Problem set 0 Discrete math.

Advanced Computing Concepts for Engineering (T.S. Norvell)

2020

Q0 Set notation. Use the filter and/or map notations to concisely express the following sets
(a) The set of all composite natural numbers.

$$
\{0,4,6,8,9,10,12,14,15,16,18,20, \ldots\}
$$

(b) The set of all positive real numbers less than then square root of 2 . Don't use the square-root sign in your answer.
(c) The set of all straight lines in the Cartesian plane. (Consider a straight line to be a suitable subset of $\mathbb{R} \times \mathbb{R}$.)
(d) The set of all linear total functions from real to real numbers.

Q1 Paradoxical sets.
In class is was stated that a set is a collection of mathematical objects and that each set is itself a mathematical objects. However it does not follow that any collection of mathematical objects can be used to make up a set.

For this question we will temporarily suppose that there is a set of all sets. We will then see that this concept leads to a contradiction.

Let S be the set of all sets.
Presumably some sets contain themselves. E.g., since S is a set and S contains all sets, we can conclude that $S \in S$. On the other hand, it is clear that some sets do not contain themselves. For example $\emptyset \notin \emptyset$. So some sets contain themselves and some do not.

Let R be the set of all sets that do not contain themselves. I.e. $R=$ $\{x \in S \mid x \notin x\}$.
(a) Prove that if $R \notin R$ then $R \in R$. Can you conclude that it is not the case that $R \notin R$?
(b) Prove that if $R \in R$ then $R \notin R$. Can you conclude that it is not the case that $R \in R$?

The usual way out of this conundrum is to say that there is no set of all sets.

Q2 Counting

Let S and T be finite sets. Let $|S|=m$ and $|T|=n$.
(a) What is the size of $|S \times T|$.
(b) How many binary relations are there with S as source and T as target?
(c) How many total functions are there with S as source and T as target?
(d) How many partial functions are there with S as source and T as target?

Q3 Propositional logic.

Using the laws that appear above them in the notes, prove the following distributivity laws
(a) $(p \wedge q \Rightarrow r)=((p \Rightarrow r) \vee(q \Rightarrow r))$
(b) $(p \Rightarrow q \wedge r)=((p \Rightarrow q) \wedge(p \Rightarrow r))$

Q4 Substitutions
(a) Underline all bound occurrences of variables in the following formulae. Circle all free occurrences of variables.

$$
\begin{aligned}
& \{i \in \mathbb{N} \mid i<f(i) \cdot g(i)\} \\
& (\forall x \in \mathbb{R} \cdot g(x)<f(y))
\end{aligned}
$$

(b) Make the following substitutions

$$
\begin{gathered}
\{i \in \mathbb{N} \mid i<f(i) \cdot g(i)\}[x, i, f: y, j, g] \\
(\forall x \in \mathbb{R} \cdot g(x)<f(y))[y: y+1] \\
(\forall x \in \mathbb{R} \cdot g(x)<f(y))[y: x+1]
\end{gathered}
$$

Q5 Quantifiers and sets

Ranter is a social network in which users publish short messages called rants. Let U be the set of all users on the social network and let follows : $U \times U \xrightarrow{\text { tot }} \mathbb{B}$ be a boolean function expressing that the first user follows the second.
(a) Use quantifiers to say that following is irreflexive, i.e., that no one follows themselves.
(b) If, for some users a and b, follows (a, b), we say that a is a degree 1 follower of b. If, for some users a, b, and c, a follows c and c follows b, we say that a is a degree 2 follower of b. And so on. Use quantifiers to say
that a is a degree k follower of b. You may assume $k>0$. [Hint: You may need to quantify over a function. Hint: check that the free variables of your expression are a, b, and k.]
(c) Explain the meaning of the following expression in clear English

$$
\forall x \in R \cdot \exists y \in S \cdot \text { follows }(x, y)
$$

[Hint: check that the free variables of your English sentence are the same as the free variables of the expression.]
(d) Explain the meaning of the following expression in clear English

$$
\exists x \in R \cdot \forall y \in S \cdot \text { follows }(x, y)
$$

[Hint: check that the free variables of your English sentence are the same as the free variables of the expression.]

Q6 Scheduling
Let S be a set of course sections. Let T be a set of times. Let R be a set of rooms.

Let at be a binary function at $: S \times T \xrightarrow{\text { tot }} \mathbb{B}$. The intended meaning of $a t(s, t)$ is that section s is scheduled at time t.

Let in be a binary function in $: S \times T \times R \xrightarrow{\text { tot }} \mathbb{B}$. The intended meaning of $i n(s, t, r)$ is that section s is scheduled to be in room r at time t.

Express the following statements using quantifiers
(a) All sections are scheduled at exactly 3 times, according to the at function.
(b) All sections are scheduled at times (according to at) only when they are in a room.
(c) All sections are in a room, only at times they are scheduled to be at (according to at).
(d) All sections are only scheduled to be in one room at a time.
(e) No room is in use by two (or more) sections at the same time.

Express the following sets using set notation and quantifiers.
(f) The set of all room/time pairs when 2 sections are both scheduled for the room at the time.
(g) The set of all section/time pairs which need a room.

