x) we say that x describes s or that x recognizes s. We also say
that x describes the language L(x). Two regular expression are equivalent if
they describe the same language.

7.2.2 Examples and conventions

7.2.2.0 Money

Suppose that S = {‘$’,‘0’,‘1’,‘2’,‘3’,‘4’,‘5’,‘6’,‘7’,‘8’,‘9’,‘,’,‘.’,‘-’}
We want to define strings representing amounts of money such as

“$0.05”

“$-12,345.67”

We can define a set of strings representing amounts of money as follows.
Let x represent the regular expression

(‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’)

The regular expression

‘$’; (‘−’ | ε); (x;x;x|x;x|x); (‘,’;x;x;x)∗; ‘.’;x;x (0)

describes one convention for writing amounts of money in dollars and cents.

7.2.2.1 Conventions

To make regular expressions easier to use, we can adopt the following nota-
tional conventions

• First, when it is clear from context that we are dealing with a regular
expression, we may leave out the underlining.

• Second, by analogy with multiplication, we may leave out the con-
catenation operator ˆ. Leaving out the symbol does not affect the
precedence of catenation. So xy∗ means xˆy∗, and both mean xˆ (y∗).

• Third, a concatenation of a regular expression x with itself i times, may
be written xi. For example xxx may be written as x3. Also x1 is just
a synonym for x and x0 is just a synonym for ε.
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• Fourth, an alternation (xj | xj+1 | · · · | xi), where j < i, may be written
as xij. For example, (x | xx | xxx) may be written as x31.

• Fifth, it follows that x10 is an abbreviation for x | ε, which we may also
write as x?.

• Sixth xx∗ may be abbreviated by x+.

• Seventh, the catenation of a series of symbols can be written as a string.
E.g. ‘a’ˆ‘b’ˆ‘c’ may be written as “abc”.

• Eighth, an alternation of symbols (a | b | · · · | c), where a, b, · · · , c are
successive symbols (e.g. in alphabetic order or numerical order), may
be written as [a− c]. E.g.

(‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’)

may be written as [‘0’−‘9’].

• Ninth, an alternation between all symbols is written as a dot: . .

Summarizing all notations we have

R.E. Describes . . .
ε only the empty string.
∅ no strings.
a just the string with just an a.
s just the string s.
xˆy any string described by x followed by one described by y.
x y same as xˆy.
x | y strings described by x or y or both.
x∗ any catenation of 0 or more strings, each described by x.
x+ any catenation of 1 or more strings, each described by x.
xn any catenation of exactly n strings, each described by x.
xnm any catenation of from m to n strings, each described by x.
x? a string described by x or ε.
. any string of length one.
[a, b, c] any string of length one using only symbol a, b or c.
[ˆa, b, c] any string of length one not using symbols a, b and c.
[a− b] any string s of length one such that a ≤ s(0) ≤ b in alphabetical order.
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With these conventions, we can write (0) as

‘$’ ‘-’? [‘0’ − ‘9’]31 (‘,’ [‘0’ − ‘9’]3)∗ ‘.’ [‘0’ − ‘9’]2

(The dot here is in quotes and so means a single dot character, not an alter-
nation between all characters.)

The conventions listed above are just abbreviations. Any regular expres-
sion using these conventions is easily rewritten as one that does not. For
theoretical discussions, it is best to stick to the six ways of writing regular
expression that were introduced in Section 7.2.0. In practical use, the con-
ventions allow regular expressions that are shorter, easier to write, and often
easier to read.

Regular expressions are found in various languages: programming lan-
guages such as Perl, JavaScript, Ruby, and awk; editing language such as
sed and vi; schema languages such as XML’s Document Type Descriptions;
parser and lexical analyzer generators such as JavaCC and lex. These var-
ious languages have various and conflicting detailed conventions for writing
regular expressions. The conventions used here are similar to those used in
the JavaCC lexical analyzer generator.4

7.2.2.2 Identifiers

Suppose that S = {‘_’,‘0’,‘1’,. . . ,‘9’,‘a’,‘b’,. . . ,‘z’,‘A’,‘B’,. . . ,‘Z’}. The regular
expression

([‘a’ − ‘z’] | [‘A’ − ‘Z’] | _)([‘a’ − ‘z’] | [‘A’ − ‘Z’] | [‘0’ − ‘9’] | _)∗

describes C++ identifiers.

7.2.2.3 Parity

Let S = {‘0’, ‘1’}. Here is a regular expression that matches only strings
with an even number of 1s.

(‘0’∗ ‘1’ ‘0’∗ ‘1’)∗ ‘0’∗

4A common abbrevation that we will not use is to allow the quotes around symbols to
be omitted from some symbols. For example, in Perl (0) may written

\$-?[0-9]{1,3}(,[0-9]){3})*\.[0-9]{2}

The $ and the . are ‘quoted’ using the backslash \. For this book, to keep things easier
to read, we’ll quote all character symbols.
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7.2.2.4 String search

Let S = {‘_’,‘0’,‘1’,. . . ,‘9’,‘a’,‘b’,. . . ,‘z’,‘A’,‘B’,. . . ,‘Z’}. Let us define a regu-
lar expression that matches all strings that contain the substring “regular”.

Recall that “.” represents the choice between all elements of the alphabet.
Now the regular expression is

.∗“regular”.∗

7.2.2.5 More string searches

Does a document contain any of the strings “woman”, “women”, “man”, “men”
?

.∗ (“woman” | “women” | “man” | “men”) .∗

or, equivalently,

.∗“wo”?‘m’ (‘a’ | ‘e’) ‘n’.∗

Does a document contain the string “John” followed, after 0 or more
intervening characters, by the string “Smith”?

.∗ (“John”) .∗ (“Smith”) .∗

7.2.2.6 C comments

In the C programming language, each comment starts with a ‘/’ followed by
a ‘*’ and ends with another ‘*’ followed by another ‘/’. In between there can
be any number of ‘*’s and ‘/’s, but never a ‘*’ immediately followed by a ‘/’.
There can also be any number of other characters. Let x be [ˆ‘*’,‘/’] so that
L (x) = S1 − {“*”, “/”}. Let y be [ˆ‘*’], so that L(y) = S1 − {“*”}. Now (I
claim) the regular expression

“/*” y∗ ‘*’ (x y∗ ‘*’ | ‘*’)∗ ‘/’

will match any C comment.

7.2.2.7 Sums

For this example we will use S = {‘0’, ‘1’}. We’ll represent sums in a way
that is best illustrated by an example. Suppose we want to add 6 to 13. We
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convert to binary to get 110+1101; we pad out the both numbers with zeros
to get 00110 + 01101. Adding them up we get

00110
+ 01101

10011

Now reading in column major order, we get the string

001 010 110 101 011

Now can we make a regular expression that matches strings such as this, i.e.
strings that represent correct binary sums? I propose

(“000” | “101” | “011” | “001” (“010” | “100” | “111”)∗ “110”)
+

7.3 Matching

For many regular expressions, it is easy to write a program that determines
whether a string s is in the regular expression. For example, if we have a
regular expression “ab”∗;“bab”, we can do as follows: For any symbol c, let

lookahead(c) be ‖s‖ > 0 ∧ s(0) = c, and

consume(c) be if lookahead(c) then s := tail(s) else f := false

where tail(s) is the sequence of length ‖s‖ − 1 such that tail(s)(0) = s(1),
tail(s)(1) = s(2), and so on. Now the following algorithmmatches the regular
expression “ab”∗ˆ“bab” in the following sense: The algorithm sets flag f to
s ∈ L

(
“ab∗; “bab

)
. I.e. the specification is

〈
f ′ =
(
s ∈ L(“ab∗; “bab)

)〉

f := true ;
while lookahead(‘a’) do (

consume(‘a’) ;
consume(‘b’) ) ;

consume(‘b’) ;
consume(‘a’) ;
consume(‘b’) ;
f := f ∧ ‖s‖ = 0
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Note how the structure of the algorithm follows the structure of the reg-
ular expression.

However this strategy does not always work, as it is sometimes neces-
sary for the algorithm to look many characters ahead in order to determine
whether to take one branch or another. Consider “ab”∗ˆ“ababa”ˆ“ab”∗. If
we were to try to write an algorithm analogous to the one we used above,
deciding whether to leave the while loop would require looking ahead six
characters. In the next chapter we will develop algorithms to determine
whether a string is matched by a regular expression; these algorithms will
work with any regular expression.

Exercise 68 Write an algorithm to recognize C comments.

Exercise 69 Write an algorithm to recognize

(‘a’ | ‘b’)∗ | “ab”∗ ‘c’ “ab”∗

7.4 Equivalences of regular expressions

[[To be written]]

7.5 Regular languages and looking forward

Regular expressions provide a useful notation for describing languages. The
set of languages that can be described using regular expressions over S is set
of regular languages over S.

Theorem 70 A language M is a regular language exactly there is a regular
expression x such that L(x) =M .

Exercise 71 Prove this theorem..

As shown by the examples, regular expressions can be a concise and
usually clear notation for describing sets of strings. Importantly, regular
expressions give a finite description of (at least some) infinite languages.
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However some problems remain which will be explored in the following
chapter. First, given a regular expression x, how can we write a program
that takes a string as input and determines whether it is in the language
described by x? If we can do that, we can no doubt do even better and
produce a program that takes as input a regular expression x and a string s
and determines whether s ∈ L(x). Second, can all languages can be described
by regular expression? I.e., is there a regular expression for each language,
or are are there languages that no regular expression can describe? If the
answer is the latter, then are there formalisms that describe the same set of
languages and are there formalisms that can describe more languages?

7.6 Reversal

Define s� to be the reverse of string s, i.e.
∥∥s�
∥∥ = ‖s‖ and s�(i) = s(‖s‖ −

1− i), for all i ∈ {0, .. ‖s‖}. Now define the reverse of a language to be the
language formed by reversing all its strings

M� =
{
s ∈M · s�

}

We will prove that ifM is regular then so isM�. Now consider a reversal
operation mapping regular expressions to regular expressions defined by

ε� = ε

∅� = ∅
a� = a

(
(ˆxˆ;ˆyˆ)

)�
= (ˆy�ˆ;ˆx�ˆ)

(
(ˆxˆ|ˆyˆ)

)�
= (x�ˆ|ˆy�ˆ)

(
(ˆxˆ∗)

)�
= (ˆx�ˆ∗)

By induction we can prove that L(x�) = (L(x))�. IfM is regular, there must
be a regular expression x so that L(x) = M . Thus M� = (L(x))� = L(x�)
and as x� is a regular expression, M� is a regular language. We say that
regular languages are closed under reversal.
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Chapter 8

Finite Recognizers

In this chapter, we will define a simple model of computation called a finite
recognizer. At first, the finite recognizers we will describe are (potentially)
nondeterministic (NDFR). This means that, in a sense, they rely on luck to
work. Later, we will also look at deterministic finite recognizers (DFR), which
could be described as not relying on luck. We will see that the set of languages
that can be described by nondeterministic finite recognizers is exactly the
same as the set of languages that can be described by deterministic finite
recognizers. (I.e. luck is not needed.) Furthermore, this set of languages is
also exactly the set of languages that can be described by regular expressions.
We will call this set of languages, the regular languages.

Thus we will answer some of the questions posed at the end of the last
chapter. In particular we will see how to develop algorithms that determine
whether a string is in the language defined by a regular expression. Fur-
thermore we will see that not every language can be described by a regular
expression. And we will see some formalisms that are equivalent to that of
regular expressions.

The crucial limitation of finite recognizers is that they have a finite mem-
ory. While they can remember the past, their capacity to remember is lim-
ited. Any particular automaton can remember only so much and no more.
Some languages, it turns out, require machines that can remember an un-
bounded amount of information to be accurately recognized.

Here is the plan for the chapter.

• We’ll start by defining nondeterministic finite recognizers (NDFRs).

• Then we’ll see that any regular expression can be translated to an
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equivalent NDFR. This will show that regular expressions have no more
descriptive power than NDFRs.

• Next we’ll see that given an NDFR, we can create an equivalent de-
terministic finite recognizer (DFR). This will show that NDFRs are no
more powerful than DFRs. Since every DFRs is also an NDFR, it is
trivial that DFRs are no more powerful than NDFRs. Thus NDFRs
and DFRs are equivalent in their descriptive power.

• Finally we will see that, given an NDFR (or DFR), we can construct
an equivalent regular expression.

Together these results establish the equivalence of all three formalisms:
REs, NDFRs, and DFRs. Any language that can be described by one, can
also be described by the other two. As we saw at the end of the last chapter,
these languages are known as the regular languages.

Whether a language is regular or not is an important way of measuring
its complexity. A language is regular exactly if there is a device with a fixed
amount of memory that can process it (or at least recognize it). Computer
chips (for example) have only a fixed amount of storage.0 If a language is
not regular, it can not be used at the input language of a computer chip.

8.0 Nondeterministic Finite State Recogniz-

ers

We will define a kind of finite state automaton for defining languages.

8.0.0 Syntax
Nondeterministic
Finite State Recog-
nizer

NDFR

Definition 72 A Nondeterministic Finite State Recognizer (NDFR) is a
quintuple A = (S,Q, qstart, F, T ) consisting of

0The term “finite” is often used instead of “fixed”. You can see this in the term “finite
recognizer”. Since the universe contains a finite amount of mass, it is clear that any digital
device will have only a finite amount of memory. What is crucial here is that the amount
of memory on a computer chip (and many other digital devices) is finite and fixed. The
amount of memory it has at its disposal can not be increased in response to long input
strings.
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• A finite alphabet set S

• A finite set of states Q

• An initial state qstart ∈ Q

• A set of accepting states F ⊆ Q

• A set of labelled transitions T ⊆ Q× (S1 ∪ {ε})×Q

Example 73 As a first example of an NDFR we have A = (S,Q, qstart, F, T )
where

• S = {’a’, ’b’, ’c’}

• Q = {0, 1, 2}

• qstart = 0

• F = {2}

• T = {(0, “a”, 1) , (1, “b”, 1) , (1, “c”, 2) , (1, ε, 2)}

At the heart of an NDFR is an edge-labelled directedmultigraph (Q, T,←−,−→, λ).
Each transition (q, s, r) is an edge from q to r labelled by s:

←−−−−
(q, s, r) = q

−−−−→
(q, s, r) = r λ (q, s, r) = s

We can draw a picture of an NDFR by drawing this graph. We draw an
arrow with no source to indicate the start state and the members of F drawn
as double circles. Figure ?? shows the NDFR from Example 73.

An NDFR
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8.0.1 Semantics

Each state q ∈ Q of an NDFR A = (S,Q, qstart, F, T ) defines a language
LA(q) ⊆ S∗.

Two rules define the languages described by states:

• If q ∈ F then ε ∈ LA(q).

• If (q, s, r) ∈ T then {s}ˆLA(r) ⊆ LA(q)

Meta-rule: A string is in the language associated with a state iff it can be
shown to be by a finite number of applications of the above rules.

Example 74 In the NDFR of Example 73, we have (by the first rule)
ε ∈ LA(2). By the second rule we have “c” ∈ LA(1) and ε ∈ LA(1). By
further application of the second rule using the transition (1, “b”, 1) we have
“bc” ∈ LA(1) and “b” ∈ LA(1) and then “bbc” ∈ LA(1) and “bb” ∈ LA(1)
and so on. We can see that L(‘b’∗; ‘c’?) ⊆ LA(1). Now by the second rule we

have L(‘a; ‘b’∗; ‘c’?) ⊆ LA(0). There are no other facts we can derive from the

two rules and so, by the meta-rule, we have LA(2) = {ε}, LA(1) = L(‘b’∗‘c’?),
and LA(0) = L(‘a’; ‘b’∗; ‘c’?).

There is another, equivalent, way to define the language associated with
each state. We can define that w ∈ LA(q) iff there is a path from q to some
state in F such that w is the catenation of labels along the path. Formally
w ∈ L(q) exactly if, for some n ∈ N, there are

• n strings w0, w1, . . . , wn−1, such that w0ˆw1ˆ . . . ˆwn−1 = w, and

• n + 1 states q0, q1, ..., qn, such that q0 = q, qn ∈ F , and such that, for
each i ∈ {0, ..n}, (qi, wi, qi+1) ∈ T .

Example 75 We can see that “abb” ∈ LA(0) for the NDFR of Example 73
by observing the path

(0, “a”, 1) (1, “b”, 1) (1, “b”, 1) (1, ε, 2)

The language defined by the automaton is the language of its start state:
L(A) = LA(qstart).
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8.0.2 Systematic state renaming

The states don’t really matter.

We can systematically replace any set of states with any other set of the
same size.

Let A be an NDFR A = (S,Q, qstart, F, T ), Q̇ be any set such that
∣∣∣Q̇
∣∣∣ ≥

|Q|, and f be a one-one total function from Q to Q̇. Then L(A) = L(Ȧ),
where Ȧ = (S, Q̇, q̇start, Ḟ , Ṫ ) is derived from A as follows:

• q̇0 = f(qstart)

• Ḟ = {q ∈ F · f(q)}

• Ṫ = {(q, a, r) ∈ T · (f(q), a, f(r))}

8.1 All regular languages are described by

NDFRs

8.1.0 Thompson’s construction

Next we will see that every language described by a regular expression
can also be described by an NDFR. To do this we will show how an ar-
bitrary regular expression x can be translated into an NDFR A(x) such that
L(x) = L(A(x)). This translation is called Thompson’s construction.1 Each
NDFR constructed by Thompson’s construction will have a start state, that
has no incoming transitions, and one accepting state, that has no outgoing
transitions. Thompson’s con-

structionWe only need to consider regular expressions made without any of the
abbreviations introduced in the last chapter. If a regular expression has ab-
breviations, we can first rewrite it as an equivalent regular expression without
abbreviations.

• For regular expressions ∅, ε, and a, we can construct automata:

1Thompson’s construction is named for Ken Thompson, who is perhaps better known
as the co-creator of the Unix operating system, the Plan-9 operating system, and the Go
programming language.
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• For regular expression x;y, we first construct A(x) and A(y), using
Thompson’s construction. If necessary, the states are renamed so that
the two automata have disjoint state sets. Finally, we combine them
as follows to get A(x;y).

• For regular expression (x|y), we first construct A(x) and A(y), using
Thompson’s construction. If necessary, the states are renamed so that
the two automata have disjoint state sets. Finally, we combine them
and add two new states and four new transitions, as follows to get
A((x|y)).

• For regular expression (x∗), we first construct A(x), using Thompson’s
construction. Finally, we add two new states and two new transitions
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as follows to get A
(
(x∗)
)
.

The existence of Thompson’s algorithm, shows that every regular lan-
guage (i.e. every language described by a regular expression) is also described
by an NDFR. This shows that the class of all regular languages is a subset
of the class of all NDFR languages.

8.1.1 Example of Thompson’s construction

Let’s consider the regular expression “a”; “b”∗; (“c” | ε). We start by build-
ing NDFRs for all the primitive regular expressions. To simplify things later,
I’ve made sure the state sets are disjoint.

Next we create an NDFR for “b”∗ and another for (“c” | ε)

Finally, we can deal with the catenations by catenating the automata for
“a”, “b”∗ , and (“c” | ε); we get:
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Algorithm 1 The one-finger NDFR recognition algorithm

0: Start by putting your finger on the start state. Whatever state your
finger is on is called “the current state”.

1: If there are no ε-transitions out of the current state, skip to step 4.
Otherwise either go to step 4 or to step 2.

2: Pick one ε-transition out of the current state and move your finger to
the other end of that transition.

3: Go back to step 1.
4: If there are no more input symbols and your finger is on a state in F ,
you have succeeded. Stop.

5: If there are no more input symbols and your finger is not on an accepting
state, you have failed. Stop.

6: If there is no transition out of the current state labelled by the next
input symbol, you have failed. Stop.

7: If you get to this step, there must be at least one transition out of the
current state that is labelled with the next input symbol. Pick one such
transition. Move your finger to the other end of the transition. Cross-off
the input symbol.

8: Go back to step 1.

8.2 Recognition algorithms

Recall that it did not appear easy to directly create an algorithm to deter-
mine whether a string is or is not in the language described by a regular
expression. However, now that we can translate regular expressions to ND-
FRs, we have a new approach. Given a regular expression, we can translate
it to an equivalent NDFR and then determine whether the string is in the
language described by the NDFR. So we need an algorithm to determine
whether a string is in such a language. The idea is to find a path from the
start state to an accepting state with a sequence of labels that, catenated,
make the string.

8.2.0 A one-finger algorithm

We could imagine recognizing a string, written on a piece of paper, using a
diagram of an NDFR, as described in Algorithm 1.
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Figure 8.0: An NDFR.

Example 76 Consider the NDFR in Figure 8.0. Suppose we want to recog-
nize a string “abbc”. We start with our finger on the start state, state 0. We
can run the algorithm as follows successfully recognize the string as follows:

• Move finger to state 1 and cross off the first item of input. Remaining
input is now “bbc”.

• Move finger to state 2 and cross off the first remaining item of input.
Remaining input is now “bc”.

• Move finger to state 1, using the ε transition.

• Move finger to state 2 and cross off the first remaining item of input.
Remaining input is now “c”.

• Move finger to state 3 and cross off the final item of input. Remaining
input is now ε.

At this point we the algorithm finishes successfully.
However, if we take different choices we may finish unsuccessfully. As

before we start with our finger on state 0 and remaining input of “abbc”

• Move finger from state 0 to state 4, crossing of the “a”. Remaining
input is now “bbc”.

At this point the algorithm can stop or move on to state 5 and possibly
state 3, but there is no way that more symbols can be crossed off the input
and so the algorithm can only stop with failure.

The problem with this method is that there are a number of places where
you have to make choices with no guidance.
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• In step 1, if there are any epsilon transitions out of the current state,
you must choose whether to go on to step 4 or to follow an ε-transition.

• In step 2, if there is more than one ε-transition out of the current state,
you must pick which one to follow.

• In step 7, if there is more than one transition out of the current state
labelled with the next symbol, you must choose which one to follow.

This is why we say the algorithm is nondeterministic.
If you are sufficiently lucky or prescient, you can always use this algorithm

to show that a string is in the language described by the NDFR. However,
if luck is not with you, you may find the algorithm fails even if it could
have succeeded. Furthermore, the algorithm could loop forever by following
a cycle of epsilon transitions in steps 1, 2, and 3.

The best we can say for the algorithm is that if it succeeds then the string
is in the language.

Imagine though that you have a magical lucky coin. Whenever you have
to make a choice, you flip the magic coin. The magic coin has the following
property. Whenever tossed, it comes down heads or tails so as to allow you
to succeed. If the answer doesn’t matter, the result of the coin is arbitrary.
But if the result does matter, that is, one choice leads to possible success
and the other to certain failure, the coin comes up heads or tails in a way
that keeps the possibility of success alive. The one-finger algorithm used in
conjunction with the magical lucky coin will succeed, if the string is in the
language, and will either fail or loop forever if the string is not.

8.2.1 Relationship to nondeterminism in programming

This section is optional reading.
In Part 0, we looked at nondeterministic specification.
The one finger algorithm is equivalent to a specification of

h =
〈
a
′ ⇒ w ∈ L(A)

〉

where a indicates success. This is a nondeterministic specification. If a is
true at the end, then the string w is in the language of the automaton.

Consider a programming construct

try f else g
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with the following meaning

(try f else g) (i†o) = if (∃o · f(i†o)) then f(i†o) else g(i†o)

In other words the output of try f else g is determined by f if possible.
However, if f can not deliver any result, then the result is determined by g.
Note that try f else g is the same as f if f is implementable. It is only an in-
teresting construct if f is not implementable. If g is implementable, then so is
try f else g, regardless of whether f is implementable. We can use try else

as a mechanism to turn an unimplentable task f into an implementable one
try f else g; if using algorithm f turns out to be infeasible, then algorithm
g is used as a back-up plan. This is a bit like exception handling, but it is
more like backtracking in languages such as Prolog and Icon.

In contrast to most programming constructs, try f else g is not monotonic
in its first argument.

Another useful construct to use in combination with try else is

force A

where A is a boolean expression in the initial state. We define force by

force A = 〈A〉 ∧ skip

The force command ensures that the expression is true, but it does so in
an unimplementable way: it forces the expression to already be true in the
input state.

