
Advanced Computing Concepts for Engineering, 2012. Slide Set 0-0. Behavioural Specifications (c) Theodore Norvell

Behavioural Specifications

Aside: Throughout these notes, I will abbreviate

functions by their graphs. End aside.

System boundaries and signatures

We take a “black box” point of view of systems

That is we

• describe the relationship between input and output

quantities

• ignore internal quantities

We can describe such a relationship using a boolean

expression.

For example

〈V = 100× I〉
describes a 100 ohm resistor.

A system boundary consists of the inputs and outputs

of a system

We name each input and output and specify its type with

a signature

A signature is a partial function that maps names to

nonempty sets of values.

Examples:

•
Σ = {“V ” 7→ R,“I” 7→ R}

(I am abbrevating the function with its graph.)

Typeset January 15, 2018 1

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-0. Behavioural Specifications (c) Theodore Norvell

•
Σ0 = {“x” 7→ Z, “y” 7→ Z, “x′” 7→ Z, “y′” 7→ Z}

Here x, y are inputs while x′ and y′ are names of

outputs. All are integers.

•
Σ1 =

{
“d” 7→

(
N tot→ B

)
, “q′” 7→

(
N tot→ B

)}
Here the name “d” is the name of an input and “q′”
is the name of an output. Both input and output are

(modeled as) functions from the natural numbers to

the booleans.

•
Σ2 =

{
“x” 7→

(
R tot→ R

)
, “x′” 7→

(
R tot→ R

)}
Convention: We use unprimed names like x, y, d for

inputs and primed names like x′, y′, q′ for outputs.

Typeset January 15, 2018 2

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-0. Behavioural Specifications (c) Theodore Norvell

Behaviours

A behaviour is a partial function that maps names to

values.

Examples:

•
b0 = {“x” 7→ −3, “y” 7→ 5, “x′” 7→ 5, “y′” 7→ 5}

• Let a be the function in N tot→ B such that a(i) =
(imod 3 = 0) for all i

a = (N,B, { 0 7→ true, 1 7→ false, 2 7→ false, 3 7→ true,
4 7→ false, 5 7→ false, · · · })

and b be the function in N tot→ B such that b(i) =
(imod 3 = 1) for all i

b = (N,B, { 0 7→ false, 1 7→ true, 2 7→ false, 3 7→ false,
4 7→ true, 5 7→ false, · · · })

then

b1 = {“d” 7→ a, “q′” 7→ b}
is a behaviour

•
b2 = {“x” 7→ sin, “x′” 7→ 2× sin}

Notation: We write b : Σ to mean that behaviour b
belongs to signature Σ. This means that the same

names are mapped and the behaviour obeys the type

information provided by the signature.

Formally: b : Σ iff dom(b) = dom(Σ) and

∀n ∈ dom(Σ) · b(n) ∈ Σ(n)

Examples: b0 : Σ0, b1 : Σ1, and b2 : Σ2
Typeset January 15, 2018 3

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-0. Behavioural Specifications (c) Theodore Norvell

Behavioural Specifications

Given a system, there are two kinds of behaviours:

• behaviours the system could engage in

• behaviours the system can not engage in

A behavioural specification distinguishes between

these two kinds of behaviours.

We define a behavioural specification to be a pair

(Σ, f)

where Σ is a signature and f is a boolean function such

that

b ∈ dom(f) , for all b : Σ

Notation: I’ll generally write (Σ, f) as fΣ or (when Σ is

clear from context) just as f .

If f (b) = true, we say that the specification fΣ accepts

behaviour b.

If f (b) = false, we say that the specification fΣ rejects

behaviour b.

Typeset January 15, 2018 4

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-0. Behavioural Specifications (c) Theodore Norvell

Angle-Bracket Notation

I’ll write boolean functions on behaviours as boolean

expressions in angle brackets. For example

〈x′ = y ∧ y′ = y〉
abbreviates the function f defined by

f (b) = (b(“x′”) = b(“y”) ∧ b(“y′”) = b(“y”))

Examples of specifications

An assignment Statement

Let x be the initial value of a program variable and x′ be

the final value of the same variable. Similarly with y.

