Behavioural Specifications

Aside: Throughout these notes, | will abbreviate
functions by their graphs. End aside.

System boundaries and signatures

We take a “black box” point of view of systems
That is we
e describe the relationship between input and output
guantities

e ignore internal quantities

We can describe such a relationship using a boolean
expression.

For example
(V =100 x I)
describes a 100 ohm resistor.

A system boundary consists of the inputs and outputs
of a system

We name each input and output and specify its type with
a signature

A signature is a partial function that maps names to
nonempty sets of values.
Examples:
o
Y ={V"—R"I["— R}
(I am abbrevating the function with its graph.)

= {“z” W L, 2" — L,y — 1}

Here x, y are mputs while 2/ and vy’ are names of
outputs. All are integers.

21:{ (NEB) “of" (NL"EB)}

Here the name “d” is the name of an input and “¢””
Is the name of an output. Both input and output are
(modeled as) functions from the natural numbers to
the booleans.

5= {0 (RO R) o (% R))

Convention: We use unprimed names like z, vy, d for
inputs and primed names like 2/, v/, ¢’ for outputs.

Behaviours

A behaviour is a partial function that maps names to
values.

Examples:

“_n w _In w_ In

bp = {“2" — =3,"y" — 5,2 — 5,"y"”" +— b}

e Let a be the function in N 2 B such that a(i) =
(¢mod 3 = 0) for all ¢
a = (N,B,{ 0~ true, 1 — false, 2 — false, 3 — true,
4 — false, 5 — false,--- })

and b be the function in N 2 B such that b(i) =
(¢mod 3 =1) for all ¢
b= (N,B,{0— false, 1 — true,2 — false, 3 — false,
4 — true, 5 — false,--- })
then
by = {"d" — a,"¢" — b}
IS a behaviour

TOWNAL

by = {"“z" - sin, “z”" — 2 X sin}

Notation: We write b : X to mean that behaviour b
belongs to signature .. This means that the same
names are mapped and the behaviour obeys the type
iInformation provided by the signature.

Formally: b : ¥ iff dom(b) = dom(X) and

Vn € dom(X) - b(n) € X(n)

Examples: by : X, b; : 21, and bo 1 2o

Behavioural Specifications

Given a system, there are two kinds of behaviours:
e behaviours the system could engage in

e behaviours the system can not engage in
A behavioural specification distinguishes between
these two kinds of behaviours.
We define a behavioural specification to be a pair

(Z, f)
where X is a signature and f is a boolean function such
that

b € dom(f) ,forall b: X

Notation: I'll generally write (X, f) as fx, or (when X is
clear from context) just as f.

If f(b) = true, we say that the specification fys, accepts
behaviour b.

If f(b) = false, we say that the specification fy, rejects
behaviour b.

Angle-Bracket Notation

I'll write boolean functions on behaviours as boolean
expressions in angle brackets. For example

(o' =y Ny =y)
abbreviates the function f defined by

F(6) = (b("2”) = b(y") AB('y") = b('y")
Examples of specifications

An assignment Statement

Let 2 be the initial value of a program variable and x’ be
the final value of the same variable. Similarly with .
Let
Y= {2"— 7,y — L, 2" — L, y" — 7}
e = (' =0Ay =y)
then ey, is a specification that accepts behaviour
{“2” — —=3,"y" — b, ‘= 0,Y" — 5}
but rejects
{“2" — —=3,"y" — b, “ = 5,y 5}
Later we will write this specification as
r:=0

Examples of specifications (continued)

Another assignment Statement
Let
f=@"=yny =y)
then fy, is a specification that accepts behaviour
{“2" — =3,"y" — b, “ 5,y 5}

since f({“z" — —3,“y" — 5,“2"" — 5,“y" +— b}) = true
but rejects

{“2" — —=3,“y" +— 5,2 — 0,“y"” — =3}
since f({“z" — —3,“y" — 5“2 — 0,“y" — =3}) =
false.
Later we will write this specification as

T =1y

Flip-flop

Let d represent the input to a d-flip-flop and ¢’ represent
the output to the same d-flip-flop. Let

2 = {“ " (NEIB%) R (NEB>}
g=NMeN-¢{t+1)=dt))
then g, is a specification for a d-flip-flop. For example b; is

accepted by this specification, whereas {“d"— b,“¢""+— a}
IS rejected.

Note that for each input value, there are 2 outputs values
that make an acceptable behaviour.