Now we can combine the one-finger algorithm with forcing the result we
want

h; force a

where, as before h =
〈
a
′ ⇒ w ∈ L(A)

〉
. This forces the one-finger algorithm

to find a way to succeed if possible

(h; force a) = 〈a ∧ s ∈ L(A)〉

Of course, this is unimplementable. We can make an implementable specifi-
cation by

try (h; force a) else a := false

which refines the specification that we really want

〈a′ = (s ∈ L(A))〉
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Algorithm 2 The NDFR recognition algorithm

var r := qstart·
var b := true·
while w �= ε ∧ b do (

(var q | (r, ε, q) ∈ T · r := q)
∨

(var q | (r, [w(0)], q) ∈ T · r := q;w := tail(w))
∨

(b := false))

a := w �= ε ∧ r ∈ F

Aside: In terms of implementation, we can actually implement an algo-
rithm of the form

try (f ; force A) else g

where f is an a nondeterministic algorithm written in terms of ordinary
programming constructs and nondeterministic choices of the form m0∨m1∨
m2 ∨ · · · . Every time we come to a nondeterministic choice within f , we
record the values of all variables and where we are; then we take one branch
of the choice, remembering which. If we get to the force, if A is true, we are
done. However if we get to the force and find that A is false, we go back to an
earlier choice and take the another branch. (This is called backtracking.) If
we exhaust all choices, then we must conclude that f can never make A true,
and we then backtrack all the way to the initial program state and execute
g. The choice operator ∨ provides the coin. The force and try constructs
provide the magic. End of Aside.

Now what remains is to implement h =
〈
a
′ ⇒ w ∈ L(A)

〉
.

Let A = (S,Q, qstart, F, T )

The var command (var q | E · f) introduces a new variable q, chooses
an arbitrary value for it satisfying the expression E, and then executes the
command f . The tail function computes a sequence that is just like its
argument, but without the first item.

This algorithm nondeterministicly sets a to true or false, but it can only
set a to true when w ∈ L(A).
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8.2.2 A many-finger algorithm

Next we look at an algorithm that does not rely on luck, magic coins, or
backtracking. You can think of it as being similar to the one-finger algorithm
above, except that we use many fingers. We place one finger on each state
that could be the current state of the one-finger algorithm.

Before getting to the algorithm, it is useful to make a few definitions.
Let A = (S,Q, qstart, F, T ) be an NDFR.

• For any r ∈ Q, define ε-closure(r), to be the set of states reachable
from r using zero or more transitions labelled with ε. That is

r ∈ ε-closure(r) and
if p ∈ ε-closure(r) and (p, ε, q) ∈ T then q ∈ ε-closure(r)

• For any R ⊆ Q, define ε-closure(R) to be the set of states reachable
from any r ∈ R using only zero or more transitions labelled with ε.

ε-closure(R) =
⋃

r∈R

ε-closure(r)

Note that R ⊆ ε-closure(R).

• For any r ∈ Q and a ∈ S, define δ(r, a) to be the set of states reachable
from r by a single transition labelled a.

δ(r, a) = {q ∈ Q | (r, “a”, q) ∈ T}

• For any R ⊆ Q and a ∈ S, define δ(R, a) to be the set of states
reachable from any r ∈ R using a single transition labelled a.

δ(R, a) =
⋃

r∈R

δ(r, a)

Suppose we have a string “abc”. If you follow the one-finger algorithm,
what states could be the current state after reading this string? I.e., what
states could your finger be on?

• You start with qstart as the current state but, even before reading the
‘a’, you can follow ε transitions, and so, after reading zero symbols, the
current state can change to any of the states in ε-closure(qstart). Let R0
be this set.
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• After reading the ‘a’, the current state can become any state connected
to an ε-closure(qstart) by a transition labelled a, thus

δ(R0, ‘a’)

but you can then follow ε transitions to reach other states. Thus after
reading the ‘a’ the current state could be any state in

R1 = ε-closure(δ(R0, ‘a’))

• Similarly after reading “ab”, the current state can be any of the states

R2 = ε-closure(δ(R1, ‘b’))

• Finally after reading “abc”, the current state can be any of the states
in

R3 = ε-closure(δ(R2,‘c’))

Thus “abc” is in the language iff any of these states are accepting, i.e.,
if

R3 ∩ F �= ∅

This is how the recognition algorithm works.
We can construct an algorithm for recognizing a string w0 with an NDFR

〈 f ′ = (w0 ∈ L(A))〉

We use variables w ∈ S∗ and R ⊆ Q. The invariant is that

(w0 ∈ LA(qstart)) iff (∃r ∈ R · w ∈ LA(r))

and that R is closed under ε transitions: R = ε-closure(R). The resulting
algorithm is Algorithm 3.

Example 77 Let’s consider the behaviour of the algorithm on the NDFR
in Figure 8.0 and with input string “abbc”. We start with the start state 0,
but even before reading the first input there could be a transition to state 1;
the initial value of R is thus {0, 1}.
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Algorithm 3 The NDFR recognition algorithm

var w := w0·
var R := ε-closure(qstart)·
// inv: (w0 ∈ LA(qstart)) = (∃r ∈ R · w ∈ LA(r))
// inv: R = ε-closure(R)
while w �= ε ∧ R �= ∅ do (

let a, s | w = ([a];s) ·
R := ε-closure(δ(R, a)) ;
w := s ) ;

f := (R ∩ F �= ∅)

• Now we consider the ‘a’. State 0 has and “a” transition to state 1 (
δ (0, ‘a’) = {1, 4}). State 1 has no “a” transitions ( δ (1, ‘a’) = ∅). After
the first iteration, we have δ (R, ‘a’) = {1, 4}. ε closure adds states 5
and 3. So after the first iteration, we have R = {1, 3, 4, 5}.

• Next we consider the first b. Considering b transitions, we can get to
state 2 from state 1; from states 3, 4, and 5, we get nowhere. We have
δ (R, ‘b’) = {2} and then considering ε transitions we can also get to
state 1. After the second iteration we have R = {1, 2}.

• Next we consider the second b. Considering b transitions, we can get
to state 2 from state 1; from state 2 we get nowhere. Again we have
δ (R, ‘b’) = {1} and so at the end of the third iteration we have R =
{1, 2}.

• Next consider the c. Considering c transitions, we can get to state 3
from state 2. From state 1 we get nowhere. We have δ (R, ‘c’) = {3}.
ε closure adds no more states, so we end the iteration with R = {3}.

At this point the loop is done and there is an accepting state in R and so
the algorithm ends successfully.

This gives us a way of recognizing regular expressions: Convert the reg-
ular expression to an NDFR using Thompson’s construction (or some other
method) and then run Algorithm 3.
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8.2.2.0 Speed

Although the number of iterations equals the length of the string. Each
iteration can take time proportional to the size of R with can be roughly as
big as Q. So overall the algorithm takes no more than time proportional to
|Q| × ‖w0‖.

8.3 Deterministic Finite State Recognizers (DFRs)
Deterministic
Finite State
Recognizer

DFR

Definition 78 A Deterministic Finite State Recognizer (DFR) is an NDFR
such that

• There are no transitions labeled by ε

Thus ε-closure(q) = {q} for all q ∈ Q.

• For each state-symbol pair (q, a), there is exactly one r such that
(q,“a”, r) ∈ T

I.e. |δ(q, a)| = 1, for all q ∈ Q and a ∈ S.

Thus for a DFR, the size of R in the recognition algorithm always 1.
If we have a DFR, we can represent variable R ⊆ Q by variable r ∈ Q:

R = {r}

This is a data refinement.
The NDFR recognition algorithm specialized to a DFR is given as Algo-

rithm 4.
By using numbers for states and symbols, we can represent δ as a 2-

dimensional array. Then this algorithm is linear time in the length of w0.
[[Example needed]]
This gives us another approach to recognizing regular expressions, which

is potentially very efficient.

• Convert the RE to an NDFR using Thompson’s construction, or some
other construction that accomplishes the same thing.

• Convert the NDFR to an equivalent DFR.
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Algorithm 4 The DFR recognition algorithm

var w := w0
var r := qstart
// inv: w0 ∈ L(qstart) ⇔ w ∈ L(r)
while w �= ε do (

let a, s | w = ([a];s) ·
r := the sole element of δ(r, a) ;
w := s )

f := r ∈ F

Algorithm 5 The naive subset construction algorithm

Input: An NDFR A = (S,Q, qstart, F, T )
Output: A DFR Ȧ = (S, Q̇, q̇start, Ḟ , Ṫ ) that recognizes the same language:
L(A) = L(Ȧ)

Q̇ := P(Q) , the power set of Q.
q̇start := ε-closure(qstart)
Ḟ := {R ⊆ Q | F ∩R �= ∅}
Ṫ := {a ∈ S,R ⊆ Q · (R, a, ε-closure(δ(R, a)))}

• Match using the DFR recognition algorithm (Algorithm 4).

Next, we look at how to accomplish the second step.

8.4 From NDFRs to DFRs

If you try to design a DFR for a complex language, you may find it is far
more difficult than designing an NDFR for the same language. It seems that
NDFRs may be a more powerful tool for describing languages than are DFRs.
However, in at least one sense, this is not true. It turns out that, for any
NDFR A, there is a DFR Ȧ such that L(A) = L(Ȧ).

Algorithm 5 shows one way to do it. The states of Ȧ are the subsets of
the states of A.
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Figure 8.1: The result of a naive subset construction.

Example 79 Consider the following automaton

There are 3 states and so the DFR has 23 = 8 states: {∅, {1} , {2} , {3} ,
{0, 1} , {0, 2} , {1, 2} , {0, 1, 2}}. The full automaton is shown in Figure 8.1.

The problem with this algorithm is that it always generates a large num-

ber of states:
∣∣∣Q̇
∣∣∣ = 2|Q|. Many of these states will not be reachable from the

start state, and hence contribute nothing. We can obtain some reduction, by
including only ε-closed sets as states. However this algorithm still potentially
generates many states that are not reachable by from the initial state.

The states that are reachable from the start state are exactly the values
that the R variable can take on in the NDFR recognition algorithm (Algo-
rithm 3).

A better algorithm is shown as Algorithm 6. It only generates DFR states
that are reachable from the start DFR state. Essentially what we do is to
compute the set of all sets R that might arise in the recognition algorithm.

• W is a set of DFR states that have been discovered, but not explored.

• Q̇ is the set of states that have been discovered and explored.

When we explore a state, we find all its out-going transitions and all the
states they go to.
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Algorithm 6 The subset construction algorithm

Input: An NDFR A = (S,Q, qstart, F, T )
Output: A DFR Ȧ = (S, Q̇, q̇start, Ḟ , Ṫ ) that recognizes the same language:
L(A) = L(Ȧ)

q̇start := ε-closure(qstart) ;
var W := {q̇start}·
Q̇ := ∅ ;
Ṫ := ∅ ;
Ḟ := ∅ ;
while W �= ∅ do (

// Pick any state that has been discovered, but not explored
let q̇ | q̇ ∈W ·
// Explore state q̇
W := W − {q̇} ;
Q̇ := Q̇ ∪ {q̇} ;
if q̇ ∩ F �= ∅ then F := F ∪ {q̇} else skip ;
for each a ∈ S do (

let ṙ = ε-closure(δ(q̇, a))·
Ṫ := Ṫ ∪ {(q̇,“a”, ṙ)} ;
// If ṙ has not been discovered already, add it to W .
if ṙ �∈ Q̇ then W := W ∪ {ṙ} else skip ) )

After running the subset construction algorithm, we can systematically
rename the states in Q̇ with natural numbers so that Ṫ can be efficiently
represented with an array.

Example 80 Looking at the NDFR from Example 79, and applying the
subset construction algorithm (Algorithm 6), we start with the state q̇start =
ε-closure(0) = {0, 1}. The algorithm proceeds as shown in Table 8.0. The
resulting DFR (before renaming) is
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W q̇ a ṙ new transition Q̇

{{0, 1}} {0, 1} ∅
‘a’ {1} ({0, 1} , ‘a’, {1})
‘b’ {1, 2} ({0, 1} , ‘b’, {1, 2})

{{1}, {1, 2}} {1} {{0, 1}}
‘a’ ∅ ({1} , ‘a’, ∅)
‘b’ {1, 2} ({1} , ‘b’, {1, 2})

{{1, 2} , ∅} {1, 2} {{0, 1} , {1}}
‘a’ ∅ ({1, 2} , ‘a’, ∅)
‘b’ {1, 2} ({1, 2} , ‘b’, {1, 2})

{∅} ∅ {{0, 1} , {1}, {1, 2}}
‘a’ ∅ (∅, ‘a’, ∅)
‘b’ ∅ (∅, ‘b’, ∅)

∅ {{0, 1} , {1}, {1, 2}, ∅}

Table 8.0: Table Caption

Note that this automaton includes only ε-closed (with respect to the NDFR)
sets as states, but it does not include all ε-closed sets.

8.4.0 Minimal DFRs

[[Section to be completed]]

8.4.1 Recognizing regular expressions with DFRs

Now we can ‘efficiently’ recognize regular expressions

• Translate the RE to an NDFR
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• Translate the NDFR to a DFR

• Replace subsets with numbers

• Optionally minimize the number of states in the DFR.

• Execute the specialized recognition algorithm

Note that the NDFR will be about the same size as the regular expression,
but the number of states in the DFR can be exponential in the number of
states of the NDFR.

An alternative approach, which may be more space efficient, is

• Translate the RE to an NDFR

• Execute the recognition algorithm

The first approach may be best if the regular expression is not too large
and you intend to execute the recognition algorithm many times for the same
regular expression, or on a large complex text. The Unix program grep uses
this approach, as does the lexical analyzer generator lex.

The second approach may be best if the regular expression is so large
that exponential blow-up is worrying or if speed of constructing the machine
is more important than speed of executing it. The Unix program fgrep uses
the second approach, as does the lexical analyzer generator in JavaCC.

8.5 Equivalence of regular expressions and (N)DFRs

We have already defined that

• A regular language is a language described by some regular expres-
sion

Let’s make the following (temporary) definitions.

• An NDFR language is a language described by some NDFR

• A DFR language is a language described by some DFR
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We have shown that any regular expression can be translated to an equiv-
alent NDFR and any NDFR to an equivalent DFR and so we know

the regular languages ⊆ the NDFR languages ⊆ the DFR languages

Furthermore any DFR is an NDFR and so every DFR language must also be
an NDFR language:

the regular languages ⊆ the NDFR languages = the DFR languages

In the next section, we will see that any NDFR can be translated into a
regular expression and so

the regular languages = the NDFR languages = the DFR languages

Once we have done that, we no longer need the terms “NDFR language” and
“DFR language,” we just use the term “regular language.”

8.5.0 From NDFRs to Regular Expressions

Definition 81 A Regular Expression Finite Recognizer (REFR) is just like
an NDFR, except that the transitions are labeled with regular expressions
over S.

The language described by each state q of an REFRA = (S,Q, qstart, F, T )
is defined by two rules

• If q ∈ F then ε ∈ LA(q)

• If (q, x, r) ∈ T then L(x)ˆLA(r) ⊆ LA(q)

Meta-rule: A string w is in L(q) only if it can be proved so by finite
application of the above 2 rules.

Equivalently, we can define that w ∈ LA(q) iff there is a finite path from
q to some state in F such that w is in the language of the catenation of labels
along the path.

I.e., w ∈ LA(q) iff, for some n ≥ 0, there are

• n strings w0, w1, . . . , wn−1, such that w0ˆw1ˆ . . . ˆwn = w,
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• n+ 1 states q0, q1, ..., qn, such that, q0 = q and qn ∈ F , and

• n regular expressions x0, x1, ..., xn−1,such that, for each i ∈ {0, ..n},
(qi, xi, qi+1) ∈ T and wi ∈ L(xi).

The language defined by the automaton is the language of its start state:
L(A) = LA(qstart).

Any NDFR can be trivially translated to an REFR by replacing each
label with the corresponding regular expression.

Any regular expression x over S can be trivially represented by an REFR

(S, {0, 1}, 0, {1}, {(0, x, 1)})

We will look at an algorithm for translating an arbitrary NDFR into a
regular expression.

The state removal algorithm

input: An NDFR A0 = (S0, Q0, qstart0 , F0, T0)

output: An RE x

specification: 〈L(x′) = L(A0)〉
We start by making an REFR copy, A = (S,Q, qstart, F, T ), of A0

A := convertNDFRtoREFR (A0)

As the algorithm modifies A, we maintain, as an invariant, L(A) = L(A0).

The rest of the algorithm consists of four steps that can calculate a regular
expression from any REFR.

• Step 0. Ensure that there is one accepting state and that there are no
transitions into the initial state or out of the accepting state.

• Step 1. Make sure each pair of nodes has no more than one transition
between them.

• Step 2. Eliminate all nodes that are not initial or accepting.

• Step 3. Output the remaining regular expression.
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8.5.0.0 Step 0

In this step we ensure that the REFR has

• no edges into its initial state qstart,

• exactly one accepting state F = {qfinal} with qfinal �= qstart

• no edges out of its accepting state.

This step is easily accomplished by adding a new initial state, a new
accepting state, and ε-labeled transitions as needed.

8.5.0.1 Step 1

In this step we ensure that each pair of states has at most one transition
between them

for all pairs of states q and r in Q

coalesceTransitions( q, r )

where coalesceTransitions is defined by

procedure coalesceTransitions( q, r ) is

if there is more than one transition from q to r then

let x0, x1, ...xn be the labels on those transitions
remove all transitions from q to r from T
add (q, (x0) | (x1) |...| (xn), r) to T

8.5.0.2 Step 2

In this step we reduce the number of states in the automaton to 2.
We eliminate states one at a time.

while there are more than two states do

let q be any state that is not initial nor accepting ·
eliminate( q )

The loop invariant for this repetition is that the REFR has
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• a single accepting state, qfinal, with qfinal �= qstart

• no transitions to its initial state nor from its accepting state

• at most one transition between any two states, and

• L(A) = L(A0)

The procedure for eliminating state q is as follows:

procedure eliminate( q ) is

for all p and r in Q such that p �= q and r �= q and
there are transitions from p to q and from q to r·

let x be such that (p, x, q) ∈ T ·
let z be such that (q, z, r) ∈ T ·
if there is a transition from q to q then (

let y be such that (q, y, q) ∈ T ·
add (p, (x); (y)∗; (z), r) to T )

else

add (p, (x); (z), r) to T ;

coalesceTransitions(p, r) ;

remove from T all transitions either to or from q ;
remove q from Q

8.5.0.3 Step 3

At this point we have two states, qstart and qfinal, and at most one transition
between them

• If there is a transition (qstart, x, qfinal) output x

• Otherwise output ∅.

8.5.1 Example

NOTE TO SELF A simpler example is to find an RE for the set of all
strings in {a, b, c}∗ in which a c never immediately follows an a. The NDFA
needs only two states.

Comments in C follow a syntax as follows
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• They start with a “/*”.

• They end with a “*/”.

• Between the initial “/*” and the final “*/”, there can be any sequence
of characters that does not include a “*” immediately followed by a
“/”.

Examples are “/**/” (the shortest comment), “/*abc/*def*/, and “/*****/”.
We will use the algorithm just presented to compute a regular expression

for the language of C comments.
For an alphabet, we will use {a, s, x} representing respectively asterisks,

slashes, and all other characters.
[[Example to be completed.]]

8.5.2 Summary

We’ve now seen that any DFR or NDFR can be converted to an equivalent
regular expression by converting it first to a REFR and then reducing that
to a regular expression.

In summary: We can translate any regular expression to an equivalent
NDFR (Thompson’s construction). We can translate any NDFR to an equiv-
alent DFR (subset construction); and we can translate any DFR to a regular
expression (state removal).

This completes the proof that

the regular languages = the NDFR languages = the DFR languages

8.6 Are all language regular?

At this point, we have three ways to show that a language is regular: we
can find a regular expression for it; we can find a DFR for it; we can find an
NDFR for it.

To show that a language is not regular, we only need to show that one of
the above methods is doomed to failure.

We will answer the question at the head of this section by presenting a
language and arguing that there can be no DFR for it. The language is

{ε, “01”, “0011”, “000111”, · · · }
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Suppose A is a DFA for this language. Further, suppose that after reading m
‘0’s the state is q, and after reading n ‘0’s the state is r. If m �= n, then q and
r must be different because, if we start the machine in state q and read m
‘1’s, the resulting state must be accepting, whereas, if we start the machine
in state r and read m ‘1’s, the resulting state must be non-accepting. The
machine must be in a distinct state, for each number of ‘0s’ read. But this
means there can not be a finite number of states. A DFR for this language
can not exists. Thus the language is not regular.

We can think of the state of a DFR as summarizing the past input.
Suppose after reading string s, a DFR A is in state q, then sˆt ∈ L(A) exactly
if t ∈ LA(q), so all that the machine ‘remembers’ about s is summarized in
state q. If there are only a finite set of categories of input that need to be
remembered, then a DFR can be used and hence the language is regular. If
there are an infinite number of categories of input that need to be remember,
then there can be no DFR and so the language is not regular.

For example, consider a language that consists of even length strings of
‘0’s and ‘1’s, such that there are never two ‘0’s in a row. We want to know
if sˆt is in this language, but we’ve forgotton what s is. If we can remember
something about s we may still be able to determine the answer using only
that something and t. In particular, if we can remember whether the length
of s was odd or even and whether it ended in a ‘0’ or a ‘1’, then we can still
determine whether sˆt is in the language, knowing t and nothing else about
s. There are only 4 possibilities (even-0, even-1, odd-0, odd-1), so it should
be possible to construct a DFR (with four states) for the language.

Here is another example: Consider the language of strings representing
sums in decimal notation in row-major form. E.g. a sum

0456

0789

1245

is represented by “001472584695”. We need to remember whether the number
of preceeding characters divided by 3 leaves a remainder of 0, 1, or 2. We
need to remember whether a carry is expected from the next place. (E.g.,
after reading “001”, we would expect the next two digits add to more than 9).
And may we need to remember the last digit or two, or at least their sum.2

Finally, we need to remember whether any errors have already been found.

2Specifically: when the the length of the input read so far divided by 3 is 0, we don’t
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If all that is known, we can forget about every other detail of the input
read so far. Thus the language is regular. Now let’s consider a language
formed from sums in column-major form –e.g., “045607891245” is in this
langauge– we will have to remember all of the first number before reading
the second number, so, unless the size of the input is limited, there can be
no DFR for this language and thus it is not regular.

8.7 Regular expressions in practice

[[Section to be done. Discussion of grep, lex, etc.]]

8.8 Chapter summary

• Regular expressions, DFRs, NDFRs, and REFRs are formalisms that
all can express the same set of languages: the regular languages.

• All have the same limitation: Fixed, finite memory. Thus this theory
is very important for hardware designers as well as software designers.

• DFRs are efficient for recognition.

• For a given language, the smallest NDFR or regular expression can be
far smaller than the smallest DFR.

• Thus converting an NDFR or RE or REFR to a DFR may entail an
‘explosion’ in the number of states. The DFR may be unacceptably
big.

• Regular expressions, being textual, are easy to integrate into user-
dialogs (e.g., search dialogs on websites, in Eclipse, UltraEdit, and
vi) programming languages (e.g. Perl, JavaScript, sed, lex, JavaCC),
and libraries (e.g., java.util.regexp, regex.h).

• Regular expressions are very convenient for expressing many languages,
while NDFRs occasionally give elegant solutions to problems where
regular expressions do not. REFRs give the best of both worlds. (For
example, C/Java style comments.)

need to remember any previous digits; when that remainder is 1, we must remember the
last digit; when that remainder is 2, we must remember the sum of the last two digits.
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— Example: JavaCC’s lexical analyzer generator uses a variant of
REFRs for input and NDFRs for implementation.
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Chapter 9

Reactive Systems

9.0 Reactive Systems

A finite state transducer is similar to a finite state recognizer, but may include
output as well as input.

9.0.0 Finite State Transducer

Consider a machine A = (S,O,Q, q0, T ) where

• S is an input alphabet

• O is an output alphabet

• Q is a finite set of states

• q0 is the initial state

• T is a set of transitions from Q× (S ∪ {ε})× (O ∪ {ε})×Q

We assume S ∩ O = ∅.
Such a machine defines a set of strings L(A) ⊆ (S ∪O)∗:
If there is a path from q0 to some state in Q and

• s is the catenation of input and output labels on that path,

• then s ∈ L(A).
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9.0.1 Application to digital circuits

If the machine is free of εs on both inputs or outputs, then each input is
followed by a corresponding output. This gives a good model for synchronous
digital systems.

Example: Let S = {00, 01, 10, 11} and O = {0, 1}

0 1

11 / 0

00 / 1

01 / 1

00 / 0

01 / 0

11 / 1

10 / 1 10 / 0

Now we have a serial adder. If we feed in two numbers, least-significant
bit first, the machine produces the sum. E.g. we have

[10/1, 00/0, 11/0, 01/0, 10/0, 00/1, 11/0, 01/0, 10/0, 00/1]

corresponding to the sum.
0101010101
0011001100

1000100001

9.1 System modelling and StateCharts

9.1.0 Reactive systems

Reactive systems are systems that must react to events.

• A Calculator must react to the keypresses

• A Microwave oven must react to keypresses and also to the passage of
time.

• An internet router must react to the arrival of packets

• A synchronous hardware circuit must react to the clock ticks.

• Most systems can be viewed as reactive.