Let

Σ = {“x” 7→ Z, “y” 7→ Z, “x′” 7→ Z, “y′” 7→ Z}
e = 〈x′ = 0 ∧ y′ = y〉

then eΣ is a specification that accepts behaviour

{“x” 7→ −3, “y” 7→ 5, “x′” 7→ 0, “y′” 7→ 5}
but rejects

{“x” 7→ −3, “y” 7→ 5, “x′” 7→ 5, “y′” 7→ 5}
Later we will write this specification as

x := 0

Typeset January 15, 2018 5

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-0. Behavioural Specifications (c) Theodore Norvell

Examples of specifications (continued)

Another assignment Statement

Let

f = 〈x′ = y ∧ y′ = y〉
then fΣ is a specification that accepts behaviour

{“x” 7→ −3, “y” 7→ 5, “x′” 7→ 5, “y′” 7→ 5}
since f ({“x” 7→ −3, “y” 7→ 5, “x′” 7→ 5, “y′” 7→ 5}) = true

but rejects

{“x” 7→ −3, “y” 7→ 5, “x′” 7→ 0, “y′” 7→ −3}
since f ({“x” 7→ −3, “y” 7→ 5, “x′” 7→ 0, “y′” 7→ −3}) =
false.

Later we will write this specification as

x := y

Flip-flop

Let d represent the input to a d-flip-flop and q′ represent

the output to the same d-flip-flop. Let

Σ =
{

“d” 7→
(
N tot→ B

)
, “q′” 7→

(
N tot→ B

)}
g = 〈∀t ∈ N · q′(t + 1) = d(t)〉

then gΣ is a specification for a d-flip-flop. For example b1 is

accepted by this specification, whereas {“d”7→ b,“q′”7→ a}
is rejected.

Note that for each input value, there are 2 outputs values

that make an acceptable behaviour.

Typeset January 15, 2018 6

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-0. Behavioural Specifications (c) Theodore Norvell

Examples of specifications (continued)

Amplifier

Let x be an input signal as a function of time and x′ be

an output signal as a function of time

Σ =
{

“x” 7→
(
R tot→ R

)
, “x′” 7→

(
R tot→ R

)}
and define a function

h = 〈∀t ∈ R · x′(t) = 2× x(t)〉
Then hΣ represents an amplifier. At each point in time,

the output signal is twice the input signal.

For example {“x” 7→ sin, “x′” 7→ 2× sin} is accepted,

whereas {“x” 7→ sin, “x′” 7→ sin} is rejected, as is,

{“x” 7→ sin, “x′” 7→ 2× cos}

Typeset January 15, 2018 7

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-0. Behavioural Specifications (c) Theodore Norvell

Refinement

Suppose that fΣ accepts every behaviour that gΣ accepts,

i.e.

∀b : Σ · g(b)⇒ f (b)
Then we say that gΣ refines fΣ.

Notation: We write

fΣ v gΣ

or (when Σ is clear from context)

f v g

to say fΣ is refined by gΣ.

Typeset January 15, 2018 8

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-0. Behavioural Specifications (c) Theodore Norvell

Uses of specifications and refinement

We can use formal specifications of systems for several

different processes.

• Documentation. We can use a specification to

describe the behaviour of a known system.

• Requirements Specification. We can use a specifi-

cation to specify the required behaviour of a system to

be built.

• Testing. Given a specification fΣ and an observed

behaviour b of a system, ¬f (b) indicates an error.

• Verification. Suppose fΣ represents the system

desired (requirements) and gΣ represents the system

as designed. To verify that the design meets its

requirements we need to check

∀b : Σ · g(b)⇒ f (b)

I.e.

fΣ v gΣ

• Design. A design problem is one of the form “Given

a specification f , find a specification g such that

fΣ v gΣ.

∗ Stepwise Derivation. If we have a specification fΣ

. We can design a system by finding a sequence of

specifications

fΣ v f1Σ v f2Σ v f3Σ v gΣ

where gΣ represents a design.

