Input and Output

Dividing behaviours into inputs and outputs

In this course we follow the convention that
e Names of inputs have no primes: z, vy, 2

e Names of outputs end with a prime: 2/, ¢/, 2/
Given a signature, e.g.:
Z _ {uwu N A “xu N B 17 /u N O 73 /” . D}
its input aspect consists only of inputs
<—

“w” H A “ 7 B}
and its output aspect consists only of outputs
{“ 7 H 7“ 7 D}

Note: No primes

Similarly for behaviours: if
b — {“w” |_> m ‘:U” H n “y/” H p) “Z,” |_> q}
then

13 b 13 b

w —m,x —n

— {“y” |—>p, Z — q}
Note: The input and output aspects of the signature are
rather like the source and target of a relation

We can put together signatures and behaviours using
the § operator
{u ” —s A u ” B}_‘_{u bH) u ” D} — Z

13 b k_ " Kk _ "N

{“w” — m,“x |—>n}T{y — p,“2"—=qt = b

%
b

H
b

Response Set

For any particular input, 7 : % which outputs are
acceptable? Define the response set of fx for input ¢ as

=
resp(f,) 2 {01 T | f(it0)]
Note that o
fEgiffVi: 3 -resp(f,i) 2 resp(g, 1)
So the direction of the C symbol might seem a little
confusing at first.
The size of the response set is worth noting
e fy is determined, for input ¢, iff |resp(fy,i)| = 1.
e f5 is underdetermined, for input i, iff |resp(fs,)| > 1.
e f5 is overdetermined,for input ¢, iff |resp(fg,7)| = 0.

Nondeterminism

A specification is deterministic if it is determined for
every Input o

Vi 3 - |resp(fg,i)| =1
If a specification is not deterministic, it is
nondeterministic

. H .
i X - |resp(fy,i)] # 1
Deterministic specifications are essentially total functions
from an input space to an output space

We are interested in nondeterministic specifications
because

e They allow us to not specify aspects that are not

important.

e They allow us to model components that are not
perfectly reliable.

e They allow us to omit quantities from the system
boundary.

e They allow us to freely combine specifications with
operators such as ‘and’ and ‘or’.

Implementability

While being underdetermined for one or more inputs is
not a problem, there is a problem with specifications that
are overdetermined for some inputs.

Such specifications are called unimplementable

—

i X -resp(fy,i) =10
Equivalently
— —
di: X -Vo: X -—f(ifo)

A specification that is not unimplementable is
implementable

—

Vi: X -resp(fs,i) # ()
Equivalently:
<— —
Vi:X-3o: X - f(ito)
The job of a system that meets a requirements

specification f is to, for each input, i, select an output o
from resp(f,).

No physical system can select a behaviour from an
empty set.

So no physical system will meet an unimplementable
specification.

Example:

f = {|sin (z) — 2| < 0.001 A 2" > 0)
This specification requires that the output is
approximately the sine of the input, but also that it
not be negative. This is a contradictory specification. For
example for x = = there is no suitable value for x'.

Commandment: Thou shalt not write unimplementable
requirements specifications.