We can specify and/or model a reactive system using state machines.
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9.1.1 StateCharts

StateCharts is a diagrammatic language for modelling finite state systems.

There are various flavours of StateCharts.

I’ll be using UML StateCharts.

9.1.2 Transitions

Our terminal alphabet now consist of a set of events.

Each transition from state to state is labelled

trigger [condition] / reaction

where

• the trigger is an event that triggers the transition

• the condition is a boolean expression

• the reaction is either

— an event that is generated,

— or a change to the system’s state variables

9.1.2.0 Example: A Clap-light.
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Data Dictionary:

Entity Kind Description
Clap Event Occurs when a single clapping sound is de-

tected.
level System variable The amount of power sent to the lights.

Here there are 3 states. One event: Clap and reactions that change the
system’s state variable level.

If the system is in state Off and a Clap event occurs, then

• immediately and simultaneously

• level is set to 60W and the system state changes of Dim.

9.1.2.1 Transitions in detail

Transitions are labeled as:

(trigger)? ([condition])?( / reaction )?

• If the trigger event is omitted,
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— the transition is taken as soon as the condition is true.

• If the condition part is omitted,

— the condition is true

• If the reaction is omitted

— there is no reaction, only a state change.

9.1.3 Conditions

Conditions can be used to inhibit transitions:

Notice the event is parameterized.
Conditions can also be used to choose between transitions:
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We could also illustrate this as: (The diamond is not a state.)

9.1.4 Time

It is important to realize:

Time passes in the states.

Thus transitions are essentially instantaneous.

9.1.4.0 What if you want a delay?

For real-time systems the passage of time is an important kind of event.

• after: 1 second is an event that happens 1 second after the source state
was entered.

• when( 11:59 AM ) is an event that takes place at 11:59 AM.
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9.1.5 Hierarchy

Time passes within states.

During that time the system need not be idle.

We can divide states into substates
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When this system is in state Impulse it will be in exactly one of the
substates Half Impulse or Full Impulse.

When it is in state Warp it will be in exactly one of its 3 substates.
At system start the system is in both states Impulse and Half Impulse.
If the system is in state Impulse and a ToWarp event happens, the system

will transition to both states Warp and Warp 1.
States like Impulse and Warp are called “or” states, since when the system

is in an “or” state, it is also in exactly one of the “or” state’s substates.
States with no substates are called “basic” states.
The term “state” is being abused here since a system should really be in

exactly one state at a time. The set of Statechart states the system is in
constitutes its “true” state.

Some people prefer to call “or states” “modes”.

9.1.6 Concurrency.

When the system is in an “and” state, it is also in all of the and state’s
substates.

The substates of an “and” state are always “or” states.
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An example (transitions omitted)

Wheels is an “and” state.
Its substates are Left and Right which are both “or” states.
The system could be in states Wheels, Left, Right, LReverse, and RLocked

all at the same time.

9.1.7 Communication

You can use events to coordinate actions of concurrent state machines.
If a transition has an event as its reaction,

• That event can trigger a transition out of any state the system is in.
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Example:

If the system is in bothWaiting and Preparing then a codeEntered event causes
a disarm event and the new states will include Disarmed and Idle.

9.2 System modelling and StateCharts

9.2.0 A Microwave oven Example
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Transmitter0

1 2 3

4 5 6

7 8 9

Time

Power

Start

Stop Controller

1:10:55

Door
Sensor Beeper

9.2.0.0 Inputs

Entity Type Description
timeButton Event The time button is pressed
powerButton Event The power button is pressed
startButton Event The start button is pressed
stopButton Event The stop button is pressed
digitButton( d:0..9 ) Event A button 0 to 9 is pressed
door Variable Can be in states open or closed.

9.2.0.1 Outputs

Entity Type Description
transmitter Variable The power level of the transmitter {0,1,..,10}
display Variable An alpha-numeric display with 6 characters.
beep Event Initiate a beeping sound
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9.2.0.2 Local entities

Entity Type Description
time Variable A natural number. In units of seconds
power Variable A natural number {1,..,10}
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9.2.0.3 Overall behavior

Note

• “entry” actions are performed whenever the state is entered.

• “do” actions are performed continuously when the state is active

• “exit” actions are performed whenever the state is executed.
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9.2.0.4 A closer look at the UpdateTime state

We add more detail by adding a transition for digitButton events in the
UpdateTime state.

9.2.0.5 The UpdatePower

DigitButton events in the UpdatePower state.
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9.2.0.6 The Cook state

Note that ^beep means a beep event occurs as a reaction.

I claim that “the door is open implies transmitter = 0” is a global invari-
ant.
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9.3 Using StateCharts to model software classes

Reactive Systems and objects have a lot in common.

• Reactive systems react to events

• Classes react to method invocations.

• Reactive systems have states on which behaviour depends

• Classes have states on which behaviour depends.

Input Events:

• Method calls to this object

Input variables:

• Variables and objects known to the class

Output events

• Calls to objects known to the class

Output variables

• Variables and objects changeable by this object.
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9.3.0 Relationship to other UML diagrams:

• Class diagrams describe the “static” relationships between classes.

• Sequence and collaboration diagrams show examples of behaviour.

• StateCharts describe behaviour.

9.3.1 An Example

A savings account.
Account can not be debited once overdrawn:
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The behaviour as a state chart:
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In C++

class Account {

public: Account() { balance = 0 ; }
public: withdraw( int amt ) {

if( balance >= 0 ) balance -= amt ;
else throw Reject ; }

public: deposit( int amt ) {

balance += amt ; }

} ;

In this case the state diagram is not simpler than the implementation
itself.

This is because the class is very simple.
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9.3.2 Another example:

This is class represents a source of network messages.

• It must be initialized before being used and should be shutdown after
use.

• It observes a network channel. Thus the network channel is an input
variable.

• The client of this class may use it to get lines.
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State diagram for Client_network_layer:

Notice that the state can change in response to changes in the observed
variable.

The actual implementation of this class is quite a bit more complex than
the state machine, since the implementation must attempt to determine
which state the object is in by querying the network connection.
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9.4 A Case Study – The RunEditor Dialog

The RunEditor is a GUI class that controls the running of a series of tests on
student assignments. The user can pick one or more students and select go.
The actual running of the tests is done by a separate worker thread, which
takes some time to stop.

The dialog includes 5 buttons, a progress bar, and a list of students.

Buttons are: Go, Dismiss, Stop, Select-All, Select-None
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9.4.0 Statechart

The class has 3 major states

• Waiting. The user: can select students from list, initiate run (if students
are selected), dismiss the dialog.

• Running. The user: can initiate a stop.

• Stop. The user must wait until the stop is complete.

Note the Statechart on the next slide is a simplification as it omits the
state of the selection buttons, the list, and the progress bar, as well as state
inherited from JDialog.

Note that the state of the buttons is properly a part of the state of the
RunEditor. This is because the relationship between these classes is one of
Aggregation.
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Data Dictionary:

External Entity Kind In/Out Description
clickOnGo event in User clicks on go button
clickOnStop event in User clicks on stop button
clickOnDismiss event in User clicks on dismiss button
create worker task event out A worker thread is created.
request task stops event out Request thread to stop.
worker task finished event in A worker thread completes.

All other signals on the diagram are internal.
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entry/disableStop,enableDismiss,enableGo,enableSelectNone,enableSelectAll

Waiting

entry/enableStop,disableDismiss,disableGo,disableSelectAll,disableSelectNone

Running

entry/disableStop,disableDismiss,disableSelectAll,disableSelectNone,disableGo

Stopping

go / create worker task

stop / request task stops

worker task finished

goButtonDisabled goButtonEnabled

enableGo [anySelected]

disableGo

clickOnGo / go

stopButtonDisabled stopButtonEnabled

enableStop

disableStop

clickOnStop / stop

dismiss

dismissButtonDisabled dismissButtonEnabled

enableDismiss

disableDismiss

clickOnDismiss / dismiss

[anySelected]

RunEditor

[   not anySelected]
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9.4.1 Implementation

JButtons ‘know’ if the are enabled. We represent the state with fields

private final int WAITING = 0, RUNNING = 1, STOPPING = 2 , INIT
= 3 ;

private int state = INIT ;
JButton goButton = new JButton();
JButton dismissButton = new JButton();
JButton stopButton = new JButton();
... // and more

(The INIT ‘state’ is used only during construction)

The abstraction relation relates the states in the chart (left) to those in
the code (right)

(in Waiting iff state=WAITING)
and (in Running iff state=RUNNING)
and (in Stopping iff state=STOPPING)
and (in goButtonEnabled iff goButton.isEnabled())
and (in goButtonDisabled iff not goButton.isEnabled())
and (in stopButtonEnabled iff stopButton.isEnabled())
and (in stopButtonDisabled iff not stopButtonIsEnabled())
and (in dismissButtonEnabled iff dismissButton.isEnabled())
and (in dismissButtonDisabled iff not dismissButton.isEnabled())

... and more
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9.4.2 Implementation continued

It is useful to centralize the state switching code in one subroutine

private void changeState( int newState ) {

if( newState == WAITING ) {

if( studentList.getModel().getSize() != 0 )

listLabel.setText("Select students...");

else listLabel.setText("No students ...") ;
removeProgressBar() ;
goButton.getModel().setEnabled(anySlctd() );
dismissButton.getModel().setEnabled( true );
stopButton.getModel().setEnabled( false );
allButton.getModel().setEnabled( true );
noneButton.getModel().setEnabled( true ); }

else if( newState == RUNNING ) {

... code to enter Running state... }

else if( newState == STOPPING ) {

...code to enter Stopping State... }

state = newState ;

}
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Context free grammars and
context free parsing.

10.0 Grammars and Parsing

A formal language is simply a set of sequences. Usually we restrict our selves
to possibly infinite sets of finite sequences over a finite set S. Formal lan-
guage theory considers finite descriptions of languages. We are particularly
interested in description methods that are

• easy to understand and use

• lead to algorithms for analyzing sequences

• suitable for automated processing

Finite recognizers meet these criteria, but there are many important lan-
guages that can not be described by finite recognizers because they (the
languages) require more than a fixed amount of memory.

10.0.0 Unrestricted Grammars

10.0.0.0 Puzzle 0

Suppose we have an unlimited supply of puzzle pieces of each of 3 shapes.
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1 +

+ 1 + =

1

We’ll call this supply, the pool of pieces. We can think of the pool as being
a program. The puzzle starts with a sequence of pieces we’ll call the input.

1 1 + 1 1 =

The goal is to close all the circles. In each step we can add one piece from
our infinite pool. We can stretch the pieces, but can not alter the sequence
of symbols along their top’s or bottom’s and can not rotate the pieces. We
also can not cross lines. A solution to this puzzle is.

1 1 + 1 1

1 +

+ 1

1 +

+

1

=

+

=

1

1

11

Now looking at the sequence of closed circles (with no lines at the bottom),
we get:
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1111

Thus our pool describes an algorithm (of sorts) for computing addition in
tally notation.

In general, a set of puzzle pieces defines a relation from finite sequences
to finite sequences.

Proposition 82 Any function from strings to strings that can be computed
by an algorithm can be turned into a puzzle like this.

We call such a function a “computable function”.

Exercise 83 Find a pool that will add numbers presented in binary nota-
tion. E.g. with input

1100 + 111 =

the output will be 10011.

Exercise 84 Find a pool for multiplyng in tally notation: An input of 111×
11 = should result in an output of 111111.

10.0.0.1 Puzzle 1

For this puzzle we start always start with a symbol S and the 7 piece kinds
are

( S

S

)

)

(

[ S

S

]

S []

We can make a tree

Typeset January 22, 2018



158 Context free grammars and context free parsing.

S

[

S

S

](

S

S

)
S

[ ]( )

The final sequence is [()] other sequences we can reach are [[[(([]))]]] and
the empty sequence.

This puzzle defines an infinite set of finite sequences over the alphabet
{‘(’, ‘)’, ‘[’, ‘]’}.

Proposition 85 Any language that can be generated by an algorithm can
be defined by a pool like this. (I.e., the algorithm produces a possibly infinite
list containing each member of the language.)

We call set a language a “recursively enumerable language”.

10.0.1 Handier Notation

To save space, we will use a more compact notation.

10.0.1.0 Puzzle 0 again

• We define a finite set of “terminal symbols” S = {1}.
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• We define a finite set of “nonterminal symbols” (a.k.a. “variables”)
V = {‘+’,‘=’}.

• We define a finite set of “production rules”

P = { ‘+ ’ = −→ ε,
‘+ ’ ‘1’ −→ ‘1’ ‘+ ’ }

The above comprise a “grammar”.

We solve the puzzle by starting with a sequence, say 11+111=, and re-
placing any occurrence of the right hand side of a production with its left
hand side, stopping when only terminals remain

11+111=

=⇒ 111+11=

=⇒ 1111+1=

=⇒ 11111+=

=⇒ 11111

10.0.1.1 Puzzle 1 again

• We define a finite set of “terminal symbols” or “alphabet symbols”
S = {‘(’,‘)’,‘[’,‘]’}.

• We define a finite set of “nonterminal symbols” V = {Start}.

• We define a finite set of “productions”

P = { Start −→ ε,
Start −→ ‘(’ Start ‘)’,
Start −→ ‘[’ Start ‘]’ }

• We define a starting nonterminal Start.
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We solve the puzzle by starting with the starting nonterminal and replac-
ing left hand sides with right hand sides until we only have terminals

Start

=⇒ (Start)

=⇒ ((Start))

=⇒ (([Start]))

=⇒ (([]))

Unlike puzzle 0, we are faced with some choices.

10.0.2 Formalizing

10.0.2.0 Grammars

Definition: A “grammar” is a tuple G = (V, S, P, Astart) or G = (V, S, P )
where

• V is a finite set of nonterminal symbols

• S is a finite set of terminal symbols (disjoint from V )

• P is a finite set of production rules of the form α −→ β, where α and
β are finite strings over V ∪ S with at least one nonterminal in α.

• Astart is a member of V called the “start symbol”

10.0.2.1 Productions

If we have a production rule α −→ β, we say a string γαδ “can produce” a
string γβδ.

Definition: More formally, given a grammar G = (V, S, P, Astart) we say
that η “can produce” κ exactly if there exist

• a production rule (α −→ β) ∈ P

• and strings γ and δ over V ∪ S such that η = γαδ and κ = γβδ.

We write η =⇒ κ to mean η “can produce” κ
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10.0.2.2 Derivation

Definition: If there exists a finite sequence of strings α0, α1, ... , αn such
that

α = α0 =⇒ α1 =⇒ ... =⇒ αn = β

then we say that α “derives” β. In notation:

α
∗

=⇒ β

And we say that [α, α1, ..., β] is a “derivation”.

10.0.2.3 The function defined by a grammar

Each grammar G = (V, S, P ) or G = (V, S, P,Astart) defines a relation rG ∈
(V ∪ S)∗ ↔ S∗ so that if α

∗
=⇒ w ∈ S∗ then

(α,w) ∈ graph(rG)

For some grammars, this relation is a function.

Every computable function is expressible as a grammar.

10.0.2.4 The language generated by a grammar

Definition: For a grammar G = (V, S, P,Astart) with a start symbol Astart,
the language generated by the grammar is

L(G) = {w ∈ S∗ | Astart ∗
=⇒ w}

Note that L(G) ⊆ S∗. For example for G from puzzle 0 we have

L(G) = {ε, (), [], (()), ([]), [()], [[]], . . .}

Every language that can be recognized by some sort of digital computer
can be expressed by a grammar.
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10.0.3 Context Free Grammars

Puzzle 0 and Puzzle 1 have a significant difference. Puzzle 0 only produces
trees. This is because each puzzle piece has only one semicircle in its top
row. We call such a grammar “context free”.

10.0.3.0 Definitions

Definition: A “context free grammar” is a grammar where each production
rule is of the form

A −→ β

for some A ∈ V .
Definition: A “context free language” is a language generated by some

context free grammar.

10.0.3.1 Significance

Con: There are (computable) languages that are not context free.
Pro: context free grammars:

• Are easy to use and understand

• Given a grammar, there is always an algorithm to determine whether
or not a string is in the language generated by the grammar: O(N3)

— For common special cases there are fast algorithms: O(N).

• Many useful and important languages are context free.

— Example: The language of syntactically correct Java classes

— Example: Well-formed XML documents.

— Example: Valid XML documents.

— Example: Correct usages of many communication protocols.

• For languages that are not context free, we can often start by defining
a context free language and then restricting that language

— Example: The language of compile-time error free Java classes.
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10.1 Examples Of Context Free Grammars

10.1.0 Programming language examples

Typical compiler phase structure

source file → Preprocess → Lexical Analysis

↓
object file ← Final Output Syntax Analysis

↑ ↓
Optimization Semantic Analysis

↑ ↓
Code Generation ← Optimization

Phase goals

• Preprocessing: character sequence to character sequence.

• Lexical analysis: character sequence to sequence of tokens

• Syntax analysis (aka parsing): token sequence to “abstract syntax tree”

• Semantic analysis: build symbol table and find errors

• Code Generation: Select instruction sequences

• Optimization: various time and space improvements

• Final output: output machine code (or assembly code).

10.1.0.0 Role of grammars: Grammars are used in

• Preprocessing to parse macro definitions & uses, includes, conditional
compilation etc.

• Lexical analysis uses a grammar to describe how to break a sequence
of characters into a sequence of “tokens”

— spaces, newlines, and comments not output
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— Example input to lexical analysis:

// Read two numbers

var i : float read i

var j : float read j

// find the average, and print it

var k k := (i+j)/2 print k

— Example Output:

var, (id, i), :, float, ..., /, (num, 2), print (id k)

• Syntax Analysis (parsing) determines if the sequence of tokens is
syntactically in the language and (typically) builds a tree representa-
tion.

• Code generationGrammars are sometimes used to describe sequences
of operations that correspond to machine instructions.

10.1.0.1 A handy abbreviation:

We abbreviate multiple productions with the same left-hand side by writing

A −→ α | β

to mean that both A −→ α and A −→ β are productions.

10.1.0.2 Floating point numbers in C/C++ (lexical phase).

Terminals are characters written in typewriter font.
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floatNum −→ fract optExp optFloatSufix

| digits exp optFloatSufix

fract −→ optDigits . digits | digits .
digits −→ digit | digit digits
exp −→ E sign digits

exp −→ e sign digits

optExp −→ ε | exp
optDigits −→ ε | digits

optFloatSufix −→ ε | f | l | F | L
digit −→ 0 | 1 | 2 | 3 | 4

| 5 | 6 | 7 | 8 | 9
sign −→ ε | + | −

Example strings in the language:

123.456 .456E+789 123E798

Not in the language:

123$456

.456.789

123

123E0.1
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An example derivation:

floatNum =⇒ fract optExp optFloatSufix

=⇒ fract optExp

=⇒ fract

=⇒ optDigits . digits

=⇒ digits . digits

=⇒ digit . digits

=⇒ digit . digit digits

=⇒ digit . digit digit

=⇒ 1 . digit digit

=⇒ 1 . 2 digit

=⇒ 1 . 2 3

10.1.0.3 A simple programming language (lexical level, partial
grammar)

Terminals are all ASCII characters

Typeset January 22, 2018



10.1 Examples Of Context Free Grammars 167

token −→ spaces tk

tk −→ keyword | id | num | punc | op | EOF

spaces −→ ε | space spaces

space −→ spacechar | newlinechar

| tabchar | comment

comment −→ / / nonnewlines newlinechar

nonnewlines −→ ε | nonnewline nonnewlines

nonnewline −→ alpha | digit | ( | ) | + | − | / | ∗ | · · ·
keyword −→ p r i n t

| r e a d

| ...
id −→ alpha alphasOrDigits

num −→ digit | digit num
alphasOrDigits −→ ε | alphaOrDigit alphasOrDigits

alphaOrDigit −→ alpha | digit
alpha −→ a | b | · · · | z | A | B | · · · | Z
digit −→ 0 | 1 | · · · | 9
punc −→ ( | )

op −→ + | − | / | ∗ | = | ! =
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10.1.0.4 Expressions for a programming language (syntactic level)

Terminals are (, ), num, id, +, -, /, *, =, and !=. Starting nonterminal is
exp

exp −→ num

| id
| exp bop exp

| uop exp

| ( exp )
bop −→ + | - | * | / | = | !=
uop −→ + | -

Example string in the language:

( num + num ) / - id = id / num / id

Not in the language:

( num + ( id * id ) ) )

- num ( num * * id )
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10.1.0.5 A simple programming language (syntactic level)

Terminals are as in the previous example plus print, read, var, if, else,
end, while, int, float, bool, eof

prog −→ stat eof

stat −→ print exp

| read v
| var v : type

| v := exp

| if exp stat else stat end

| while exp stat end

| stat stat
v −→ id

type −→ int | float | bool
exp −→ as in previous example

Strings in the language:

var id : int read id print num + id eof

if num id := num else id := id end eof

Note that there may still be “semantic” errors.

Strings not in the language:

var id read num print num + eof

if num id := num else id := id eof
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10.1.1 Internet applications

10.1.1.0 HTML tags (as Netscape and IE recognize them)

startTag −→ < elementName attributes >

elementName −→ letter moreElementName

letter −→ a | b | ... | z | A | B | ... | Z
moreElementName −→ nonSpace moreElementName | ε

nonSpace −→ letter | ...
attributes −→ etc.

Attributes is a bit complex, so let’s leave it for now

10.1.1.1 The http URI

http_URL −→ h t t p : / / host optPort optAbsPath

optPort −→ ε | : port

optAbsPath −→ ε | absPath | absPath ? query

Hosts and ports are defined by

host −→ hostName | iPv4address
hostName −→ labels optDot

labels −→ dlabel . labels | tlabel
dlabel −→ alphaNum | alphaNum labelChars alphaNum

tlabel −→ alpha | alpha labelChars alphaNum

labelChars −→ alphaNum | -
optDot −→ ε | .

iPv4address −→ digits . digits . digits . digits

digits −→ num | num digits

alphaNum −→ alpha | num
alpha −→ a | b | ... | z | A | B | ... | Z
num −→ 0 | 1 | ... | 9
port −→ ε | num port
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Paths

absPath −→ / segments

segments −→ segment | segment / segments

segment −→ etc

query −→ etc

I won’t go into all the details, but just comment that a segment is a
sequence of almost any characters, as is a query.

10.1.1.2 Protocols

In this case the tokens are requests and replies. Requests go from client to
server and replies from server to client.

This is a greatly simplified FTP (File Transfer Protocol).

session −→ greetingRequest greetingReply moreSesn

moreSesn −→ quitRequest quitReply

| sendFileRequest sendFileReply moreSesn

| sendFileRequest errorReply moreSesn

| getFileRequest getFileReply moreSesn

| getFileRequest errorReply moreSesn

The syntax of the various requests and replies can also be specified in terms
of sequences of bytes, just as tokens are specified in compilers.

10.2 Recognition and Parsing

Given a grammar G, the recognition problem is this
Input: A string w of terminal symbols.
Output: Whether or not w is in L(G)
Parsing problems are similar, but the output also includes a useful data

structure when w ∈ L(G).
For example:

• In a compiler: we might output an abstract syntax tree.
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• In a calculator: we might output the numerical value of an expression.

• We might output machine code or a reverse polish notation (RPN)
representation of the input.

10.3 Derivation Trees and Left-most Deriva-

tions

Definition 86 A left-most derivation is one where, at each step, the left-
most nonterminal is replaced. We write α =⇒lm β

More formally, have α =⇒lm β iff there are A, s, γ, and δ such that
α = sAγ and A −→ δ and β = sδγ. (Recall that s ∈ S∗).

We write α
∗

=⇒lm β to indicate that there is a derivation of β from α in
0 or more left-most production steps.

Given a grammar G and a string s in L(G) we can consider a tree that
illustrates the proof that the tree is in the language. Any derivation corre-
sponds to a “derivation tree”.

Example

exp −→ num | id | exp bop exp | uop exp | ( exp )
bop −→ + | - | / | * | = | !=
uop −→ + | -

Consider the input 2*i+j, which as a string of terminals is: num * id +
id. One derivation is

exp =⇒ exp bop exp

=⇒ exp bop id

=⇒ exp bop exp bop id

=⇒ exp bop id bop id

=⇒ exp ∗ id bop id
=⇒ num ∗ id bop id
=⇒ num ∗ id + id
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from which we can build the following “derivation tree”.

exp

exp
expbop

exp expbop

idnum id
* +

We can build a “left-most derivation” by traversing the tree depth-first and
left to right, expanding the nonterminal that we encounter

exp =⇒lmexp bop exp

=⇒lmexp bop exp bop exp

=⇒lmnum bop exp bop exp

=⇒lmnum * exp bop exp

=⇒lmnum * id bop exp

=⇒lmnum * id + exp

=⇒lmnum * id + exp

But with the same grammar and the same string, we can build a different
tree.

exp

exp

exp
bop

exp
exp

bop

idnum id* +
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The corresponding left-most derivation

exp =⇒lmexp bop exp

=⇒lmnum bop exp

=⇒lmnum * exp

=⇒lmnum * exp bop exp

=⇒lmnum * id bop exp

=⇒lmnum * id + exp

=⇒lmnum * id + id

10.3..3 Ambiguity

Definition: We say that a grammar is ambiguous iff for some string there
exist two or more derivation trees.