Typeset January 15, 2018 9

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-0. Behavioural Specifications (c) Theodore Norvell

Examples of refinement

Consider the signature

Σ = {“x” 7→ Z, “x′” 7→ Z}
• Let

f = 〈x′ > x〉
g = 〈x′ = x + 1〉

Some example behaviours

{“x” 7→ 2, “x′” 7→ 3} Accepted by g and accepted by f

{“x” 7→ 2, “x′” 7→ 1} Rejected by g and rejected by f

{“x” 7→ 2, “x′” 7→ 4} Rejected by g and accepted by f

However there is no behaviour that is accepted by g
and rejected by f , therefore

f v g

In this case, g is more restrictive about its output than

f is.

• Let

f = 〈x′ > x〉
g = 〈x′ ≥ x〉

Some example behaviours

{“x” 7→ 2, “x′” 7→ 3} Accepted by g and accepted by f

{“x” 7→ 2, “x′” 7→ 1} Rejected by g and rejected by f

{“x” 7→ 2, “x′” 7→ 2} Accepted by g and rejected by f

Therefore

f 6v g

Typeset January 15, 2018 10

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-0. Behavioural Specifications (c) Theodore Norvell

• Let

f = 〈x > 0⇒ x′ = x + 1〉
g = 〈x ≥ 0⇒ x′ = x + 1〉

We might say that f “cares about” inputs such that

x > 0, whereas g “cares about” inputs such that x ≥ 1.

• Some example behaviours

{“x” 7→ −1, “x′” 7→ 3} Accepted by g and accepted by f

{“x” 7→ 2, “x′” 7→ 3} Accepted by g and accepted by f

{“x” 7→ 2, “x′” 7→ 4} Rejected by g and rejected by f

{“x” 7→ 0, “x′” 7→ 1} Accepted by g and accepted by f

{“x” 7→ 0, “x′” 7→ 2} Rejected by g and accepted by f

However, we will not be able to find any behaviour such

that is accepted by g and rejected by f . Therefore

f v g

In this case, g cares about more input values.

Consider the problem of finding the sine of an angle to a

limited degree of accuracy.

The requirements specification is

Σ = {“x” 7→ R, “x′” 7→ R}
f =

〈
0 ≤ x ≤ π

4
⇒ |x′ − sin(x)| < 0.001

〉
This says that if the input is between 0 and π

4 , then the

output should equal the sine to 3 decimal places.

• Suppose the actual system computes the sine to 4

Typeset January 15, 2018 11

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-0. Behavioural Specifications (c) Theodore Norvell

decimal places

g =
〈

0 ≤ x ≤ π

4
⇒ |x′ − sin(x)| < 0.0001

〉
Then we have

f v g
The requirements have been met!

• Suppose another system computes sines to 3 places

for a larger range of inputs

h =

〈
−π
2
≤ x ≤ π

2
⇒ |x′ − sin(x)| < 0.001

〉
This system also meets the requirements

f v h

• By the way,

g 6v h
and

h 6v g

• We could also construct a system that combines the

strengths of g and h:

m =

〈
−π
2
≤ x ≤ π

2
⇒ |x′ − sin(x)| < 0.0001

〉
f v g v m, f v h v m

In a picture

f

hg

m

vv
vv

Typeset January 15, 2018 12

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-0. Behavioural Specifications (c) Theodore Norvell

We often use specifications of the form 〈P ⇒ Q〉 where

P describes the inputs we care about and Q describes

the relationship between the input and the output. In

general

〈P0 ⇒ Q0〉 v 〈P1 ⇒ Q1〉 if 〈P1〉 v 〈P0〉 and 〈Q0〉 v 〈Q1〉
That is f v g if g cares about at least the inputs that f
cares about and is at least as restrictive on the inputs

that f cares about.

Some properties of refinement

• Reflexivity

f v f

• Transitivity

if f v g and g v h then f v h

• Antisymmetry

if f v g and g v f then f = g

• A relation with these properties is called a partial

order.

Typeset January 15, 2018 13