Examples of specifications (continued)

Amplifier

Let x be an input signal as a function of time and 2z’ be
an output signal as a function of time

5= (o (R2R) e (2 % R))

and define a function

h=NteR-2'(t)=2x x(t))
Then hy, represents an amplifier. At each point in time,
the output signal is twice the input signal.

For example {“x” — sin,“z™ — 2 x sin} is accepted,
whereas {“z” — sin, “z” — sin} is rejected, as is,
{“2" sin, “z"" +— 2 X cos}

Refinement

Suppose that fy; accepts every behaviour that gs. accepts,
l.e.

Vb : X - g(b) = f(b)
Then we say that gy, refines fs.

Notation: We write

Jx E g5
or (when X is clear from context)

fEyg
to say fy; is refined by gs.

Uses of specifications and refinement

We can use formal specifications of systems for several
different processes.

e Documentation. We can use a specification to
describe the behaviour of a known system.

e Requirements Specification. We can use a specifi-
cation to specify the required behaviour of a system to
be built.

e Testing. Given a specification fy, and an observed
behaviour b of a system, —f(b) indicates an error.

e Verification. Suppose fyx, represents the system
desired (requirements) and gx, represents the system
as designed. To verify that the design meets its
requirements we need to check

Vb : - g(b) = f(b)
l.e.

fs C gy

e Design. A design problem is one of the form “Given

a specification f, find a specification g such that

fe E gs.

x Stepwise Derivation. If we have a specification fs
. We can design a system by finding a sequence of
specifications

S EfIsE 25 35 E gs

where gx, represents a design.

Examples of refinement

Consider the signature
Y={2"w— Z,"2" — 7}
o Let
f = (>
g={(d'=2+1)
Some example behaviours
{“2” — 2,“2"" — 3} Accepted by ¢ and accepted by f
{“2" — 2,“2"" — 1} Rejected by g and rejected by f
{“2" — 2,“2"" — 4} Rejected by g and accepted by f
However there is no behaviour that is accepted by ¢
and rejected by f, therefore

fEyg
In this case, ¢ is more restrictive about its output than
fis.
o Let

f= (>

g = (=)
Some example behaviours
f“2” — 2,“2"" — 3} Accepted by ¢ and accepted by f
{“2" — 2,“2" — 1} Rejected by ¢g and rejected by f
{“2” — 2,“2" — 2} Accepted by g and rejected by f
Therefore

JZg

o Let
f=x>0=2"=2+1)
g=(x>0=2"=z+1)
We might say that f “cares about” inputs such that
x > 0, whereas ¢ “cares about” inputs such that x > 1.
e Some example behaviours
{“2" — —1,“2"" — 3} Accepted by ¢ and accepted by f
{“2" — 2,“2" — 3} Accepted by g and accepted by f
{f“2” — 2,“2" — 4} Rejected by g and rejected by f
{“2" — 0,“2"" — 1} Accepted by ¢ and accepted by f
{“2" — 0,“2"" — 2} Rejected by g and accepted by f

However, we will not be able to find any behaviour such
that is accepted by g and rejected by f. Therefore

fCyg
In this case, g cares about more input values.

Consider the problem of finding the sine of an angle to a
limited degree of accuracy.

The requirements specification is

¥ ={2"— R, ‘2" — R}
f = <o << % — |2’ — sin(z)] < 0.001>
This says that if the input is between 0 and 7, then the
output should equal the sine to 3 decimal places.

e Suppose the actual system computes the sine to 4

decimal places
g = <0 <z < % = |2’ — sin(z)| < 0.0001>
Then we have

fEg
The requirements have been met!

e Suppose another system computes sines to 3 places
for a larger range of inputs

h = <_77T <z< g = |2’ — sin(z)| < 0.001>
This system also meets the requirements
fEh
e By the way,
g¥h
and
hiZyg

e \We could also construct a system that combines the
strengths of g and h:

— m ;o
m = {5 <z< 5= 2" — sin(z)| < 0.0001
SEgEm, fEREm

In a picture
m

VAN

g h
RV
f

We often use specifications of the form (P = @) where
P describes the inputs we care about and () describes
the relationship between the input and the output. In
general

(Fo = Qo) E (PL= Q) if (P) E (Fy) and (Qo) E (Q1)
Thatis f C g if g cares about at least the inputs that f
cares about and is at least as restrictive on the inputs
that f cares about.

Some properties of refinement

e Reflexivity
fES

e Transitivity

if fCgandgC hthen f C h
e Antisymmetry

f fCgandgC fthen f =g
e A relation with these properties is called a partial

order.