Equivalently: a grammar is ambiguous iff some string has two or more
left-most derivations.

For many applications, we should avoid ambiguous grammars since

• other matters (semantics) are generally described in terms of the gram-
mar and we don’t want ambiguous semantics.

• it is hard to build an efficient parser for ambiguous grammars.

For other applications: e.g. natural language understanding, ambiguity
is useful.

Consider

• “I saw a bird with a telescope”

• “I saw a man with a hat”

• “I saw a man with a telescope”

All 3 sentences fit the pattern

pronoun verb det noun prep det noun

but, in the first, the prepositional phrase attaches to the verb, whereas in
the second the prepositional phrase attaches to the object. This means we
want multiple derivation trees for the same sequence of word forms.

Typeset January 22, 2018



10.3 Derivation Trees and Left-most Derivations 175

10.3.0 Ambiguity and expression grammars

Here is a grammar for expressions Exp0

E −→ n | ( E ) | E + E | E - E | E * E | E / E

This grammar is highly ambiguous.

How many derivation trees are there for n - n / n / n - n ?
14? In a sense only 1 reflects the correct precedence and associativity of

the operators.
To ‘enforce’ ‘correct’ parsing of expressions we can write a new grammar,

Exp1

E −→ T | E + T | E - T

T −→ F | T * F | T / F

F −→ n | ( E )

This grammar is unambiguous.

10.3.0.0 Left-recursion

A nonterminal A is said to be left-recursive if there is a derivation

A
∗

=⇒ Aβ

with at least one step (for some β).
A grammar is left-recursive iff it has at least one left-recursive nontermi-

nal.
Clearly both Exp0 and Exp1 are left recursive. Here is an unambiguous

grammar for the same language as Exp0 and Exp1 that is not left-recursive.
Exp2:

E −→ T E1

E1 −→ + T E1 | - T E1 | ε
T −→ F T1

T1 −→ * F T1 | / F T1 | ε
F −→ n | ( E )
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10.4 Top-Down predictive parsing and recog-

nition.

A top-down predictive parser works by trying to build the derivation tree
from the top down.

For example here is a derivation tree that is partially built.

Consumed
input

Input yet to be
consumed

if id = id    id := id   else   print id   end

stat

exp stat statif

expexp bop

else

id =

The leaves of the tree are if id = exp stat else stat
This tree is a proof that

stat
∗

=⇒ if id = exp stat else stat

10.4.0 Conceptual view

The idea is to walk the derivation tree in a depth-first manner, while (con-
ceptually) building the tree and consuming the input. Circled nodes are not
yet visited. The left to right sequence of circled nodes is called the prediction.
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10.4.1 Augmenting the grammar

It will simplify things later if we augment the grammar with

• a new terminal: $

• a new starting nonterminal A′start and
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• a new production rule A′start −→ Astart $, where Astart was the original
starting nonterminal.

We will also add a $ to the end of each input string.

(Typically $ represents the end of the file.)

10.4.2 States, steps, and stops

We will process one terminal at a time.

10.4.2.0 States

A top-down predictive parser’s state consists of

• the input processed so far s

• and the current prediction α

• and the remaining input sequence, t

Let’s write this as

s�α, t

(Note: we don’t represent the partially built tree, but only the sequence
of unvisited nodes α).

As a loop invariant we’ll have that

A′start
∗

=⇒lm sα

and that st = w$ where w is the original input.

As an initial state we’ll start with

ε�A
′
start, w$

where w is the input string.
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10.4.2.1 Steps

We use two rules to step from one state to another

• Shift: (Read one terminal from the input)

s�aβ, au 4 sa�β, u

• Produce: (Expand the left most nonterminal)

s�Aβ, t 4 s�γβ, t

where A −→ γ is a production rule.

Theorem: Astart
∗

=⇒ w iff there is a sequence of steps that goes

ε�A
′
start, w$ 4 ... 4 w$�ε, ε

10.4.2.2 Stopping

• Successful stop: We stop when the state is s�ε, ε, in which case (from
the invariant) the input w is in the original grammar.

• Error stop 0: We also stop when the predicted input does not match
the actual input, i.e. the state is s�aβ, bu where a �= b.

• Error stop 1: We also stop when the state is s�Aβ, t and there is no
appropriate production rule.

If we come to a “Successful stop” then

• the input was in the language. Astart
∗

=⇒ w

If we come to an “Error stop” then either

• the input was not in the language,

• or we made a bad choice in a ‘produce’ step.

Later we’ll see how to avoid bad choices.
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10.4.3 Example

Here is a trace of the algorithm for grammar Exp2 (augmented) and an input
of n * n

s�α, t Action
ε�E

′, n * n $ Produce E′ −→ E$
4 ε�E $, n * n $ Produce E −→ T E1
4 ε�T E1 $, n * n $ Produce T −→ F T1
4 ε�F T1 E1 $, n * n $ Produce F −→ n
4 ε�n T1 E1 $, n * n $ Shift
4 n�T1 E1 $, * n $ Produce T1 −→ * F T1
4 n�* F T1 E1 $, * n $ Shift
4 n * � F T1 E1 $, n $ Produce F −→ n
4 n * �n T1 E1 $, n $ Shift
4 n * n �T1 E1 $, $ Produce T1 −→ ε
4 n * n �E1 $, $ Produce E1 −→ ε
4 n * n �$, $ Shift
4 n * n $�ε, ε Success

So the string is in the language.

10.4.4 In a more algorithmic form

Note that s is not really needed in the state unless we use it to help pick the
production rule, which we will not do.

Algorithm: Top down predictive parsing
Input: A string w
Output: ‘success’ or ‘error’. If the output is ‘success’ then w ∈ L(G). If

the output is ‘error’, then either w /∈ L(G) or a bad choice was made.

var t := w$ // where w is the input string
var α := A′start // Note: α behaves as a stack.
while α �= ε do

if α(0) ∈ S then

if α(0) = t(0) then (

// Shift step
t := tail(t)
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α := tail(α) )

else // α(0) �= t(0)

error

else /* α(0) ∈ V */ (

try to pick a suitable production rule α(0) → γ
if a suitable production rule exists

// Produce step
α := (γˆtail(α))

else // no suitable production rule exists

error ) )

if t = $ then success else error

(tail(s) is the string [s(1), s(2), ..., s(‖s‖ − 1)]. error means stop with
output ‘error’. success means stop with output ‘success’)

Assuming the grammar is not left-recursive, the top-down predictive pars-
ing algorithm must terminate and is O(N) time, where N is the length of
the input.

To be done: We still haven’t said how to pick a suitable production rule
when a nonterminal comes to the top of the α stack.

10.4.5 LL(1) Grammars

Definition: An augmented grammar is called an ‘LL(1) grammar’ when the
suitable production rule can always be chosen on the basis of the next input
item t(0) and the left-most nonterminal α(0).

Left-recursive grammars can never be LL(1). (Why?)
For each production rule A −→ γ we compute the set of terminals which

t(0)might equal whenA −→ γ is chosen as the production rule in a successful
run of the TDPP algorithm.

This set is called the selector set of the algorithm.
So let’s consider Exp2 augmented

E′ −→ E$ {n, (} T1 −→ * F T1 {*}
E −→ T E1 {n, (} T1 −→ / F T1 {/}
E1 −→ + T E1 {+} T1 −→ ε {$, ),+, -}
E1 −→ - T E1 {-} F −→ n {n}
E1 −→ ε {$, )} F −→ ( E ) {(}
T −→ F T1 {n, (}
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On the right we have a selector set for each production rule.
We implement the picking part of the algorithm

/*do pick a suitable production rule α(0) → γ by*/

if there is a production rule α(0) → γ
with t(0) in its selector set then

pick that production rule

else

there is no suitable production rule

A grammar is LL(1) iff for each nonterminal A and for each pair of pro-
ductions for A, the selectors sets of the two productions are disjoint.

I.e. a grammar is LL(1) iff, for all A, α, β, such that A −→ α and
A −→ β are distinct productions,

(
SelectorSet (A −→ α)

∩ SelectorSet (A −→ β)

)
= ∅

10.4.5.0 Computing the selector sets.

Consider the selector set for a production rule A −→ α
Look at E1 −→ + E. It is clear that this production rule should only

be picked if the next terminal is a + sign.
From the example it is clear that if α

∗
=⇒ bβ then b should be in the

selector set of A −→ α.
But there is more to it then that when α

∗
=⇒ ε.

Consider E1 → ε the next item in the input should be one that could
legitimately follow an E1 in a successful derivation. Only items that could
follow E qualify and these are $ and ).

Suppose A′start
∗

=⇒ βAbγ =⇒ βαbγ
∗

=⇒ βbγ then b should be in the
selector set of A −→ α.

(Note that A′start
∗

=⇒ βA =⇒ βα
∗

=⇒ β is not possible!)
Define functions First and Follow for an augmented grammar by

• b ∈ First(α) iff α
∗

=⇒ bβ, for some β and

• b ∈ Follow(A) iff A′start
∗

=⇒ βAbγ, for some β and γ.
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The selector set for A −→ α is

First(α), when α
∗

�=⇒ ε

and is
First(α) ∪ Follow(A), when α

∗
=⇒ ε

10.5 Recursive Descent Parsing

Recursive descent parsing works on the same principle as our state based
parser, but uses the call-return stack rather than an explicit stack.

To write a recursive descent parser, we create a subroutine for each non-
terminal.

Let t be the input stream (a global variable)
The subroutine for nonterminal A has as its specification.

if
(
∃u, v · t = uv ∧ A ∗

=⇒ u
)

then t := some v such that
(
∃u · t = uv ∧ A ∗

=⇒ u
)

else error

I.e., each subroutine is responsible for recognizing a string u produced by its
nonterminal in the input and removing that string from the remaining input.

Furthermore, each subroutine is responsible for reporting an error if the
remaining input does not start with a string that can be derived from A.

10.5.0 Recursive Descent parsing of LL(1) grammars

If the grammar is LL(1) then creating an R.D. parser for it is a mechanical
process.

Let’s look at an example. We can write a recursive descent recognizer for
Exp2 as follows

global var t ·

procedure main is

t := w ‘$’ ; // Where w is the input
SPrime
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procedure consume is

t := tail(t)

procedure expect( a ) is

if t(0) = a then consume
else error

procedure SPrime is

E ;
expect( ‘$’ )

procedure E is

if t(0) ∈ {‘n’,‘(’} then (

T ;
E1 )

else

error

procedure E1 is

if t(0) = ‘+’ then (

consume ;
T ;
E1 )

else if t(0) = ‘-’ then (

consume ;
T ;
E1 )

else if t(0) /∈ {‘$’,‘)’} then

error

... T and T1 are similar to E and E1 ...

procedure F is
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if t(0) = ‘n’ then

consume

else if t(0) = ‘(’ then (

consume ;
E ;
expect( ‘)’ ) )

else error

10.5.1 Getting results

Often we not only want to recognize the input but also process the input to
create an output in the case where the input is recognized.

We can do this by augmenting the recursive decent parser with extra
code.

As an example, we will produce numbers.

global var t ·

procedure main is

t := w ‘$’ ; // Where w is the input
output SPrime

procedure SPrime is

var p := E ·
expect( ‘$’ )
return p
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procedure E is

if t(0) ∈ {‘n’,‘-’} then (

var p := T ·
return E1(p))

else

error

procedure E1( p ) is

if t(0) = ‘+’ then (

t := tail(t) ;
var q := T ·
return E1( p + q ) )

else if t(0) = ‘-’ then (

t := tail(t) ;
var q := T ·
return E1( p− q ) )

else if t(0) /∈ {‘$’,‘)’} then

error

else

return p

... T and T1 are similar to E and E1 ...

procedure F is

if t(0) = ‘n’ then (

var p:= the value associated with t(0)·
t := tail(t) ;
return p )

else if t(0) = ‘(’ then (

t := tail(t)
var p:= E then (
expect( ‘)’ ) )
return p

else error
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Consider parsing the sequence: 10-2*3-1 As a string of terminals we
have n-n*n-n.

We have the following call tree which reflects the parse tree. Return
values are shown after the colon.

Sprime

E : 3

T : 10

F : 10 E1(4) : 3T1(10) : 10

10

- T : 6

E1(10) : 3

-
T : 1

E1(3) : 3F : 2 T1(2) : 6

2 * F : 3 T1(6) : 6

3
1

F : 1 T1(1) : 1

$

10                       -       2     *         3                  -          1                                          $

Parsing  10-2*3-1 with the parameter values and the return values shown.

ε

εε

ε

Questions to consider:

• Can you modify the recursive descent parser above to produce an ab-
stract syntax tree for an expression?
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• Can you modify the recursive descent parser above to produce RPN?

• How could you alter the top-down predictive recognizer to compute re-
sults rather than to just recognize? Hint: consider adding “commands”
to the productions and executing the commands when they come to the
top of the stack. See the ‘Command’ pattern in Gamma et al.

• Can you modify the grammar Exp2 with added commands so that it
computes the right result (hint use an extra stack to hold intermediate
results).

• Add unary operators to the grammar Exp2 so that you get a LL(1)
grammar. Can you parse 12/− 2 ?

10.6 Dealing with non LL(1) grammars

10.6.0 Converting to LL(1)

In many cases we can convert an non-LL(1) grammar to an LL(1) grammar.

10.6.0.0 Factoring

When two productions for a nonterminal start the same way, the nonterminal
will not be LL(1).

Example

Stat −→ if Exp then Stat end

Stat −→ if Exp then Stat else Stat end

The terminal if will be in the selector sets of the first to productions.
We can factor out the common left parts to get:

Stat −→ if Exp then Stat MoreIf

Stat −→ other

MoreIf −→ else Stat end

MoreIf −→ end
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10.6.0.1 Eliminating left recursion

Consider a sequence of one or more items separated by commas

List −→ List , item

List −→ item

We can replace these rules with equivalent productions

List −→ item List′

List′ −→ , item List′ | ε
In general you can eliminate direct left-recursion by replacing rules

A −→ Aα0 | Aα1 | β0 | β1
with rules

A −→ β0A
′ | β1A′

A′ −→ α0A
′ | α1A′ | ε

There exist methods for eliminating indirect left-recursion, e.g.:

A −→ Bα | β B −→ Aγ | δ

10.6.0.2 Is that all there is to it?

The above methods will convert many grammars to LL(1) form.
But not all.
In fact there exist languages for which there exists no LL(1) grammar.
Consider if statements in C/C++/Java/Pascal

Stat −→ if ( E ) Stat MoreIf | . . .
MoreIf −→ else Stat | ε

E −→ ...

(This is not LL(1) since else is in Follow(Stat) )
You can still use recursive decent or top-down predictive parsing, in this

case, but you have to use a means other than the selector set to pick the
production rule.

For example in the “ambiguous else” example, the parser should pick the
first production rule for MoreIf when the next terminal is else.
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10.7 Bottom-up, Shift-Reduce Parsing

We don’t need (or use) augmented grammars for this.

10.7.0 State

In this parsing method the state is α∧t where

• α is a stack (top is at right) representing consumed input and

• t is the remaining input

We initialize the state to ε∧w$, where w is the original input, where w is
the original input and $ is a symbol not in S

Invariant: αt
∗

=⇒ w$ I.e. there is a derivation from αt to w$.

10.7.1 Steps

There are two kinds of steps

• Shift steps: α∧au 4bu αa∧u

• Reduce steps: βγ∧t 4bu βA∧t

where A −→ γ is a production rule

10.7.2 Stops

• State Astart∧$ means success

• If neither a shift nor a reduce can lead to a successful parse, then an
error is declared.

10.7.3 Example using grammar Exp1

E −→ T | E + T | E - T

T −→ F | T * F | T / F

F −→ n | ( E )
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α∧t$ Action
ε∧n - n * n - n $ Shift

4bu n ∧ - n * n - n $ Reduce F −→ n

4bu F ∧ - n * n - n $ Reduce T −→ F
4bu T ∧ - n * n - n $ Reduce E −→ T
4bu E ∧ - n * n - n $ Shift
4bu E - ∧ n * n - n$ Shift
4bu E - n ∧ * n - n$ Reduce F −→ n

4bu E - F ∧ * n - n $ Reduce T −→ F
4bu E - T ∧ * n - n $ Shift
4bu E - T * ∧ n - n$ Shift
4bu E - T * n ∧ - n $ Reduce F −→ n

4bu E - T * F ∧ - n $ Reduce T −→ T * F
4bu E - T ∧ - n $ Reduce E −→ E - T
4bu E ∧ - n $ Shift
4bu E - ∧ n$ Shift
4bu E - n ∧$ Reduce F −→ n

4bu E - F ∧$ Reduce T −→ F
4bu E - T ∧$ Reduce E −→ E - T
4bu E∧$

Notice how this traces out a (right-most) derivation in reverse.

10.7.4 LR(1) grammars and Parser Generators

Definition: If you can always pick the correct step on the basis of

• the current stack, and

• the first terminal in the remaining input

then the grammar is said to be LR(1)
Theorem (Knuth): This decision can be made by running a deterministic

finite state machine on the stack and then basing the decision on the final
state of that machine and the next terminal.

Theorem (Knuth): LR(1) grammars can be parsed in O(N) time
Proof idea: Represent the stack of symbols with a stack of finite machine

states (this is a data refinement). Then only the top state on this stack and
the next input symbol need to be consulted, not the whole stack.
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Theorem: All LL(1) grammars are LR(1).
Why: LL(1) parsers must decide the production rule for A on the basis

of the first symbol after the start of A. An LR(1) parser must decide the
production rule for A on the basis of the first symbol after the end of A.
Thus an LR(1) parser has at least as much information on which to base a
decision.

Implementing an LR(1) parser by hand is not easy for nontrivial gram-
mars.

The “yacc” and “bison” parser generators use shift-reduce parsing and
can handle almost all LR(1) grammars.

yacc and bison produce parsers written in C.

10.7.5 Deterministic shift-reduce parsing

Algorithm: Deterministic shift-reduce parsing
Input: a string w
Output: ‘error’ or ‘success’

var t := w$· // where w is the input string
var α := ε· // Note: α behaves as a stack.
while α �= Astart ∨ t �= [$] do (

var q := decide what to do ·
if q = shift then (

α := (α ˆt(0)) ;
t := tail(t) )

else if q = reduce(A → γ) then

let β be such that α = βγ·
α := βA

else /* q = error */

error )

success

The tricky bit is deciding what to do next: There are three possibilities
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• shift

• reduce( A → γ ) where A → γ is a production and γ is the top of the
stack.

• error

10.8 Extended BNF (EBNF)

Terminological aside: Context Free Grammars were invented by Noam
Chomsky in 1957 in the study of natural languages.

John Backus invented an equivalent formalism for describing program-
ming languages.

Peter Naur used Backus’s notation in the description of Algol-60.
Thus CFG notation is often called BNF for “Backus-Naur Form”

10.8.0 Back to Extended BNF (or extended CFGs)

We extend CFG notation with convenience notations.
These do not extend range of languages we can describe.
Each production rule now has the form

A −→ x

where A is a nonterminal and x is a regular expression over S ∪ V .
For example we can write Exp3 (equivalent to Exp0, Exp1, Exp2) as

E −→ E; ((‘+’ | ‘-’ | ‘*’ | ‘/’); E)∗ | ‘(’;E; ‘)’ | ‘n’
Revisiting the C++ Floating Number grammar. We can now be more

concise.

floatNum −→ fract exp?; (‘f ’ | ‘l’ | ‘F’ | ‘L’)?

| [‘0’− ‘9’]+; exp; (‘f ’ | ‘l’ | ‘F’ | ‘L’)?

fract −→ [‘0’− ‘9’]∗; ‘.’; [‘0’− ‘9’]+ | [‘0’− ‘9’]+; ‘.’

exp −→ (‘e’ | ‘E’); (‘+’ | ‘−’ | ε); [‘0’− ‘9’]+
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10.8.1 EBNF is no more powerful than CFGs

Given an EBNF grammar, we can rewrite its productions to obtain a CFG
for the same language:

Algorithm: Apply the following replacements until the grammar is a
CFG..

A→ (P ) replace with A → P
A→ P ∗ replace with A → A′

A′ → ε | P A′
A→ P ;Q replace with A → A1A2

A1 → P
A2 → Q

A→ P | Q replace with A → A1 | A2
A1 → P
A2 → Q

where A1 and A2 are brand-new nonterminals.

10.8.2 Recursive Descent Parsing with EBNF

We can implement repetition with a while loop and choice with and if.
Consider this augmented grammar for expressions Exp4

E′ −→ E $

E −→ T ((‘+’ | ‘-’) T )∗
T −→ F ((‘*’ | ‘/’) F )∗
F −→ ‘n’ | ‘(’ E ‘)’

The choices implicit in the repetitions can be made on the basis of the next
token since:

• neither + nor - are in the Follow set of E

• neither * nor / are in the Follow set of T

We can implement E with a subroutine

procedure E is
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var p:= T ·
while t(0) ∈ {‘+’,‘-’} do

if t(0) = ‘+’ then (

t:= tail(t) ;
var q := T ·
p:= p+ q )

else (

t := tail(t) ;
var q:= T ·
p := p− q )

return p

Note that I didn’t bother to check that t(0) is ‘)’ or $ prior to returning,
since the caller of E will presumably make that check and can provide a
better error message.

Parser Generation: The JavaCC parser generator accepts Extended BNF
grammars and produces parsers written in Java. (https://javacc.dev.java.net/)

10.8.3 Syntax diagrams (or railroad diagrams)

Syntax diagrams are similar to EBNF except, instead of using regular expres-
sions, we use NDFRs. These NDFRs are conventionally drawn with networks
of lines representing the states and boxes representing the transitions. For
example:

Typeset January 22, 2018



196 Context free grammars and context free parsing.

10.9 Regular languages

Parsing with LL(1) and LR(1) grammars takes

• O(N) time and (worst case)

• O(N) space. (N is the length of the input)

Regular languages are those that take O(1) space.
We can define regular languages in terms of grammars one of several

equivalent ways
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10.9.0 First way

A regular language is one that can be described by an EBNF grammar with
no recursion (direct or indirect) between the nonterminals

For example the syntax of floating point numbers in C++.
Example:

M −→ $DD?D?(,DDD)∗.DD

D −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Counter-example:

E −→ (n ((+ | - | * | /) n)∗) | ‘(’ E ‘)’

has recursion.

10.9.1 Second way

A production rule is right linear if it is of the form

A −→ sB

or of the form
A −→ s

(recall that s contains no nonterminal).
A regular language is one that can described by a CFG containing only

right-linear productions.
Example

A −→ $B

B −→ dC

C −→ D | dD
D −→ E | dE
E −→ , dddE|.dd

Counter-example:
E −→ n | ‘(’ E ‘)’

Recursion of E is not at the very right of the production rule
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10.10 Attribute grammars

Attribute grammars augment terminals and nonterminals with attributes.
Each production has an boolean expression that must be satisfied at each

node in the derivation tree.

10.11 Recognition by “dynamic programming”

Input: A string w and a grammar G = (V, S, P,Astart) such that every pro-
duction is in one of the following forms

A −→ a

A −→ B C

(Exercise. Show that any grammar such that ε /∈ L(G) can be trans-
formed to an equivalent grammar that satisfies this constraint.)

Let n be the length of w.

var m : array {0, .., n} × {0, ..n} of P(V )
// Each element of m is a set of nonterminals
for (i, j) ∈ {0, .., n} × {0, ..n} do m(i, j) := ∅

The idea is to put into each elementm(i, j) all nonterminals that describe
the substring w[i, .., j] where i < j.

for i ∈ {0, ..n} do m(i, i+ 1) := {A | A −→ w(i) ∈ P}

So far we have succeeded for substrings of length 1.
We can ‘multiply’ two sets of nonterminals U and V as follows: if B ∈ U

and C ∈ V and A −→ B C is a production then A ∈ U ⊗ V . I.e.

U ⊗ V = {A,B,C | (A −→ B C) ∈ P ∧B ∈ U ∧ C ∈ V · A}

If s and t are strings and U contains all nonterminals B such that B
∗

=⇒ s
and V contains all nonterminals C such that C

∗
=⇒ t, then U ⊗ V contains

all nonterminals A such that A
∗

=⇒ sˆt.
The rest of the algogithm fills in the table for segments of increasing

length.

for k from 2 to n do
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for i ∈ {0, .., n− k} do
let j := i+ k·
for ? ∈ {i+ 1, .., j − 1} do
m(i, j) := m(i, j) ∪ (m(i, ?)⊗m(?, j))

Upon completion, the string is in the language iff Astart ∈ m(0, n).
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Chapter 11

Computation time

11.0 The RAM model of computation

If we are going to consider how long programs take to run, a natural question
is, “On what machine?” We could pick some particular current model of
computer. I’m writing this on an HP dv-4040ca, so why not that? But
then our results would be very specific. Would they carry over to other
current computers or to future computers? In this part of the book, instead
of considering the time taken to run programs on particular computers, we
will try to draw conclusions about running time that will hold true over all
computers – or at least a broad class of computers.

We will consider an idealized computer defined by the following state
space.

{
“m” �→

(
Z
tot→ Z
)
, “c” �→ N, “p” �→

(
N

tot→ I
)
, “A” �→ F(Z), “status” �→ {running, stopped}

}

where I is a set of instructions to be defined shortly. m is the data memory.
c is the program counter, p is the program memory, A is the set of allocated
memory locations, and s is a status flag used to indicate that the machine is
done. The notation F(Z) means the set of all finite subsets of integers. We
will call this computer a Random Access Machine, or RAM for short.0

0The abbreviation RAM is a bit unfortunate, as the same three letters often stand for
“Random Access Memory”. In both cases the word “random” doesn’t mean random at
all, but rather that memory locations can be accessed in an arbitrary order, rather than
sequentially, as with a tape.

Typeset January 22, 2018



204 Computation time

Compared to the state of a real computer, this is very simple. Real com-
puters use many levels of storage, registers, cache, main memory. Multiple
levels exist for reasons of efficiency, we will abstract away from such details
and so we don’t need to consider multiple levels of memory. Another simpli-
fication is that we keep the program separate from the main memory. This
is called a Harvard architecture, as opposed to the Princeton architecture,
which puts the program in the main memory. A Princeton architecture al-
lows self-modifying code, which we won’t need, and is very useful if you are
writing an operating system, which we won’t be doing.

You should note that m consists of an infinite number of cells. This is
one reason that we call this an idealized computer; it never runs out of mem-
ory. Designers of real computers attempt to approximate this idealization
by having very large physical memories and by using virtual memory. You
should also note that each cell of m can hold any integer. This is another
idealization. On typical real computers, each cell is limited to some small
number of bits, e.g. 8, 16, 32, 48, 64. It is then up to the software designers
(and/or compiler writers) to lump together enough adjacent cells to hold
whatever number is desired. (And to deal with the consequences when they
haven’t used enough cells to hold the result of a computation, i.e. to deal
with overflow.)

There are a few reasons for considering a computer with an infinite num-
ber of cells. The first is that we want to consider the time required by a
program to execute as a function of input size; and we want to consider what
happens as the input size goes to infinity. If we put any limit on the size
of the memory, that will impose a limit on the size of the input and we’ll
be stuck. The second reason is that the infinite memory model is close to
what programming languages try to provide. For example the new operator
in Java or C++ provides new cells without any a priori limit. As program-
mers, we work with the abstraction of infinite memory, although if we are
good programmers, we also plan for the case where the abstraction fails, e.g.
when the new operator throws an exception because memory has run out.
It’s a bit like the physicist who works with an infinite and flat 3D space; we
know the real universe is finite, curved and expanding, but, most of the time,
the abstraction is “good enough” and considerably simpler.

Now given that we have an infinite number of cells, is there a good reason
that each cell should be able to hold any integer? Perhaps for the sake of
realism, we should make each cell some fixed width w bits. E.g. w = 8
is quite common in the real world. This simplification is sometimes made.
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Theoretical computer scientists often pick w = 1, as any other number is
larger than absolutely necessary. However, fixed sized cells make programs
more complicated, as we have to deal with grouping cells together to obtain
enough space to hold data. Even worse, as the size of the input heads toward
infinity, we might have to change the number of cells we lump together. For
example, suppose we represent a graph by a list of edges; if w = 8 and
the number of nodes is less than 257, we can represent each edge with two
memory cells. However for graphs with 257 through 65, 536 nodes, we need
four cells per edge, and then for larger graphs, more cells. A second reason
for not using fixed sized cells is that sometimes we want to store the address
of one cell in another cell, since addresses are integers, so are cell contents.

Now we need an instruction set I for the machine. I propose the following
set.

bpos(i, j) if m(j) > 0 then c := i else c := c+ 1
call(i, j) m(j) := c+ 1; c := i
return(i) c := m(i)
halt() status := stopped
add(i, j, k) m(i) := m(j) +m(k); c := c+ 1
mult(i, j, k) m(i) := m(j)×m(k); c := c+ 1
negate(i, j) m(i) := −m(j); c := c+ 1
odd(i, j) if m(j) is odd then m(i) := 1 else m(i) := 0
shift(i, j) m(i) := �m(j)/2 ; c := c+ 1
fetch(i, j) m(i) := m(m(j)); c := c+ 1
store(i, j) m(m(i)) := m(j); c := c+ 1
load(i, j) m(i) := j; c := c+ 1

Why this set? Well, I admit that some of the choices are arbitrary, but I am
guided by the following aims:

• I want to make sure that the machine is capable of any computing any
function that any other computer can compute. This property is called
universality.

• On the other hand, I want to keep the set of instructions small and
simple.

• A program that runs on the RAM should be easily translatable to one
that runs on a physical processor.
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• Finally I want to ensure that the number of steps taken by the machine
to compute a function is similar to the number of steps taken by a
typical physical central processor.

The first requirement, universality, turns out to be impossible to prove,
at least in a mathematical sense. We can certainly prove that one model of
computation is as expressive as another, but it is hard to show that no one
will ever devise a more expressive model. Neverthelesss we can say that our
RAM is as expressive as any other “realistic” model of computation that has
been devised yet.

Thw final requirement involves a few subtleties. For example our RAM
can add any two integers in a single step, whereas a typical physical processor,
having fixed width registers, would take several steps to, for example, add two
100 digit numbers. On the other hand, most (but not all) physical processors
have an instruction that will divide two (fixed width) integers. On our RAM,
division requires several instructions. Whether we have satisfied the final
requirement depends on what we mean by “similar”.

Here is an example that shows that computation times on a RAM can
be misleading, if we are not careful. If m(0) is initially n, with n > 0, this
program computes 2(2

n) into m(1) in only 3n+ 3 steps.

0 : load(1, 2)

1 : load(−1,−1)

2 : mult(1, 1, 1)

3 : add(0, 0,−1)

4 : bpos(2, 0)

5 : halt()

For very very small n this is a realistic result. As soon as n = 5, we will find
that the program will not run on a 32 bit machine without using multiple
memory locations to represent m(1). Furthermore, every time n inreases
by one the memory requirements of a real computer double and the time
requirement will surely at least double. The point of this example is to show
that we need to be careful about when to use the RAM model and about
interpreting results obtained with the RAM model.
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11.1 Parameterized RAM

A RAMw,s is a model of computation much like a RAM, but whose memory
consists of s words that are each w bits wide; here s and w are integers
greater than 1 or are infinite. Define

words(w) =

{
{−2w−1, ..2w−1} if w ∈ N
Z if w = ∞

addresses(s) =

{
{
⌈
−s
2

⌉
, ..
⌈
s
2

⌉
} if s ∈ N

Z if s = ∞

The type of the memory for a RAMw,s is addresses(s)
tot→ words(w). Thus m

has type

• Z tot→ Z if w = ∞ and s = ∞

• Z tot→ {−2w−1, ..2w−1} if w ∈ N and s = ∞

• {
⌈
−s
2

⌉
, ..
⌈
s
2

⌉
} tot→ Z if w = ∞ and s ∈ N

• {
⌈
−s
2

⌉
, ..
⌈
s
2

⌉
} tot→ {−2w−1, ..2w−1} if s, w ∈ N.

For example, in a RAM8,99, the address space is {−49, ..50} and each memory
word holds a value in the range {−128, ..128}.

We also change the type of status to {running, stopped, crashed}.
We redefine the instructions for the RAM of section 11.0 so that the

machine crashes rather than storing into a nonexistent location or storing a
value that is too big or too small. For example:

call(i, j) if j ∈ addresses(s) ∧ c+ 1 ∈ words(w) then (m(j) := c+ 1; c := i) else status := cras
add(i, j, k) if i, j, k ∈ addresses(s) ∧m(j) +m(k) ∈ words(w) then (m(i) := m(j) +m(k); c := c

Since a RAM∞,∞ never crashes, it is essentially the same as the RAM of
section 11.0.

Our program for computing 2(2
n) still takes linear time, but requires at

least a RAM2n+1,3.

Typeset January 22, 2018



208 Computation time

Typeset January 22, 2018



Chapter 12

A Dialogue concerning P = NP
and NP -Completeness

Dramatis personae (with apologies to Galileo Galilei)

• Salviatus: A scholar who is well informed and perhaps a bit of a know-
it-all.

• Sagredus: A willing and apt pupil.

• Simplicius: Another willing pupil, but one who is perhaps not as quick
on the uptake as Sagredus

12.0 First day

S������	: Salviati, good friend, we have heard that the question of whether
P = NP or not is considered by many to be the most important open
question in computing science, but I have to confess that I’ve never really
understood it. Perhaps, like much of mathematics, it is simply beyond what
I can fathom.
S�
����	: I seriously doubt that. The concepts aren’t hard. Like the

4-colour theorem, or Fermat’s last theorem, the proof that P = NP or that
P �= NP , if we ever have one, will no doubt be hard to follow, but the
statement of the question is easy to understand.
S���
����	: Isn’t it just that NP means hard problems and P means

easy problems, so the P
?
= NP question just asks whether all hard problems

are easy. It seems a rather dumb question.
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Figure 12.0: Can you colour the nodes of this graph with three colours so
that nodes connected by an edges are coloured differently?

S�
��.: No, NP is a set of problems whose affirmative answers can be
quickly checked, given some evidence. NP includes both problems that we
can solve quickly (easy problems) and problems that we don’t know how to
solve quickly (apparently hard problems).

S���.: Can you give us an example?

S�
��.: If I claim that a number n is composite, this claim can be quickly
checked if I back it up with evidence. In this case the evidence would be two
factors p and q. You can quickly check the evidence by multiplying p by
q and comparing the result to n. So the question of whether a number is
composite or not is in NP .

S���.: Can you give us another example?

S�
��.: Consider the question of whether a graph can be 3-coloured.

S���
.: Meaning?

S�
��.: A graph is 3-coloured iff each node of the graph is assigned one
of 3 colours such that each edge connects nodes of different colours. [See
Figure 12.0] If a graph can be 3-coloured, there is a way to quickly convince
someone that it can; here’s how: you simply write out a list of nodes and
write a colour beside each, red, green, or blue. This list is the evidence.
Anyone can quickly check that each edge connects nodes of different colours.
[See Figure 12.1]

S���
.: You keep using the word ‘quickly’, but what do you mean by
that?
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Figure 12.1: Evidence that the graph of Figure 12.0 can be 3-coloured.

S�
��.: That is a good question. I mean in polynomial time. That is,
the checking problem can be solved in polynomial time with respect to the
size of the original input.

S���.: So in the example of determining whether a number n is com-
posite, would the size be n?

S�
��.: When an input is an integer, it is usual to use the number of
bits required to represent the number; so for this problem, the input size is
7log2 n8.
S���.: And for the graph colouring example.

S�
��.: In that case, the number of nodes plus the number of edges will
do fine.

S���.: What about ‘no’ answers? Should there also be a quick way of
demonstrating that the answer is ‘no’?

S�
��.: That is not needed for a problem to be in NP . If there is a quick
way of showing that an answer is ‘no’, we say that the problem is in co-NP .
(“co” stands for “complementary”.) It is quite possible for a problem to be
in both NP and co-NP .

S���.: This all makes sense for problems that have ‘yes’ or ‘no’ as their
answers, that is problems that ask one to determine whether its input is in
a particular set or not.

S�
��.: That is true. The set NP contains only decision problems, which
simply means problems with either ‘yes’ or ‘no’ as answer. We do that for
two reasons. First it makes it simpler to translate between problems, we only
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need to translate the inputs, the outputs need no translation. The second
reason is that it allows us to treat the ‘yes’ outputs differently from the ‘no’
outputs, which is what we do in the definition of NP .
S���.: So NP is the set of decision problems such that evidence for

affirmative answers can be checked in time that is polynomial with respect
to the size of the original input.
S�
��.: Exactly.
S���
.: I had thought thatNP problems were all hard, but this definition

seems to put no restriction on how easy a problem is, but rather on how hard.
So no problem is too easy to be in NP .
S�
��.: That’s right. Consider determining whether the shortest path

between two points in a graph is less than a given number. This problem
can be solved in polynomial time –use Dijkstra’s algorithm to calculate the
actual size of the shortest path and then simply compare with the given
number. We can use the actual shortest path as the evidence. It fits the
definition of NP .
S���.: You could also use as evidence, the input to the problem, that is

the graph, the two nodes, and the length. Then the checker can use Dijkstra’s
algorithm.
S�
��.: In fact any decision problem that can be solved in polynomial

time is in NP since all the evidence that is needed is the input to the problem
itself.
S���
.: But I thought NP stood for ‘nonpolynomial.’
S�
��.: Actually it stands for nondeterministic polynomial time. This

means that the problem is solvable in polynomial time on a kind of nonde-
terministic computer. This special kind of computer has all the conventional
instructions plus one special instruction called a “nondeterministic branch”.
Whenever the nondeterministic branch is encountered, the machine takes the
branch or doesn’t as follows:

• If both choices inevitably lead to a ‘no’ output, then the choice between
branching and not branching is arbitrary.

• If both choices can lead to a ‘yes’ output, then the choice between
branching and not branching is again arbitrary.

• But, if only one choice can possibly lead to a ‘yes’ output, then that
choice is taken.
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Here is a nondeterministic algorithm for determining whether a graph can
be 3-coloured.

read a graph (V,E)
for each node v ∈ V

paint v red
nondeterministic branch to A
repaint v green
nondeterministic branch to A
repaint v blue
A:

for each edge e ∈ E
let u and v be the endpoints of e
if u and v are painted the same colour, output ‘no’ and stop

output ’yes’ and stop

Please understand that this kind of machine is simply used for thought
experiments. It’s not something we can really implement.

S���
.: You could implement the nondeterministic branch by bracktrack-
ing. I read a paper on this by Floyd [[citation needed]].

S�
��.: Yes, but that would take too long. We assume each nondeter-
ministic branch takes constant time, just like a conventional instruction.

S���
.: Could you implement a nondeterministic branch with paral-
lelism? Every time a nondeterministic branch is encountered, create a new
process. The new process takes the branch and the old one doesn’t. Once
all processes are done, ‘or’ the results computed by all the processes.

S�
��.: Yes. Unfortunately this is not efficient, as it takes a lot of hard-
ware or a lot of time. In the 3-colouring example the number of processes
needed is 3N where N is the number of nodes in the input graph. If each
process runs on its own processor, this takes too much hardware – that is,
more than a polynomial amount of hardware. If we time-share a polyno-
mial number of processors, then it takes too long – that is, more than a
polynomial amount of time. In general a nondeterministic polynomial time
algorithm can take an exponential amount of time, if we execute it on a con-
ventional processor, and can take either an exponential amount of time or
an exponential number of processors if executed on a multiprocessor made
from conventional processors.
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S���
.: So when we talk about ‘time’ complexity, we really mean work,
i.e. the time it takes to do something multiplied by the number of processors
we have.
S���.: So now we have two definitions of NP . The first is based on

quickly checking evidence. The second is that NP problems are decision
problems that can be solved with a nondeterministic machine in polynomial
time. Let’s call these two sets NP0 and NP1 respectively. I think I see why
these sets are the same.

Suppose a problem is in NP0. This means there is some evidence for
‘yes’ answers that can be checked in polynomial time. Then we can write a
nondeterministic polynomial time algorithm for it as follows. The first part of
the algorithm uses the nondeterministic branch instruction to construct the
evidence. Since the size of the evidence must be polynomial in the size of the
input, this part will take only polynomial time. The second part uses only
conventional instructions to check the evidence in polynomial time. (This is
the nature of the program you showed as an example.) The existence of this
algorithm pattern shows that the problem is also in NP1. In conclusion any
problem in NP0 is in NP1.

Now suppose that a problem is in NP1. We have a nondeterministic al-
gorithm that runs in polynomial time. For ‘yes’ answers, a trace of this
algorithm will serve as evidence that the answer is ‘yes’. In fact the only ev-
idence we need is list of bits telling us whether or not each nondeterministic
branch is taken or not. (Say 0 for not taken, and 1 for taken.) In the graph
colouring example, 10100... would mean that the first three nodes are to
be painted red, green, and blue respectively. We can check the evidence by
simulating the execution of the algorithm, consulting the evidence each time
we need to know whether a branch is to be taken or not. Since the nonde-
terministic algorithm takes polynomial time, so does the checking procedure.
In conclusion any problem in NP1 is also in NP0. We now know that both
definitions for NP define the same set.
S�
��.: Well done my friend.
S���.: I’d read that NP is often defined using something called a Turing

Machine.
S�
��.: Yes. Often the definition uses a mathematical model for comput-

ers called Turing Machines. Turing Machines are rather different from con-
ventional computers, but for our purposes they amount to the same thing.
The reason is that, while Turing Machines generally take more time to do the
same thing, compared to a conventional computer, they are only slower by a
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factor that is polynomial in the size of the input. So when we ask whether
an algorithm takes polynomial time, it doesn’t matter whether we plan to
execute it on a conventional computer or a Turing Machine.

S���.: Getting back to P
?
= NP , we now know what NP is, so what is

P?
S�
��.: P is thankfully much simpler. P is the set of decision problems

that can be solved in polynomial time on a regular computer.
S���
.: And since the same algorithm can be run on a nondeterministic

computer, we have that P ⊆ NP .
S�
��.: Exactly.

S���
.: So P
?
= NP asks whether these fictitious nondeterministic

branch instructions would really be that helpful. If P ⊂ NP , there is at
least one problem that can be solved quickly on the nondeterministic ma-
chine, but not on a conventional machine. On the other hand if P = NP ,
every problem in NP can be solved quickly on a conventional computer.
S�
��.: Quite right.
S���.: Well it’s a nice theory, but why is it important.
S�
��.: A lot of practical problems are known to be in NP but are not

known to be in P –we don’t have fast algorithms for them. If P = NP,then
all these problems will have polynomial time algorithms. Furthermore, if
P = NP , that would imply that a number of problems that are not decision
problems also have polynomial time solutions. Not so obvious is the dual
to that. If P ⊂ NP , then this implies there are many problems (both
decision and optimization) that can not be solved quickly. Knowing whether
P = NP or not would decide the difficulty of a large number of really
practical problems that come up every day.
S���
.: How can that be? I can see that if P ⊂ NP , there is at least

one problem in NP that is difficult, but not that there are many. Perhaps
P ⊂ NP but there is only one problem in NP that is difficult and that that
is a problem that no one happens to care about. Isn’t that possible?
S�
��.: As I said, it is not so obvious that this is not the case. Let us

leave this question for another day.

12.1 Second day

S���
.: Yesterday you told us that if P ⊂ NP , there is more than one
problem in NP that can not be solved quickly.
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S�
��.: Yes, that’s right. The key to this is to show that certain problems
are among the most difficult in NP .
S���.: Most difficult in what sense, since it seems we don’t know how

difficult the most difficult problems in NP are?
S�
��.: Suppose we have a problem Q in NP and we know that if any

problem in NP is difficult then Q is difficult. ...
S���
.: And by difficult, you mean that there is no polynomial time

algorithm for it.
S�
��.: Yes, exactly. So in that case, we can say that Q is one of the

most difficult problems in NP . Any problem that is among the most difficult
in NP in this sense is called NP -complete.
S���
.: So how can you show that a problem is NP -complete?
S�
��.: Well suppose that Q and R are two problems in NP and that

we have a polynomial-time algorithm f that implements a function F such
that Q(F (x)) = R(x), for all x. That is, f translates each input to R into an
input to Q. We say f is a polynomial-time reduction from R to Q. Now if Q
is in P , then so is R since we can use a polynomial time algorithm for Q, in
combination with our polynomial time algorithm for F , to get a polynomial
time algorithm for R. If Q is easy, so is R. Equivalently: if R is difficult, so
is Q.
S���
.: Can you give an example?
S�
��.: Sure. Let’s take PSAT and 3-Colouring and find a reduction

from 3-Colouing to PSAT, which is the problem of determining whether a
propositional formula is satisfiable. ...
S���
.: Refresh my memory ...
S�
��.: A propositional formula is just a formula that uses ands, ors, nots,

xors, equivalences, parentheses, and variables. A formula φ is satisfiable if
there is a way to set each variable to true or false so that the whole formula
is true.
S���.: So that there is a line in its truth table where it’s true.
S�
��.: Exactly.
S���.: I can see that this could be useful in checking whether an acyclic

digital circuit meets its specification. Suppose ψ is the formula for a circuit
with inputs u and outputs v and φ is the specification for that circuit with
inputs x and outputs y, then we could check a formula

(x0 = u0) ∧ (x1 = u1) ∧ · · · ∧ ψ ∧ φ ∧ ((v0 �= y0) ∨ (v1 �= y1) ∨ · · · )
If it’s not satisfiable then, the circuit and its specification are equivalent.
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S�
��.: Just so. And that’s just one application, there are plenty of
others. You can see that PSAT is a useful problem on its own. Now we can
see that if 3-Colouring is hard, then so is PSAT ...
S���
.: So we need to transform each graph that might be input into

3-Colouring into a formula so that the graph has a 3-Colouring exactly if the
formula can be satisfied.
S���.: And the formula must be produced in polynomial time with

respect to the size of the graph.
S�
��.: Exactly. Given any graph G = (V,E) we can produce a formula

with 3× |V | variables. For each node u ∈ V we have variables Ru, Gu, and
Bu. The idea is that Ru = true represents vertex v being coloured red. We
need to say that each vertex is given one and only one colour, so for each
vertex u we need

(Ru ∨Gu ∨ Bu) ∧ ¬ (Ru ∧Gu) ∧ ¬ (Gu ∧ Bu) ∧ ¬ (Bu ∧Ru)

and we conjoin (and-together) the formulas for all the vertices. Then for
each edge {u, v} ∈ E we need a conjunct

¬(Ru ∧Rv) ∧ ¬(Gu ∧Gv) ∧ ¬(Bu ∧ Bv).

For example for a completely connected graph with three nodes ({0, 1, 2} , {{0, 1} , {1, 2} , {0, 2}})
we would have

(R0 ∨G0 ∨B0) ∧ ¬ (R0 ∧G0) ∧ ¬ (G0 ∧B0) ∧ ¬ (B0 ∧R0)
∧ (R1 ∨G1 ∨B1) ∧ ¬ (R1 ∧G1) ∧ ¬ (G1 ∧B1) ∧ ¬ (B1 ∧R1)
∧ (R2 ∨G2 ∨B2) ∧ ¬ (R2 ∧G2) ∧ ¬ (G2 ∧B2) ∧ ¬ (B2 ∧R2)
∧¬(R0 ∧R1) ∧ ¬(G0 ∧G1) ∧ ¬(B0 ∧ B1)
∧¬(R1 ∧R2) ∧ ¬(G1 ∧G2) ∧ ¬(B1 ∧ B2)
∧¬(R2 ∧R0) ∧ ¬(G2 ∧G0) ∧ ¬(B2 ∧ B0)

This algorithm for producing formulas from graphs is a polynomial-time re-
duction from 3-Colouring to PSAT.

3COL −→ PSAT

Now if we have a quick (polynomial time) algorithm for PSAT, we have
a quick algorithm for 3-Colouring. So that shows that if 3-coloring is hard,
so is PSAT.
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S���.: So back to NP -completeness, to show that a problem Q is NP -
complete, we need to show that for every problem R in NP , there is a
polynomial-time reduction from R to Q.
S���
.: This seems a difficult thing to prove. Are there any problems

known to be NP -complete?
S�
��.: Yes there are. In fact there are many. It turns out that once

you know one problem is NP -complete, you can build on that knowledge to
show that other problems are NP -complete without having to worry about
reductions from every problem in NP .
S���.: I think I see why. Suppose we know that S is NP -complete and

we are wondering whether a problem Q, that is known to be in NP , is also
NP -complete. Since S is NP -complete, we know that , for any problem R
in NP , there is a polynomial-time reduction f from R to S. Suppose we
can find a polynomial time reduction g from S to Q; then, for every problem
R in NP , there is also a polynomial-time reduction from R to Q formed by
composing f with g; thus Q is NP -complete.

R
f−→ S

g−→ Q and so R
f ;g−→ S

S���
.: I see, because executing one polynomial-time algorithm and then
another is still polynomial-time.
S�
��.: Exactly. And the more problems we learn to be NP -complete,

the easier it becomes to show that yet others are as well, because we then
have more choices of problems to reduce from, that is a wider choice for
Sagredus’s S.
S���.: So if you think of NP-completeness as a disease, then a polynomial

time reduction from S to Q allows the disease to spread. If S is NP-complete,
then Q must be too.
S���
.: OK. But don’t you need a patient zero? You need to start by

showing that some particular problem is NP-Complete, and that means you
have to find an infinite number of reductions, one for each of the other prob-
lems in NP . That seems an impossible task.
S�
��.: Nevertheless, that’s exactly what was done by Stephen Cook in

1971. He found that any problem in NP can be reduced to PSAT.
S���
.: and how did he do that?
S�
��.: Suppose you have a problem R in NP . We need to be able to

transform any input x toR represented as a sequence of bits [x0, x1, · · · , xn−1],
to a formula φx that is satisfiable exactly if R(x).
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Since R is in NP , there is a nondeterministic program r for R that runs
in polynomial time, say no more than p(n) steps on a particular computer,
for each input of size n, where p is some polynomial function.
S���.: A computer with a nondeterministic branch instruction.
S�
��.: Right, a computer with a nondeterministic branch instruction. A

deterministic program defines a function that maps the state of the computer
in one time cycle to the state of the computer in the next time cycle. (You can
arrange that when the algorithm is done, the function acts as the identity
function.) A nondeterministic program defines a relation that maps each
state of the computer to one or more states in the next time cycle. Since r
implements a decision algorithm, we can assume that one particular bit of
memory is used to represent the output, say bit o. For each input size n we
can workout the maximum number of additional bits of memory the program
needs, say q(n). Of course q(n) must be polynomial, since the algorithm only
has a polynomial amount of time to read or write the bits. We’ll call these
bits b0, b1, ... , bq(n)−1. We can also assume that some of these bits initially
hold the input at the start of the computation, say bits b0 to bn−1. Now for
each input x of size n, you can create a formula φ as follows: You use a bunch
of boolean variables to represent the state of the memory and registers at
time 0 (say o0, b0,0 b1,0, and so on up to bq(n)−1) and a bunch of other variables
to represent the state of the memory at time 1 (say o1, b0,1 b1,1, and so on up
to bq(n)−1,1); and you can use a formula ψ0 to represent the relation between
these two states defined by r. Then you use a bunch more boolean variables
to represent the state at cycle 2 and make a formula ψ1 to represent the
relation between the state in cycle 1 and the state in cycle 2. And so on
for all p(n) steps. Finally you conjoin (‘and’ together) all these one-step
formulas

ψ = ψ0 ∧ ψ1 ∧ · · · ∧ ψp(n)−1
We can throw in a formula that forces the variable representing the output
bit at cycle p(n) to be true and formulas that force the states of the bits
representing the input to represent x in cycle 0. Now we have a big formula

φx = ψ ∧ op(n) ∧ (b0,0 = x0) ∧ · · · ∧ (bn−1,0 = xn−1)

Now if R(x) is true, then there is a computation of r that starts with the
input bits set to [x0, x1, · · · , xn−1] and ends with the output bit being true
after p(n) cycles, thus there is a way to set all the propositional variables
of φ that satisfies φ. On the other hand, if R(x) is false, there can be no
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computation of the program r with input x and the output being ‘yes’; and
so, in this case, φ is not satisfiable.
S���
.: That’s a big formula.
S�
��.: Yes, but since the algorithm takes a polynomial amount of time,

it can’t use more than a polynomial number of bits, so the whole computation
can be represented by a polynomial number of boolean variables. The size of
the whole formula is still only a polynomial function of n and the time taken
to produce it is also polynomial.
S���.: So for any problem R in NP , we can make a transformation,

based on a nondeterministic program r for R and a polynomial time bound
p, that turns any input x to R into a formula that is satisfiable exactly
if R(x). Furthermore, it only takes polynomial time to do so. Let’s call
this transformation compiler,p. Now if the satisfiability problem PSAT can
be solved in polynomial time, by a regular algorithm sat, we can solve any
problem R in NP in polynomial time by first running compiler,p on the input
and then running sat on the resulting formula.
S�
��.: Exactly.
S���.: So if PSAT can be solved in polynomial time, all problems in NP

can be solved in polynomial time, meaning P = NP.
S���
.: And if PSAT can’t be solved in polynomial time, it is not in P ,

but still in NP and so P �= NP .
So the question of whether P = NP or not is the same as the question

of whether PSAT can be solved in polynomial time or not.
S�
��.: Exactly.
S���
.: But that’s still just one problem.
S�
��.: Lots of other problems are in the same boat. There are lots

of NP -complete problems. For example the 3-colouring problem that we
talked about yesterday. It turns out that any propositional formula φ can
be translated into a graph so that the formula is satisfiable exactly if the
the graph can be 3-coloured. Furthermore the graph is polynomial in size
with respect to the size of φ and takes only a polynomial amount of time to
compute. So for all problems R in NP we have:

R −→ PSAT −→ 3COL

so a quick solution for 3COL implies a quick solution for all problems in NP ,
i.e., 3COL is NP -complete.
S���
.: Can you show us how.
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S�
��.: Sure. Start by rewriting φ as an equivalent formula ψ, that uses
only conjunction (and) and negation (not). Now draw a digital circuit equiv-
alent to ψ. The circuit is a tree consisting of and gates, not gates, and wires.
Now we make a graph as follows. Start with three nodes connected with
three edges like this.

We’ll call these nodes R, G, and B. Obviously in any colouring they have to
be coloured differently from each other. We can assume that in any colouring
B is coloured blue, R is coloured red and G is coloured green. Now for each
‘not’ gate in the circuit, add two more nodes and three more edges like this.

S���
.: So, Y is coloured blue if X is coloured red, and Y is coloured red
if X is coloured blue, and neither can be coloured green.
S�
��.: Exactly. So, if we represent “true” with colour blue and “false”

with colour red, it represents a ‘not’ gate. Next, for each ‘and’ gate, add 7
nodes and 14 edges as follows.

Typeset January 22, 2018



222 A Dialogue concerning P = NP and NP -Completeness

S���.: Clearly X, Y, and Z can only be coloured red or blue; Since you
are using it to represent and ‘and’-gate, and said that red represents false
while blue represents true, I’d guess

• that, when X and Y are both coloured blue, Z can and must be coloured
blue; and

• that, when one or both of X and Y are coloured red, Z can and must
be coloured blue.

S�
��.: Try it your self.
[At this point Sagredus and Simplicius start making copies of the graph

and colouring the graph, and you, dear Reader, should do the same; try
colouring X and Y with all 4 combinations of colours red and blue and see
what colour options are left for Z. Do they agree with Sagredus’s guess?]
S���
.: And to represent wires from the output of one gate to an input

to another, we just need to merge the two nodes in the sense that all edges
to one are redirected to the other and then the first node can be deleted.
S�
��.: Right. And if two ports represent the same input variable we

merge them as well. Finally we merge the output of the root gate with the
B node. Here is an example. Consider a φ which is

(a ⇒ b) ∧ (b⇒ c) ∧ (c ⇒ ¬a)

we get for ψ
¬(a ∧ ¬b) ∧ ¬(b ∧ ¬c) ∧ ¬(c ∧ a)

The circuit is this

and a drawing of the final graph is this
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In this drawing of the graph, the ‘two nodes’ labelled a are in fact two draw-
ings of the same node and likewise for the nodes labeled b and c; furthermore
nodes R, G, and B have been drawn repeatedly as have several edges –e.g.,
the edge between a and G is drawn twice and the edge between B and G is
drawn 11 times.

Now for any φ, the corresponding graph can be three coloured if and
only if φ can be satisfied. (i) Suppose that φ can be satisfied. Then there is
an assignment to its variables that make it true and thus a way to set the
inputs to the circuit to make it result in true. Start by colouring nodes R,
G, and B red, green, and blue; For each node representing a variable, colour
it blue if the corresponding variable is true in the assignment and red if the
corresponding variable is false in the assignment. Now you can colour each
‘gate’ in the graph and of course the final root output port will be have to
be coloured blue, which it is, so every thing works out. (ii) Now suppose
the graph can be three coloured; then there must be a three colouring in
which R is red, G is green, and B is blue; starting with such a colouring, we
can construct an assignment that satisfies φ: For each variable node, if it is
coloured blue, then the corresponding variable is true in the assignment, and
if it is coloured red then the corresponding variable is false in the assignment.
S���.: And that means that any problem Q in NP can be reduced to

3-colouring. Suppose we have an input x to Q and want to know whether
Q(x) is true. Start with nondeterministic polynomial time algorithm q for
Q. Using Cook’s method, turn q and x into a formula φ and then turn φ
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into a graph. Note all this takes polynomial time and produces a graph that
is polynomial in size with respect to the size of x. Now Q(x) is true iff the
graph can be three coloured. If we had a fast way to three-colour graphs, we
would have a fast way to calculate Q(x).
S���
.: And that means that the question of whether or not P = NP

is also equivalent to the question of whether 3-colouring can be done in
polynomial time or not.
S�
��.: Now you’re getting it; and there are many other problems that

can also be seen to have efficient solutions if and only if P = NP .
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Appendix A

Mathematical Background

This appendix summarizes the mathematical notations and term used in
the rest of the book. Most of the notations and terms presented here are
standard. Where there is a single common notation or term, I’ve used that.
In some cases there are several common notations; this is especially true in the
case of propositional and predicate logic; in these cases, I’ve picked one. In
a few cases there are no common notations; an example is sets of contiguous
integers which I’ve written as {i, ..j}. Certain terms such as ‘domain’ and
‘range’ are used with various meanings by various people. I’ve picked one
meaning and used other terms for other meanings, in this case ‘source’ and
‘target’.

A.0 Sets

A.0.0 Sets, elements, equality and subsets
set

A set is a collection of mathematical objects. If S is a set and x is a mathe-
matical object, then x is either an element of the set S or it is not. We write
x ∈ S and say ‘x is an element of S’, ‘x is a member of S’, or ‘S contains x’.
We write x �∈ S and say ‘x is not an element of S’, ‘x is not a member of
S’, or ‘S does not contain x’. ∅

Some sets are:

• ∅ is the empty set . It contains no objects.0

0Although the symbol is similar, it should not be confused with the number 0.
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• {1} is the set containing only the number 1.

• {2, 3, 5, 7} is the set containing only the numbers 2, 3, 5, and 7.

Sets are themselves mathematical objects and so we can have sets that
contain sets.

• {∅, {1} , {1, 2}} a set containing 3 objects, each of which is a set.

All the sets we‘ve seen so far are finite sets meaning that they each contain
a finite number of elements. Other sets are infinite meaning that they contain
an infinite number of elements.

Some infinite sets are:

• N the set of all natural numbers: 0, 1, 2, 3, etc.

• Z the set of all integers: 0, −1, 1, −2, 2, −3, 3, etc.

• Q the set of all rational numbers.

• R the set of all real numbers.
=

Two sets are considered equal (S = T ) exactly if they contain exactly the
same objects. So for example:

• ∅ = ∅

• {1, 2, 3} = {2, 3, 1}

• {1, 1, 2} = {1, 2, 2}

• {∅} = {∅}

Two sets are considered unequal (S �= T ) exactly if one contains an object
that the other does not. For example:

• {0, 1} �= {0}. The first contains 1 and the second does not.

• ∅ �= {∅}. The first does not contain ∅ and the second does.

⊆
A set S is considered a subset of a set T exactly if every element of S is

an element of T . We write S ⊆ T . For example:
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• {2, 3, 5, 7} ⊆ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• ∅ ⊆ S for any set S.

• N ⊆ Z

• Z ⊆ R

• S ⊆ S for any set S

A.0.1 Operations on sets
∪

If we have two sets S and T then their union (written S ∪ T ) is the set
containing all objects contained in either S or in T . Thus:

• {1, 3, 5} ∪ {2, 3, 5} = {1, 2, 3, 5},

• ∅ ∪ S = S for any set S,

• S ∪ S = S for any set S, and

• S ∪ T = T exactly if S ⊆ T , for any sets S and T .

∩
The intersection of two sets S and T (written S∩T ) is the set containing

all objects contained in both S and in T . Thus

• {0, 2, 4, 6, 8, 10, 12} ∩ {2, 3, 5, 7, 11} = {2},

• ∅ ∩ S = ∅ for any set S.

• S ∩ S = S for any set S, and

• S ∩ T = S exactly if S ⊆ T , for any sets S and T .

−
The difference of sets S and T (written S−T ) is the subset of S containing

only objects that are not in T . Thus

• {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} − {2, 3, 5, 7, 11} = {0, 1, 4, 6, 8, 9}

• S − ∅ = S for any set S

• S − S = ∅ for any set S
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• (S − T ) ∪ (S ∩ T ) = S for any sets S and T

• (S − T ) ∩ T = ∅ for any sets S and T .

We can also take the union or intersection of a set of sets. If S is a set
and E is a set valued expression,

⋃
x ∈ S · E

is the set of objects in any set E obtained by substituting an element of S
for the variable x in the expression E. For example

•
⋃
x ∈ N·{3x+1, 3x+2} is the set of natural numbers not divisible by

3.

• For any particular p,
⋃
q ∈ N · {p× q} is the set of all multiples of p:

{0, p, 2p, 3p, · · · }

• And so
⋃
p ∈ N ·

⋃
q ∈ N · {(p+ 2)× (q + 2)} is the set of all positive

composite numbers {4, 6, 8, 9, 10, 12, · · · }.

The power set of a set S is the set of all subsets of S. We write P(S) for
the power set of S. So for example

• P({1, 2, 3}) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

• T ∈ P(S) exactly if T ⊆ S, for any set S and object T .

A.0.2 Set builder notation
set builder nota-
tion A very useful notation for sets is set builder notation.

A.0.2.0 Filtering

If V is a variable, S is a set and A is some boolean expression describing
variable V then

{V ∈ S | A}
represents the subset of S that contains exactly elements that fit the descrip-
tion A. For example:
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• {x ∈ R | x > 0} is the set of positive real numbers

• {y ∈ N | y/3 ∈ N} is the set of natural number that are multiples of 3.

The boolean expression acts as a filter. You can think of S as a light
source and A as some sort of filter that casts a shadow.

We can pronounce {V ∈ S | A} as “the set of all V in S such that A”.

A.0.2.1 Mapping

We write

{V ∈ S · E}
where V is a variable, S is a set, and E is an expression, for the set of all
values of E where V is replaced by a member of S. For example

• {n ∈ Z · n2} is the set of all squares of integers

• {n ∈ N · 2n} is the set of even natural numbers

• {m ∈ N· {n ∈ N | n < m}} is the set of all downward closed sets of
natural numbers, i.e.

{∅, {0}, {0, 1}, {0, 1, 2}, · · · }

You can think of S as a source of light and E as a lens that alters the
image projected from S.

We can pronounce {V ∈ S · E} as “the set of all E, where V is in S” or
“the set over V in S of E”

When we use this mapping notation, there is no need to restrict ourselves
to one variable and one set. For example

{i ∈ R, j ∈ R · f(i, j)}

gives the set of all values that a function f results in. We might also write
this as

{i, j ∈ R · f(i, j)}
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A.0.2.2 Filtering and Mapping Combined

The full set builder notation combines filtering with mapping. First we filter,
then we map. The set

{V ∈ S | A · E}
is the set of all values of E where V is replaced by value of S that A describes.
For example

• {n ∈ N |n is prime · n2} is the set of all squares of primes {4, 9, 25, 49, · · · }

• {n,m ∈ N | neither n nor m equals 1 ·m× n} is the set of composite
(natural) numbers, i.e. natural numbers that aren’t prime and aren’t
1.

When there is only one variable, the expression {V ∈ S | A · E} can be
regarded as an abbreviation for

{V ∈ T · E} , where T = {V ∈ S | A}

On the other hand, we can regard the filtering and mapping notation as
abbreviations for the full set builder notation:

{x ∈ S | A} abbreviates {x ∈ S | A · x}

{x ∈ S · E} abbreviates {x ∈ S | true · E}

We can pronounce {V ∈ S | A · E} as “the set, over all V in S, such that
A, of E”. For example

{m,n ∈ N | m and n are both prime ·m+ n}

is “the set, over all natural numbers m and n, such that m and n are both
prime, of m+ n”, i.e. the set of all numbers that the sum of two primes.1

1The mapping notation and the combined notation are not widely used. Most authors
would write {2x | x ∈ N} rather than {x ∈ N · 2x} for the set of even natural numbers.
I prefer the notation presented in this book, as it makes the scope of each variable clear.
Furthermore, the mapping and filtering notations introduced here will be echoed in other
notations that introduce local variables.
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A.0.3 Minimum and maximum

We can pick the maximum or minimum values from a set of real numbers
using the max and min functions. These functions won’t be defined when the
set is empty.2 For infinite sets they might also not be defined. For example
max(N) is not defined, although min(N) = 0. Set builder notation is very
useful for describing maxima and minima. The idea is that we first build
a nonempty set of numbers and then take the maximum or minimum value
from the set. For example suppose that I is some nonempty set, and that f
is a function from I to R. There are several distinct questions about minima
relating to a function like f that we might ask:

• What is the smallest value of f?

• What is the smallest value i in I such that f(i) has some particular
property?

• What are the values of I where f has the smallest value.

The answer to the first question –what is the smallest value of f?– is
answered by

min {i ∈ I · f(i)}
It is a number in R. Often this is written as

min
i∈I

f(i)

On the other hand,

min {i ∈ I | f(i) > 0}

is the smallest value of i such that the function is positive; it is a member of
I. Note that

min {i ∈ I | f(i) > 0}
is undefined, if there is no i in I such that f(i) > 0. You might see such an
expression written also as

min
i∈I|f(i)>0

i

2For some applications, it may be useful to define min(∅) = ∞ and max(∅) = −∞,
where ∞ and −∞ are objects such that ∞ > x and −∞ < x, for all x ∈ R.
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Sometimes we want to denote those arguments that give a function its
minimum value. Of course there could be more than one such argument, so
we have a set {

i ∈ I | f(i) = min
i∈I

f(i)

}

This expression is sometimes abbreviated as

argmin i∈If(i)

and of course there is an analogous argmax. Note that argmini∈I f(i) (and
argmax i∈If(i)) is, in general, a set, although, if we know a priori that there
is only one member, we might use these notations to denote the sole member
of the set.

If f counts the number of times something occurs in a population I,
argmax i∈If(i) is called the set of modes of f .

A.0.4 Sets of consecutive integers

Sets of integers. We use special notations for finite sets of consecutive integers

• {i, .., k} = {j ∈ Z | i ≤ j ≤ k}

• {i, ..k} = {j ∈ Z | i ≤ j < k}

Note that {i, ..i} = ∅, while {i, .., i} = {i}.
The set of the first n natural numbers is {0, ..n}. The set of the first n

positive integers is {1, .., n}.

A.0.5 Pairs, other tuples, and Cartesian products
pair

A pair of objects x and y is written (x, y). A pair is an ordered collection of
objects so, for example, the pair (1, 2) is not the same as the pair (2, 1). Simi-
larly we have triples (x, y, z), quadruples (w, x, y, z), quintuples (v, w, x, y, z),
and in general n-tuples for any n ≥ 2. In general we can use the word tuple
for all these.�−→

An alternative notation for a pair is x �→ y. This is often used when the
pair helps define a function or binary relation as discussed in Section A.1.

The Cartesian product of two sets S and T is the set of all pairs (x, y)
such that x ∈ S and y ∈ T . For example:
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• {0, 1, 2} × {3, 5} = {(0, 3) , (0, 5) , (1, 3) , (1, 5) , (2, 3) , (2, 5)}

We can extend the set builder notations to allow multiple variables when
forming a set of pairs. For example

•

{(x, y) ∈ N× N | x < y}
= {x, y ∈ N | x < y · (x, y)}
= {(0, 1) , (0, 2), (1, 2), (0, 3), (1, 3), (2, 3), (0, 4), (1, 4), (2, 4), (3, 4), · · · }

• {(x, y) ∈ R×R | x2 + y2 = 1.0} is a circle of radius 1.

• {(a, b, c) ∈ N×N× N | a2 + b2 = c2} is the set of Pythagorean triples.

A.0.6 The size of sets |S|
We write |S| for the size or cardinality of a set. Obviously some sets have
sizes in N; we call these finite sets. Thus

• |∅| = 0

• |{13}| = 1

• |{2, 3, 5, 7, 11, 13, 17}| = 7

• if i ≤ j then |{i, ..j}| = j − i.

Some sets, such as N, Z, and R have sizes that are not in N; not sur-
prisingly we call these infinite sets. The size of N is written as ℵ0 (aleph
null); you can think of this as just a symbol that represents the size of an
infinite set. We say that two sets are the same size when we can arrange
their members as pairs. Consider a set of horses and a set of saddles. If we
can put a saddle on each horse with no saddles or horses left over, then the
sizes of the sets are the same. The beauty of this definition is that we don’t
need to count the saddles or horses. For example we can pair-off the set of
natural numbers and the set of squares of the natural numbers thus

(0, 0) (1, 1) (2, 4) (3, 9) (4, 16) · · ·
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You can see that there will be no left over squares or naturals in this process
and so ∣∣{n ∈ N · n2

}∣∣ = |N| = ℵ0
(This example is due to Galileo Galilei.)

Interestingly, according to generally accepted theory, not all infinite sets
are the same size. For example it is generally accepted that |P(S)| �= |S|
and so |P(N)| �= ℵ0, that is, you can not pair-off the natural numbers with
subsets of the natural numbers in such a way that there are no subsets left
over. This is an interesting idea. The number of descriptions of sets in any
given language is surely the same as the number of natural numbers.3 So this
means that there are somehow subsets of N that we can not describe. Does it
make sense that mathematics should contain objects that are too complex to
be clearly described? Furthermore (according to generally accepted theory),
|R| �= ℵ0, so there are real numbers that can not be described. What are
they and are they of any use? Whether and in what sense there really are
infinities of different sizes is a fascinating question which is, for better or
worse, not of relevance to this book, and so we will not discuss the matter
further.

A.0.7 Set models of numbers and what isn’t a set

Sets, as we will see, are very useful for modelling things. In the late 19th and
early 20th centuries, philosophers and mathematicians considered whether
mathematical objects, such as numbers, could be modelled with sets. Why
would they ask that question? Well, they wanted to show that mathematics
is purely a matter of definition; all objects of mathematics are defined in
terms of something else and all conclusions of mathematics are simply the
logical consequences of these definitions. In a way, this would mean that
numbers don’t really exist at all, they are just mental constructions defined
in terms of the simple concept of sets. This was in contrast to Plato’s idea

3To be formal about this, we could take the set of descriptions to be the programs in
some simple programming language. For example

var x : N := 0 ·while true do (print x;x := x+ 2)

describes the set of even numbers. Each program is a finite sequence of characters; we
can order the set of all programs primarily by length and secondarily alphabetically; each
program corresponds to a natural number according to its position in the order.
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that the objects of mathematics have some sort of existence independent of
the mind.

I’m going to take a detour to look at how numbers and pairs can be
modelled as sets. The models in the rest of this subsection won’t be used
elsewhere in this book, but it is informative to take a look at them.

Each natural number can be modelled as the set of all (models of) smaller
natural numbers so:

0 is modeled by ∅
1 is modeled by {∅}
2 is modeled by {∅, {∅}}
3 is modeled by {∅, {∅} , {∅, {∅}}}

Operations such an addition and multiplication can be modeled as operations
on sets. For example, the operation of adding one is modelled by

X ∪ {X}

The set of all (models of) natural numbers is an interesting set in that it not
only has an infinite number of members, but is infinitely deep!

A pair (x, y) can be modelled by {{X} , {X, Y }} where X and Y are sets
that model objects x and y. Thus

(0, 1) is modeled by {{∅} , {∅, {∅}}}

and
(1, 0) is modeled by {{{∅}} , {∅, {∅}}} .

Now each integer can be modelled by (a model of) a pair in which the first
member indicates whether the integer is nonnegative (∅) or negative ({∅})
and the second member models the magnitude of the integer. So

0 as an integer is modeled by {{∅}}
1 as an integer is modeled by {{∅}, {∅, {∅}}}
−1 as an integer is modeled by {{{∅}}}
2 as an integer is modeled by {{∅} , {∅, {∅, {∅}}}}
−2 as an integer is modeled by {{{∅}} , {{∅} , {∅, {∅}}}}

You can see that we have a different model of the number 1 depending on
whether we are talking about natural numbers or integers. This isn’t a
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problem as long as we are clear about what kinds of things we are talking
about.

Rational numbers can be represented by pairs consisting of an integer
numerator and a nonzero, natural denominator, where the numerator and
denominator have no common factors larger than 1. Thus 1

2
is represented by

{{N} , {N,D}} whereN is the model of 1 as an integer (N = {{∅}, {∅, {∅}}})
and D is the model of 2 as a natural number (D = {∅, {∅}}).

One way to represent a real number is by the set of all rational numbers
that are not greater than it. So, for example, the set representing π contains
3
1
, 31
10
, 22
7
, 314
100

, and 3141
1000

, but does not contain 4
1
, 32
10
, 315
100

, and 3142
1000

. If we use
the set representations of rational numbers, we have a representation of the
real numbers that is entirely based on sets. This representation was proposed
and investigated by Richard Dedekind in the late 19th century.

Each complex number can be represented as a pair of real numbers. Often
mathematicians deliberately ignore that this is a model and simply consider
the set of complex numbers and the set of pairs of real numbers to be the
same thing.

It is certainly useful to know that all this can be done. For example the
properties of complex numbers were considered very mysterious until Gauss
pointed out that they can be represented by pairs of real numbers. Likewise,
it was a huge advance when René Descartes modelled the points on a plane
with pairs of real numbers. Furthermore, the concept of a real number was
not well understood until it could be modelled in terms of simpler things,
namely the rational numbers.4 From the point of view of the philosophy of
mathematics, it is satisfying to know that numbers and arithmetic can be
based on the seemingly simple concept of sets.

However, for the purposes of this book, we will consider that each number
is a mathematical object that is not a set and that each tuple is an object
that is not a set or a number. Thus, for the purposes of this book, it makes no
sense to write, for example 1 ∈ 2 or 3 ∈ (3, 5). We won’t consider statements
like this to be true or false, but rather to be meaningless or ill-formed, i.e.
type errors.

On the other hand, we will use sets and tuples to model concepts such

4If we understand real numbers as lengths of lines, the idea of modelling real numbers
with rational numbers is very old. The ancient Greeks believed that rational numbers
and geometric lengths were the same thing. When one of the Pythagorean brotherhood
discovered that

√
2 is not rational they tried to keep this discovery a secret and are said

to have gone as far as to have murdered the discoverer.
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as relations, functions, sequences and undirected graphs that may be less
familiar to you than are numbers. And, like the mathematicians who consider
that a complex number is a pair of real numbers, we will consider that a
function is a certain kind of triple, ignoring the fact that there exist other
ways of expressing the concept of a function. The next section looks at how
to define the concept of ‘function’ using sets and tuples.

A.1 Relations and functions.

A.1.0 Binary relations, partial functions, and total func-
tions

binary relation
source
target

graph

A binary relation is any triple (S, T,G) where S and T are sets and G ⊆
S × T . We call S the source, T the target , and G the graph of the binary
relation.

For example the following is a binary relation5

R0 = ({1, 2, 3} , {1, 2, 3} , {1 �→ 2, 1 �→ 3, 2 �→ 3})

where the source and target are both the same set {1, 2, 3}. If (x �→ y) ∈ G
we say that the relation maps x to y. S ↔ T

S ↔ T is the set of all binary relations with source S and target T . partial function
A partial function (S, T,G) is a binary relation in which, for each x ∈ S,

there is at most one y such that (x �→ y) ∈ G.You can see that R0 is not a
partial function because it maps 1 to both 2 and 3. On the other hand

P0 = ({1, 2, 3} , {1, 2, 3} , {1 �→ 2, 2 �→ 3})

is a partial function. S
par→ T

S
par→ T is the set of all partial functions with source S and target T . total function

A total function (S, T,G) is a relation in which, for each x ∈ S, there
is exactly one y such that (x, y) ∈ G.You can see that P0 is not a total
function, as 3 maps to no element of the target set. On the other hand

T0 = ({1, 2, 3} , {1, 2, 3} , {1 �→ 2, 2 �→ 3, 3 �→ 3})

is a total function as well as a partial function and a binary relation. Note
that each total function is also a partial function. S

tot→ T

5Recall that 1 �→ 2 is just another notation for the pair (1, 2).
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S
tot→ T is the set of all total functions with source S and target T .

Some examples

• Consider (S, S,G) where S = {0, 1, 2, 3} and

G = {0 �→ 0, 0 �→ 1, 1 �→ 1, 1 �→ 2, 2 �→ 2, 2 �→ 3, 3 �→ 3, �→ 0}

This is a relation. It is not a partial function and not a total function.

• Consider (S, S,H) where S = {0, 1, 2, 3} and

H = {(0, 1), (1, 2), (2, 3), (3, 3)}

It is a total function and also a partial function and a relation.

• Consider (Z,Z, J) and

J = {(a �→ b) ∈ Z× Z | b = a× a}

This is a total function.

• Consider (R,R, K) where

K = {(x �→ y) ∈ R× R | x× y = 1}

This is a partial function. It is not total since there is no (x �→ y) pair
with x = 0.

• Consider (R,R, L) where

L = {(x �→ y) ∈ R× R | y × y = x}

This is not a partial function (nor a total function) since we have 4 �→ 2
and 4 �→ −2.

Exercise 87 List all functions in the following sets

• ∅ tot→ {9}

• {1} tot→ {9}

• {1, 2} tot→ {8, 9}
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• {1, 2} par→ {8, 9}

Exercise 88 Suppose that S and T are finite. How many relations are in
S ↔ T? Of these, how many are total functions? How many are partial
functions?

A.1.1 Domain and Range
defined for

A binary relation R, with source S, target T , and graph G, is defined for an
item x in S if there is a y in T such that (x, y) is in G. domain

The domain of a relation R = (S, T,G) is the set of elements for which
it is defined

dom(R) = {x ∈ S | R is defined for x}
= {x ∈ S | there is a y ∈ T such that (x, y) ∈ G}

For a total function f : S
tot→ T , the domain is the same as the source S

dom(f) = S

range
The range of a relation R = (S, T,G) is the set of elements that appear

as the right component of a pair in the graph

rng(R) = {y ∈ T | there is an x ∈ S such that (x, y) ∈ G}

A.1.2 Application
application

defined

f(x)

If f = (S, T,G) is a partial function defined for x ∈ S, we write f(x) to mean
‘that y ∈ T such that (x, y) ∈ G’. We call f(x) the application of f to x.
We say the expression f(x) is defined iff f is defined for x. If f is a total
function, then f(x) is sure to be defined, provided x ∈ S.

A.1.3 A digression on terminology

The words “relation’, function’ and ‘partial function’ are defined differently
by different people. Some people define ‘function’ to mean (what I’ve called)
‘total function’. Some people define ‘function’ to mean (what I’ve called)
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‘partial function’. Some people use the words ‘partial function’ only for
(what I’ve called) partial functions that are not total.6

Furthermore, some people aren’t particularly consistent. For example,
both the Mathworld and the Wikipedia web-sites’ entries on ‘function’ man-
age to contradict themselves. (At least at the time I am writing this.) You
should be aware that different authors will use these words somewhat differ-
ently. To avoid confusion, I will try to avoid using the word ‘function’ by
itself, except when it is either obvious or unimportant whether I mean a total
or partial function.

The word’s ‘domain’ and ‘range’ are often used for what I’m calling the
‘source’ and ‘target’.

A.1.4 Lambda expressions

[This section may be safely skipped.]lambda expression

λ A useful notation is that of lambda expressions. We write

(λx ∈ S · E)

to denote a partial function whose source is S and whose value, when applied
to x, is the value of E . In other words it is

(S, T, {(x �→ y) ∈ S × T | y = E})

for some T . Clearly this notation is vague about what the target set is, but
that information is often either clear from context or irrelevant.

For example (
λx ∈ Z · x2

)

is a function that squares its argument

(
λx ∈ Z · x2

)
(5) = 25

6This is consistent with the normal English use of the words ‘partial’ and ‘total’. In
English ‘partial’ almost always means ‘not total’. A total solar eclipse is not a variety of
partial solar eclipse, as throughout a partial eclipse only a ‘fraction’ of the sun is covered.
Mathematicians, however, recognize that 1

1
is a fraction.

In mathematical usage the word ‘partial’ is often used to in a way that allows the
possibility of ‘totality’, i.e., the way I am using it: A partial order may also be a total
order. A partially correct algorithm may also be totally correct.
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And if
g =
(
λf ∈ Z tot→ Z · (λx ∈ Z · f(f(x))

)

then g is a function so that

g
(
λx ∈ Z · x2

)
(5) = 225

while
g (λx ∈ Z · 2x+ 5) (3) = 27

Aside on the Lambda Calculus. The way that I’ve defined lambda
expressions is ‘extensional ’, i.e. in terms of a set of pairs. This way of
looking at a function means that we look at functions as ‘completed’ or
‘actual’ infinities. Originally, lambda expressions were employed as a kind
of programming language in which one can write a ‘rule’ for calculating
the value of a function. In this case the lambda expression expresses the
intention of the person who wrote it. The lambda expression is regarded,
then, as ‘intentional ’. In this view, the lambda expression is finite (it takes
a finite number of symbols to express it) and the calculation of a value of
an application from a lambda expression and an argument is either finite
or no value is computed. When using lambda expressions this way, we are
using a ‘lambda calculus’. Lambda calculus is historically and practically
important, but I won’t be discussing it further in this book. The lambda
expression notation, however, is useful when one wants to use a function,
but not to give it a name. End of Aside.

A.2 Sequences
finite sequence

A finite sequence over a set S is a total function in {0, ..n} tot→ S, where n is
some natural number. (Recall that {0, ..n} is the set of the first n natural
numbers.) Finite sequences are also called strings, when the set S is a set of
symbols. See Chapter 7 for more about strings.

For each n ∈ N, the set of finite sequences of length n over S is

Sn =
(
{0, ..n} tot→ S

)

length

‖s‖If s ∈ Sn, we say that its length is n and write ‖s‖ = n. Considering the
case of n = 0, we find there is (for each S), one sequence (∅, S, ∅) which has
an empty domain. This is called the empty sequence. S∗

Typeset January 22, 2018



244 Mathematical Background

The set of all finite sequences over S is

S∗ =
⋃
n ∈ N · Sn

Note that while the size of the set S∗ is infinite (even for finite S), the length
of each element of S is finite.concatenate

sˆt We can concatenate two finite sequences s and t to get a string sˆt. If
u = sˆt then,

‖u‖ = ‖s‖+ ‖t‖
u(i) = s(i), for all i such that 0 ≤ i < ‖s‖

u(‖s‖+ i) = t(i), for all i such that 0 ≤ i < ‖t‖
one-way infinite se-
quence One-way infinite sequences are functions from N

tot→ S. The set of one-way
infinite sequences may be written as S∞. If s ∈ S∞ then ‖s‖ = ∞.

The definition of catenation can be extended to include one-way infinite
sequences as follows. If s ∈ S∞, t ∈ S∗ ∪ S∞, and u = sˆt then u = s;
furthermore, if s ∈ S∗, t ∈ S∞, and u = sˆt, then

u ∈ S∞
u(i) = s(i), for all i such that 0 ≤ i < ‖s‖

u(‖s‖+ i) = t(i), for all i ∈ N

We use two notations for explicitly listing the elements of a finite sequence.

• In the first notation, the elements are listed in square brackets so that

— [ ] is the empty string.

— [a] is a string of length 1 with [a](0) = a

— [a, b, c, a, b] is a string of length 5 with [a, b, c, a, b](0) = a =
[a, b, c, a, b](3), [a, b, c, a, b](1) = b = [a, b, c, a, b](4), and [a, b, c, a, b](2) =
c.

• The second notation is commonly used in formal language theory:

— The empty string ε is the sole function from S0 =
(
∅ tot→ S

)
.

— We write strings of length 1 or more by listing the elements in
double quotes. E.g. “abcab” .
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By analogy with set builder notation (of Section A.0.2), we can invent a
sequence builder notation. For example,

[
n ← [0, ..]|n is prime · n2

]

is the one-way infinite sequence of squares of primes. [4, 9, 25, . . .]. Notations
similar to this are common in many programming languages (ML, Haskell,
and Python, for example), but not commonly used in mathematics.

A.3 Graphs

Consider a social networking website such as facebook. There is a set of
accounts and any two accounts either are or are not ‘friends’. We have a
set of accounts and a set of friendships. We can consider each friendship to
be represented by a set of two accounts. Such a network is an example of a
graph. Graphs describe how things connect to other things. Because we can
look at connections in greater or lesser detail, there are a number of kinds of
mathematical objects that share the name ‘graph.’ undirected graph

vertex

edge

An undirected, simple graph with loops is a pair G = (V,E) where V is
a set, called the set of vertices, and E is set, called the set of edges, of sets
of vertices of size 1 or 2. I.e.

E ⊆ {(a, b) ∈ V × V · {a, b}}

An edge of size 1 is called a loop. (A loop connects a vertex to itself.) If
we disallow loops, then we have a undirected simple graph without loops. Of
course the phrase ‘with loops’ doesn’t mean there are necessarily loops in the
graph, just that they are possible. Our example a social networking website
is an example of an undirected simple graph without loops.

Consider a network of computers. We wish to describe how they are
connected. As a first cut we might describe which computers are connected
to which others. An undirected simple graph is sufficient for this. But what
if some of the communication links are one-way? Maybe HAL can send
information directly to TRON, but not the other way around. In this case
we need a tool that is slightly sharper. directed graph

A directed, simple graph with loops is a pair G = (V,E) where V is a
set, called the set of vertices, and E is set, called the set of edges, of pairs of
vertices I.e.

E ⊆ V × V
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In this case, an edge (a, a) is called a loop. If we disallow loops, then we have
a directed, simple graph without loops.

Consider our computer network again. Suppose that we wish to show that
if two links are cut, all computers can still communicate with each other. In
this case we need to consider how many communication links there are in
each direction between each pair of computers. We need an even sharper
tool.multigraph

The definitions above do not allow multiple edges between the same pair
of vertices – except that there might be distinct directed edges in oppo-
site directions (a, b) and (b, a). Multigraphs solve this problem. A directed
multigraph with loops is tuple

(V,E,←−,−→)

where V is a set, called the set of vertices, E is a set called the set of edges,

and ←− and −→ are functions from E
tot→ V , called respectively the source and

target functions. Consider our computer network again. Suppose each link
is given a unique number; the numbers can serve as edges. If there are two
communication links from HAL to TRON, numbered m and n then we have←−m = ←−n = HAL and −→m = −→n = TRON.

If ←−e = −→e , e is called a loop. If we disallow loops, of course, we have a
directed multigraph without loops.

Thus graphs come in eight flavours according to 3 dichotomies: simple or
multi-, directed or undirected, with or without loops. I haven’t bothered to
define undirected multigraphs, as they aren’t often used. Authors often use
the term graph by itself to mean any of these various possibilities and are
sometimes vague about which one they intend.

Graphs are often accompanied by labelling functions that map from either
the vertices or the edges to some set. For example an edge-labelled directed
multigraph is a tuple (V,E,←−,−→, λ) where (V,E,←−,−→) is a directed multi-

graph, and λ : E
tot→ R for some set R.

A.4 Categories
category

[[To be deleted if categories are never used.]] A category is a 6-tuple (V,E,←−,−→, id , ; )
where V is a set, called the objects, E is a set, called the arrows, (V,E,←−,−→)
is a directed multigraph with loops, id is a total function from objects to ar-
rows, and ; is a partial function, called composition, mapping pairs of arrows
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to arrows.7 Furthermore following must be true, for all arrows e, f and g,
and objects a:

• id(a) is a loop on a, i.e.,
←−−−
id(a) = a =

−−−→
id(a), for all a ∈ V

• e; f is defined exactly if −→e =
←−
f ,

• ←−
e; f = ←−e and

−→
e; f =

−→
f if e; f is defined,

• id(←−e ); e = e = e; id(−→e ), and

• (e; f); g = e; (f ; g) if all compositions are defined (i.e., if −→e =
←−
f and−→

f = ←−g ).

A.5 Propositional logic
boolean value

BWe assume a set B of size 2. B = {true, false}. You can think of true and
false as being primitive mathematical objects like numbers. Like numbers,
they are not sets. The set B is called the set of boolean values.

A.5.0 Implication, follows from, and negation (NOT)

A.5.0.0 Implication
implication
⇒Define a function (⇒) ∈ B× B tot→ B so that

(false⇒ q) = true, for all q ∈ B
(true⇒ q) = q, for all q ∈ B

In table form

p q p ⇒ q
false false true

false true true

true false false

true true true

7Strictly speaking this definition defines a ‘small category’. In general, there may be
so many objects or arrows that we can’t define a set that holds them all. For example,
we might want every set to be an object, but then V would need to be a set of all sets,
something that is known to cause trouble and thus is generally avoided. There is a category
of sets, but it is not a small category and so doesn’t fit our definition.
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The function ⇒ is called implication. Its left operand is called the an-
tecedent and its right operand is called the consequent. For p ⇒ q, we
generally say p implies q or if p then q.

if (p ⇒ q) = true and (q ⇒ r) = true then (p ⇒ r) = true Transitivity

A.5.0.1 Follows from
follows from
⇐ We can define a function (⇐) ∈ B×B tot→ B which is the similar to implication,

but with the operands switched. The defining equation is

(p ⇐ q) = (q ⇒ p) , for all p, q ∈ B
We say p follows from q or p if q or p is implied by p.

A.5.0.2 Negation
not
¬ Define (¬) ∈ B tot→ B such that

¬p = (p ⇒ false) , for all p ∈ B
In table form

p ¬p
false true

true false

We usually say not p for ¬p.
We can observe some algebraic laws about negation and implication. The

reader should check that these are true for all boolean values of p and q.

¬¬p = p Involution

(p⇒ q) = (¬q ⇒ ¬p) Contrapositive

A.5.1 Conjunction (AND) and disjunction (OR)
disjunction

∨ Define disjunction (OR) by

(∨) ∈ B× B tot→ B

(p ∨ q) = ¬p⇒ q
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and conjunction (AND) by conjunction

∧
(∧) ∈ B× B tot→ B

(p ∧ q) = ¬ (p⇒ ¬q)

In table form we have

p q p ∨ q p ∧ q
false false false false

false true true false

true false true false

true true true true

The operands of ∧ are called conjuncts and The operands of ∨ are called
disjuncts.

Here are some laws involving conjunction and disjunction

(true ∧ p) = p
(false ∨ p) = p

}
Identity

(false ∧ p) = false
(true ∨ p) = true

}
Domination

(p ∧ p) = p
(p ∨ p) = p

}
Idempotence

(p ∧ q) = (q ∧ p)
(p ∨ q) = (q ∨ p)

}
Commutativity

((p ∧ q) ∧ r) = (p ∧ (q ∧ r))
((p ∨ q) ∨ r) = (p ∨ (q ∨ r))

}
Associativity

(p ∧ (q ∨ r)) = ((p ∧ q) ∨ (p ∧ r))
(p ∨ (q ∧ r)) = ((p ∨ q) ∧ (p ∨ r))

}
Distributivity

(p ∧ ¬p) = false
(p ∨ ¬p) = true

}{
law of contradiction
law of excluded middle

¬(p ∧ q) = (¬p ∨ ¬q)
¬(p ∨ q) = (¬p ∧ ¬q)

}
De Morgan’s laws
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(p⇒ q) = (¬p ∨ q) Material implication

(p⇒ q) = (¬q ⇒ ¬p) Contrapositive law

(p ∧ q ⇒ r) = (p ⇒ (q ⇒ r)) Shunting

(p ∧ q ⇒ r) = ((p ⇒ r) ∨ (q ⇒ r)) Distributivity

(p ∨ q ⇒ r) = ((p ⇒ r) ∧ (q ⇒ r)) Distributivity

(p⇒ q ∧ r) = ((p ⇒ q) ∧ (p ⇒ r)) Distributivity

(p⇒ q ∨ r) = ((p ⇒ q) ∨ (p ⇒ r)) Distributivity

if p ⇒ q and q ⇒ r then p ⇒ r Transitivity

A.5.2 Equivalence and exclusive-or.
equivalence
≡ Define

(p⇔ q) = (p⇒ q) ∧ (q ⇒ p)

(p� q) = ¬(p ⇔ q)

These three operators are respectively the equivalence, exclusive-or.
Note that for boolean p and q, p⇔ q is just the same as p = q.

A.5.3 Duality

As can be seen, laws about conjunction and disjunction come in pairs. In
general if you have a law

E = F
involving only propositional variables, boolean values, and propositional op-
erators, there is an equivalent law

E ′ = F ′

where E ′ and F ′ are obtained from E and F (respectively) by replacing each
operator with its dual according to the following table

∧ ∨
¬ ¬
⇔ ⇔
� �
⇒ 	

where
(p	 q) = ¬ (p⇐ q) = (¬p ∧ q)
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A.5.4 Other notations

There is a diversity of notations used for propositional logic.
Many text books, especially those concerned with digital circuits, use

+ for disjunction and · or nothing at all for conjunction. For example the
distributivity of conjunction over disjunction is expressed by

p (q + r) = pq + pr

Clearly prior experience with the algebra of numbers helps one remember
such a law. On the other hand, the distributivity of disjunction over con-
junction is expressed as

p+ qr = (p+ q) (p + zr)

As this example shows, prior experience with the algebra of numbers may also
be a bit of a psychological roadblock. The same textbooks generally also use 1
for true and 0 for false. This notation was introduced to engineering by Shan-
non [[ref]] in one of the earliest works on computer engineering. Shannon was
following Whitehead [[ref]] who was following Boole [[ref]]. Whitehead and
Boole both wanted to explore the relationships propositional logic has with
other algebras, so using the same notation for propositional logic, arithmetic,
linear algebra, etc. made sense. However: when dealing with both numbers
and boolean values, as we do in this book, the overloading of notation gets
confusing: is 1 + 1 equal to 1 or to 2?8

Programming languages have generally used notations that need only a
limited character set. Pascal and several other languages use the key words
and and or. Fortran uses .AND. and .OR., while C, C++, and Java use the
notations && and ||.9

8To add confusion, some works, especially those in cryptography, use + for exclusive-or,
giving 1 + 1 = 0.
Boole himself was careful to avoid this particular question. For example to express

inclusive-or (∨) he would write p + q(1 − p) and to express exclusive-or he would write
p(1 − q) + q(1− p). (Boole used 1 − p for ¬p. Later writers would simplify the notation
as p.) Thus Boole avoided ever adding two 1s. Boole would not have agreed with

p+ qr = (p+ q) (p+ r)

Nor did he accept p + p = p, even though he did accept pp = p. For Boole the laws of
logic were a subset of the laws of ordinary arithmetic.

9When the 95 printing characters for the ASCII character set were being chosen in the
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In this book, we will follow the notation that is standard in much of the
literature of mathematics, logic, computer science, and computer engineering,
which is to use ∧ for conjunction and ∨ for disjunction. The use of ∨ for
disjunction was popularized by Russell and Whitehead in their Principia
Mathematica [[ref]], the use of ∧ for conjunction followed later. This notation
emphasizes the relationships with set theory and lattice theory.

This
Book

Digital
Logic

C/C++/
Java

C/C++/Java
bitwise

Other

⇒ ⊃,→
∧ · && &
∨ + || |
⇔ == ↔
� ⊕ != ^ +
¬ ! ~ ∼

A.6 Predicate Logic

In natural language, one often wants to express facts such as

• All flavours of ice-cream are good.

• Some people like peanut butter.

• The Q output is always equal to the D input of the previous time cycle.

• The system will be in the initial state within 5 seconds of the reset
button being depressed.

To treat such sentences mathematically, we extend our logic with two
“quantifiers”

• ∀, pronounced “for all”, and

early 1960s the inclusion of the backward slash character was justified by its usefulness in
writing ‘and’ and ‘or’ as /\ and \/. It seems that one of the leading forces in the defnition
of ASCII was an fan of the Algol language, which included the characters ∧ and ∨ in
its official definition, but left undefined how to represent them in actual computer code.
Nevertheless, no other major programming languages adopted this notation, probably
because few computers used ASCII representation internally until the 1980s.
[[Ref http://www.trailing-edge.com/˜bobbemer/BACSLASH.HTM ]]
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• ∃, pronounced “exists”.

You can say that ∀ and ∃ have the same relationship to ∧ and ∨ (respec-
tively) as

∑
has to +.

We will extend our 2-valued propositional logic to deal with the quanti-
fiers.

A.6.0 Substitution

A.6.0.0 Free and bound occurrences of variables

In Engineering, we often use variables to represent quantities in the real-
world and boolean expressions containing variables to represent constraints
on those quantities, imposed by nature or by an engineered system. For
example, we might write

0 ≤ x < 1

to express that the x coordinate of the position of something (say a robot’s
hand) is constrained within certain limits. A constraint

0 ≤ y < 1

means something quite different. So we can conclude that the names matter.
We call such occurrences of a variable “free”.

Now consider the following pairs of expressions

• z =
∑N

i=0 f(i) and z =
∑N

j=0 f(j)

• z <
∫∞
0
f(u) du and z <

∫∞
0
f(v) dv

• {(x, y) ∈ R×R | x2 + y2 ≤ 1.0} and {(a, b) ∈ R× R | a2 + b2 ≤ 1.0}

In each case, the two parts of the pairs express the same constraint: they
are equivalent. So in these cases the choice of variables i, j , u, v, x, y, a,
and b doesn’t matter. Such occurrences of variables are called “bound”.

An analogous situation comes up in software. The two subroutines

void f() { ++i ; }

and
void f() { ++j ; }
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are not equivalent, whereas the two subroutines

int g(int i) { return i+1 ; }

and

int g(int j) { return j+1 ; }

are equivalent.

A.6.0.1 Single variable substitution
substitution

Suppose that E is an expression and that V is a variable. We’ll write E [V : F ]
for the expression obtained by replacing every free occurrence of x in E with
(F).

Examples

• (x/y)[x : y + z] is (y + z)/y

• (0 ≤ i < N ∧ A[i] = 0)[i : i+ 1] is (0 ≤ (i+ 1) < N ∧A[(i+ 1)] = 0)

When the parentheses would be redundant we can replace E with F .

Example

• (0 ≤ i < N ∧ A[i] = 0)[i : i+ 1] is (0 ≤ i+ 1 < N ∧A[i+ 1] = 0)

A.6.0.2 Multiple variable substitution

We sometimes need to replace a number of variables at once.

We’ll write E [V0,V1, · · · ,Vn−1 : F0,F1, · · · ,Fn−1] to mean the simultane-
ous replacement of n distinct variables by n expressions.

Example

• (x/y)[x, y : y, x] is (y/x)

• whereas ((x/y)[x : y])[y : x] is (x/x)
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A.6.0.3 Substitution and bound variables

We would like that making the same substitution in two equivalent expres-
sions will give two equivalent expressions.

Thus we have to be a bit careful about exactly how substitution is defined.
In making substitutions we do not substitute for bound occurrences of

variables. For example in the expression

N−1∑

i=0

f(i)

the variable i is bound, so we don’t substitute for it. Thus

(
N−1∑

i=0

f(i)

)
[f, i : g, j + 1] is

N−1∑

i=0

g(i)

Furthermore, it may be necessary to rename bound variables in order to avoid
variables in F from being “captured”. For example

(
N−1∑

i=0

(k × i)

)
[k : i+ 1] is

(
N−1∑

j=0

(k × j)

)
[k : i+ 1]

which is
N−1∑

j=0

((i+ 1)× j)

Note that I had to rename i to j to avoid conflict with the i in the replacement
expression.

A.6.0.4 Notations

Different authors use different notations for substitution.

• In Hoare’s Axiomatic basis paper [[ref]], he doesn’t use any notation at
all.

• In Hehner’s practical theory paper [[ref]], he writes

(substitute F for V in E)

• Some writers write E(V/F) while others write E(F/V) or (V/F)E
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• A common notation is EVF .

• I use E [V : F ] because it is short, hard to mistake for anything else,
and does not involve subscripts or superscripts

A.6.0.5 One-point laws

The substitution notation lets usto express some useful laws called “one-point
laws”.

Consider an expression (V = F) ⇒ A, where A is a boolean expression,
F is an expression„ and V is a variable. When V �= F then the value of
A doesn’t matter, the implication will be true regardless of the value of A.
In the case of V = F , we need only worry about the value of A under
the assumption that V = F . Similar reasoning applies to an expression
(V = F) ∧A.

The one point laws can be expressed as:

((V = F) ⇒ A) = ((V = F) ⇒ A[V : F ])

and
((V = F) ∧ A) = ((V = F) ∧ A[V : F ])

For example we can simplify i = 0 ∧ s =
∑

k∈{0,..i} f(k) to i = 0 ∧ s =∑
k∈∅ f(k) and then to i = 0 ∧ s = 0.
The more general principle is that if C implies A = B then (C ∧ A) =

(C ∧ B) and (C ⇒ A) = (C ⇒ B).

A.6.1 The Quantifiers ∀ and ∃
for all

∀ Suppose that S is the finite set {0, 1, 2, 3} and A is a boolean expression. We
write

∀x ∈ S · A
to mean

A[x : 0] ∧ A[x : 1] ∧ A[x : 2] ∧ A[x : 3] ,

and we writeexists

∃ ∃x ∈ S · A
to mean

A[x : 0] ∨ A[x : 1] ∨ A[x : 2] ∨ A[x : 3] ,
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just as we would write
3∑

x=0

E

to mean
E [x : 0] + E [x : 1] + E [x : 2] + E [x : 3]

where E is some numerical expression.10 quantifier

universal quantifier

existential quanti-
fier

The symbols ∀ and ∃ are called quantifiers. The ∀ is the universal quan-
tifier, and the ∃ is the existential quantifier. ∀x ∈ S · A may be pronounced
“for all x in S it is the case that A”. ∃x ∈ S · A may be pronounced “there
exists an x in S for which A”.

As long as the set S is finite, ∀ and ∃ are convenient notations, but not
very interesting, as they don’t allow us to do any thing new. However, if we
allow S to be an infinite set, then we have something really interesting. For
example consider the set N = {0, 1, 2, ...} then

(∀x ∈ N · A) = A[x : 0] ∧ A[x : 1] ∧ A[x : 2] ∧ · · ·

and
(∃x ∈ N · A) = A[x : 0] ∨ A[x : 1] ∨ A[x : 2] ∨ · · ·

In general

• ∀V ∈ S · A is true if A[V : y] is true for every value y ∈ S, otherwise it
is false.

• ∃V ∈ S · A is true if A[V : y] is true for at least one value y ∈ S,
otherwise it is false.

A.6.1.0 Some examples:

• All flavours of ice-cream are good:

∀f ∈ F · good(iceCream(f))

where F is the set of all flavours of ice-cream, iceCream is a function
mapping a flavour to a variety of ice-cream, and good is a “predicate”
(boolean function) indicating a variety is good.

10To be more consistent with the other notations in this book, we might write
∑
x ∈

{0, ..4} · E.
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• Some people like peanut butter:

∃p ∈ P · like(p, peanutButter)

where P is the set of all people and like is a predicate indicating that
its first argument likes its second argument.

• The Q output is always equal to the D input of the previous time cycle:

∀t ∈ N ·Q(t+ 1) = D(t)

where Q and D indicate the values of Q and D in a given cycle. We
use N as a time domain, as is appropriate for discrete time systems.

• The system will be in the initial state within 5 seconds of the reset
button being depressed:

∀t ∈ R+ · reset(t) ⇒ (∃u ∈ R+ · t ≤ u ≤ t+ 5 ∧ initial(u))

where reset is a predicate indicating the reset button is depressed and
initial indicates that the system is in its initial state. Here I have used
R+ = {x ∈ R | x ≥ 0} to model time, as is appropriate for real-time
systems. Implicitly the unit for time is seconds.

In the last example, it should be noted how ⇒ is used with ∀ to indicate
that we are only interested in certain time. I.e. ∀t ∈ R+ · reset(t) ⇒ E says
that property E holds for all times t where reset(t) is true. Similarly ∧ is to
focus ∃ on certain times. I.e., ∃u ∈ R+ · t ≤ u ≤ t+ 5 ∧ E means that there
is a u such that t ≤ u ≤ t+ 5 where E is also true.

A.6.1.1 Relationship to set theory

Recall: The notation {x ∈ S | A} means the subset of S with elements x
such that A is true.

We can understand ∀ and ∃ in terms of set notation:

(∀x ∈ S · A) = ({x ∈ S | A} = S)

(∃x ∈ S · A) = ({x ∈ S | A} �= ∅)

I find that looking at quantifications this way sometimes helps make them
easier to understand. For example, one thing that puzzles some students is

Typeset January 22, 2018



A.6 Predicate Logic 259

the behaviour of quantifiers when S is empty. Suppose that U is the set of
all unicorns, and that black and white are boolean functions indicating that
something is, respectively, black or white. Could it be that

∀u ∈ U · black(u)
and that

∀u ∈ U · white(u)
are both true? I.e. that all unicorns are black and also that all unicorns are
white? Well if U = ∅ then we have

∀u ∈ U · black(u)
= ({u ∈ U | black(u)} = U)

= ({u ∈ ∅ | black(u)} = ∅)
= (∅ = ∅)
=true

and of course a similar argument shows (∀u ∈ U · white(u)) is true. Some
people find this surprising. Another way to look at it is this: Count the
number of unicorns that are black. If there are the same number of black
unicorns as the number of unicorns, then it makes sense that all unicorns are
black.

Above we used the filtering notation for sets. We can also understand the
quantifiers in terms of the mapping notation:

(∀x ∈ S · A) = (false /∈{x ∈ S · A})
(∃x ∈ S · A) = (true ∈ {x ∈ S · A})

In English when we say something like “all unicorns are black” we often really
intend something like

{true} = {u ∈ U · black(u)}
In took logicians in the nineteenth century a while to realize that the defini-
tion

(∀x ∈ S · A) = (false /∈{x ∈ S · A})
is ‘simpler’ than the alternative, subtly different, and –from our point of
view— incorrect definition

(∀x ∈ S · A) = ({true} = {x ∈ S · A})
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And it often takes students a while to get used to this too. Indeed it may
seem pointless to worry about the case when S is empty, since no one sensible
would bother to write a quantification over an empty set. However, sensible
examples do come up when the set is dependant on some variable. Consider
this definition that a sequence a is a ‘prefix’ of a sequence b

‖a‖ ≤ ‖b‖ ∧ (∀i ∈ {0, .. ‖a‖} · a(i) = b(i))

When a is the empty sequence, its length is 0 and {0, .. ‖a‖} = ∅. The defin-
ition correctly implies that an empty sequence is a prefix of every sequence.

The definition of the quantifiers in terms of set builder notation suggests
a generalization of the notation:

(∀x ∈ S | P · A) = (false /∈{x ∈ S | P · A})
(∃x ∈ S | P · A) = (true ∈ {x ∈ S | P · A})

This generalization isn’t really needed, as we can always write

(∀x ∈ S | P · A) as (∀x ∈ S · P ⇒ A)

and

(∃x ∈ S | P · A) as (∃x ∈ S · P ∧A) .

A.6.1.2 Nested quantifiers

Quantifiers can be nested. You have to be careful about how you nest quan-
tifiers. Let’s look at an example. Suppose that S is a set of students and C
is a set of courses.

• It is the same to say ∀s ∈ S · ∀c ∈ C · takes(s, c) as it is to say
∀c ∈ C · ∀s ∈ S · takes(s, c). The first says ‘every student takes every
course’, while the second says ‘every course is taken by every student’:
the meanings are the same.

• It is the same to say ∃s ∈ S · ∃c ∈ C · takes(s, c) as it is to say
∃c ∈ C · ∃s ∈ S · takes(s, c). The first says ‘some student takes some
course’, while the second says ‘some course is taken by some student’:
again the meanings are the same.
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• But consider ∃s ∈ S · ∀c ∈ C · takes(s, c). This means that some ‘there
is some student who is taking all of the courses’. On the other hand
∀c ∈ C · ∃s ∈ S · takes(s, c) means that ‘for each course there is some
student who is taking it’, i.e. no course has an enrollment of 0. The
meanings are quite different.

Exercise 89 Write as clearly as possible, in English, the meanings of ∀s ∈
S · ∃c ∈ C · takes(s, c) and ∃c ∈ C · ∀s ∈ S · takes(s, c). Do these two
expressions have the same meaning? Do they mean the same as any earlier
expression?

For another example, suppose f : R
tot→ R and that a ∈ R. We can express

that f approaches a in the limit by

∀e ∈ R · e ≥ 0 ⇒ (∃x ∈ R · ∀y ∈ R · y > x⇒ |f(y)− a| ≤ e)

If words: f approaches a in the limit exactly if, for any positive quantity e,
no matter how small, there is a number x such that to the right of x the
value of f is within e of a.

A.6.1.3 Negated quantifications

What does it mean to combine negation with quantification? Is it the same
to say ∀s ∈ S · ¬P as to say ¬∀s ∈ S ·P? Let’s look at an example. Suppose
that S is the set of students taking Prof. Einstein’s course in quantum theory

and that likes : S
tot→ B is a function so that likes(s) is true if student s likes

Prof. Einstein’s course and false otherwise. What does ∀s ∈ S · ¬likes(s)
mean? It means that every student does not like the course. To put it
another way: it is not the case that there is a student who likes the course.
And we can write that formally as ¬∃s ∈ S · likes(s). So we have

(∀s ∈ S · ¬likes(s)) = (¬∃s ∈ S · likes(s))

How about ¬∀s ∈ S · likes(s). What does that mean? It means that it is
not the case that all students like the course. To put it another way: There
is at least one student who does not like the course. We can write this as
∃s ∈ S · ¬likes(s). So we have

(¬∀s ∈ S · likes(s)) = (∃s ∈ S · ¬likes(s))
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If you consider the case where there are just two students in the course,
say Alice and Bob, then these example boil down to De Morgan’s laws.
Consider

(∀s ∈ S · ¬likes(s))
=

¬likes(Alice) ∧ ¬likes(Bob)
= De Morgan

¬ (likes(Alice) ∨ likes(Bob))
=

(¬∃s ∈ S · likes(s))
Thus we also call the following identities De Morgan’s laws.

(∀s ∈ S · ¬A) = (¬∃s ∈ S · A)

¬ (∀s ∈ S · A) = (∃s ∈ S · ¬A)

Exercise 90 Use the definitions of the quantifiers given in Section A.6.1.1
to prove these laws.

A.6.1.4 Restricting variables

The set S in ∃x ∈ S ·A restricts our interest to the members of S; whether A
is true or false outside of this set doesn’t matter in trying to figure of whether
∃x ∈ S · A is true. Consider x ∈ S ∧A. If x is not in S, then the expression
is false, and the value whether A is true or false in this case doesn’t matter
in trying to figure out whether x ∈ S ∧A is true. Suppose S ⊆ T . Then the
following expressions are equivalent:

(∃x ∈ S · A) and (∃x ∈ T · x ∈ S ∧A)

For example, suppose that prime : N
tot→ B is a function indicating that a

number is prime. We can define a set Prime = {n ∈ N | prime(n)}. Now
you can see that the following expressions are equivalent

∀x ∈ N · ∃y ∈ Prime · y > x ∧ prime(y + 2)

and
∀x ∈ N · ∃y ∈ N · prime(y) ∧ y > x ∧ prime(y + 2)
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Similarly we can use implication to restrict variables introduced by ∀. In
general, if S ⊆ T ,

∀x ∈ S · A
is equivalent to

∀x ∈ T · x ∈ S ⇒ A
For example

∀x ∈ Prime · x = 2 ∨ odd(x)
can also be written

∀x ∈ N · prime(x) ⇒ x = 2 ∨ odd(x)

Why does this work? Well consider the cases where x is not prime. In these
cases the body of the quantification simplifies to

false⇒ x = 2 ∨ odd(x)

which simplifies to true.

A.6.1.5 Alternative notations

It is quite common to leave out the ∈ S part when the domain of the variable
is understood by some other means.

Many writers also leave out the · or replace it by some other symbol.
There is a wide variety of conventions for using parentheses. You are likely
to see any of the following in other works.

∀x · A
∀xA
∀x(A)

∀x,A
[∀x ∈ S, A]

∀x[A]

(x)A
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A.6.2 Laws

There are a number of laws of predicate calculus. Some useful ones are
summarized in this section.

Identity laws:

(∀x ∈ S · true) = true
(∃x ∈ S · false) = false
(∀x ∈ S · false) = (S = ∅)
(∃x ∈ S · true) = (S �= ∅)

(∀x ∈ ∅ · A) = true

(∃x ∈ ∅ · A) = false

Change of variable: Provided y does not occur free in A,

(∀x ∈ N · A) = (∀y ∈ N · A[x : y])

(∃x ∈ N · A) = (∃y ∈ N · A[x : y])

De Morgan’s laws

(∀x ∈ S · A) = ¬(∃x ∈ S · ¬A)

(∃x ∈ S · A) = ¬(∀x ∈ S · ¬A)

Domain splitting

(∀x ∈ S ∪ T · A) = (∀x ∈ S · A) ∧ (∀x ∈ T · A)

(∃x ∈ S ∪ T · A) = (∃x ∈ S · A) ∨ (∃x ∈ T · A)

Splitting

(∀x ∈ S · A ∧ B) = (∀x ∈ S · A) ∧ (∀x ∈ S · B)
(∃x ∈ S · A ∨ B) = (∃x ∈ S · A) ∨ (∃x ∈ S · B)

Trading

(∀x ∈ S · A ⇒ B) = (∀x ∈ {x ∈ S | A} · B)
(∃x ∈ S · A ∧ B) = (∃x ∈ {x ∈ S | A} · B)
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One-point laws: Provided x does not appear free in F and that F ∈ S,

(∀x ∈ S · (x = F) ⇒ A) = A[x : F ]

(∃x ∈ S · (x = F) ∧ A) = A[x : F ]

Commutative: Provided x is not free in T and y is not free in S,

(∀x ∈ S · ∀y ∈ T · A) = (∀y ∈ T · ∀x ∈ S · A)

(∃x ∈ S · ∃y ∈ T · A) = (∃y ∈ T · ∃x ∈ S · A)

Distributive laws: Provided x is not free in A

A∧ (∃x ∈ S · B) = (∃x ∈ S · A ∧ B)
A∨ (∀x ∈ S · B) = (∀x ∈ S · A ∨ B)

A ⇒ (∀x ∈ S · B) = (∀x ∈ S · A ⇒ B)

Distributive laws: Provided S �= ∅ and x is not free in A

A∧ (∀x ∈ S · B) = (∀x ∈ S · A ∧ B)
A∨ (∃x ∈ S · B) = (∃x ∈ S · A ∨ B)

A ⇒ (∃x ∈ S · B) = (∃x ∈ S · A ⇒ B)

A.6.3 ‘Universally true’ and ‘Stronger Than’
universally true

If a boolean expression A is true regardless of the values of its free variables,
it is said to be universally true.

If x, y, and z are integer variables, and p and q are boolean variables,
each of the following expressions is universally true.

true

x ≥ x

x+ 42 > x

x ∈ {x, y, z}
p ∧ q ⇒ p

stronger than
A boolean expression B is considered to be stronger than a boolean ex-

pression A if
B ⇒ A, is universally true
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For example
0 < x < y is stronger than 0 ≤ x < y,

0 < x < y is stronger than 0 < x ≤ y

and furthermore all three of these expressions are stronger than

0 ≤ x ≤ y
weaker than

If B is stronger than A, we also say that A is weaker than B.
It is possible that given two expressions, neither is stronger than the

other. For example

0 ≤ x < y is not stronger than 0 < x ≤ y, and

0 < x ≤ y is not stronger than 0 ≤ x < y.

Note that every expression is stronger than itself! Perhaps a better ex-
pression would be ‘stronger than or just as strong as’, but that would be
quite long-winded.equivalent

Two expressions that are equivalently strong (i.e. A is stronger than B
and B is stronger than A) are said to be equivalent expressions, they express
the same thing about their free variables.

Here are some general laws about how the boolean operators interact with
the relation of being stronger than.

A is stronger than A ∨ B
A is stronger than B ⇒ A
A ∧ B is stronger than A

Monotonicity properties: If B is stronger than A then

B ∧ C is stronger than A ∧ C
B ∨ C is stronger than A ∨ C
C ⇒ B is stronger than C ⇒ A

Anti-monotonicity properties: If B is stronger than A then

¬A is stronger than ¬B
A ⇒ C is stronger than B ⇒ C
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A.7 Precedence and associativity

As you know, mathematics uses “precedence conventions” to reduce the need
for parentheses. For example we all know that

w × x+ y × z

means

(w × x) + (y × z)

rather than

w × (x+ y)× z

as × has “higher” precedence than +.

Furthermore we know that

a− b+ c means (a− b) + c

rather than a− (b+ c) as − and + are “left associative”.

Some operators are associative meaning it doesn’t matter how we add
parentheses. E.g.

((a ∧ b) ∧ c) = (a ∧ b ∧ c) = (a ∧ (b ∧ c))

On the other hand

a ≤ b < c means (a ≤ b) ∧ (b < c)

and we say that ≤, <, =, etc are “chaining”
The following table shows many of the operators used in the book in order
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of precedence (highest to lowest)

x(y) LA
−x ¬x
x× y x/y LA
x+ y x− y LA
∩ A
∪ A
x = y x ≤ y x < y x ∈ y Ch
x ∧ y A
x ∨ y A
x⇒ y NA x⇔ y x� y A
x : y NA
if B then x else y while B do x
x; y A
x � y Ch
∀v ∈ S · x ∃v ∈ S · x

where
LA Left associative
RA Right associative
A Associative
NA Nonassociative
Ch Chaining

The low precedence of the quantifiers basically means that the scope of a
quantified variable extends to the right to the end of the formula, unless there
is explicit parenthesization or punctuation to stop it. I recommend putting
quantifications in parentheses except when there is no possible confusion.

That ∧ has higher precedence than ∨ is conventional, but I recommend
using extra parentheses, e.g. to write

p ∧ q ∨ r as (p ∧ q) ∨ r
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( , ), 234
−

applied to sets, 229
:

in substitution, 254
:=, 22
;, see sequential composition
[ ], 244
⇐, 248
⇒, 247
∩, 229
∪, 229
∅, 227
ε, 244
∃, 253, 256
∀, 252, 256
∈, 227
λ, 242
‖‖, 243
〈〉, 10
||

set, 235
↔, 239
¬, 248
�−→, 234
/∈, 227
par→, 239
tot→, 240
�, 14
⊆, 228

∨, 248
applied to specifications, 29

∧, 249
applied to specifications, 29

{i, .., j}, 234
{i, ..j}, 234
∗

of a set, 244

abort, 35
alphabet, 83
alternation

multiway, 33
two-way, 33

AND, 249
angle-bracket notation, 10
antecedant, 248
application, 241
argmax, 234
argmin, 234
assert, 35
assignment, 22

parallel, 23

behaviour, 7
behavioural specification, 7
belongs to, 7
binary relation, 239
boolean values, 247

cardinality, 235
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category, 246
composition

sequential, 25
concatenate, 84
concatenation

of finite sequences, 244
conjunction, 249

of specifications, 29
consequent, 248
contains, 227

D-flip-flop, 9
defined

of a function, 241
defined for, 241
determined, 17
deterministic, 17
Deterministic Finite State Recognizer,

112
DFR, 112
DFR recognition algorithm, 112
difference, 229
directed graph, 245, 246
disjunction, 248

of specifications, 29
dom, 241
domain, 241

element of, 227
empty set, 227
empty string, 84
ε, 84
equivalent, 266
existential quantifier, 257
exists, 253, 256

finite sequence, 243
finite set, 228
follows from, 248

for all, 252, 256
function

application, 241
partial, 239
total, 239

graph
directed multi-, 246
directed simple, 245
of a relation or function, 239
undirected simple, 245

if, 248
if

multiway, 33
two-way, 33

implementability
preservation of, 37

implementable, 18, 19
implication, 247
infinite sequence

one-way, 244
infinite set, 228
input variables, 16
intersection, 229
iteration, 35

lambda expression, 242
length

of a sequence, 243
of a string, 84

loop
of a graph, 245, 246

magic, 35
maps to, 239
matrices, 27
max, 233
member, 227
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min, 233
monotonic, 38
multigraph, 246

N, 228
NDFR, 98
NDFR recognition algorithm, 110
nondeterministic, 17
Nondeterministic Finite State Recog-

nizer, 98
not, 248

One-finger recognition algorithm, 104
OR, 248
output variables, 16
overdetermined, 17

pair, 234
partial function, 239
preserve implementability, 37

Q, 228
quantifier, 257
quantifiers, 252

R, 228
range, 241
refinement, 13
refines, 11
Regular expression, 87
Regular language, 87, 95
relation

binary, 239
rng, 241

sequence, 243
finite, 243

sequential composition, 25
set, 227

builder notation, 230

cardinality, 235
contains, 227
difference, 229
element of, 227
empty set, 227
finite, 228
infinite, 228
intersection, 229
member of, 227
size, 235
subset, 228
union, 229

set builder notation, 230
signature, 6
size

of a set, 235
skip, 22
source

of a relation or function, 239
specification, 7, 8
state, 21
state space, 21
stepwise refinement, 11
stonger than, 265
string, 84

concatenate, 84
empty, 84
length, 84

subset, 228
substitution, 254
symbol, 83
system, 5

target
of a relation or function, 239

Thompson’s construction, 101
total function, 239
tuple, 234
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underdetermined, 17
undirected graph, 245
unimplementable, 18, 19
union, 229
universal quantifier, 257
universally true, 41, 265

variable, 6

weaker than, 266
while, 35

Z, 228

Typeset January 22, 2018



Colophon

This book was prepared with Scientific Workplace in the LATEX2e language
and uses the Computer Modern fonts.

Typeset January 22, 2018


