
Advanced Computing Concepts for Engineering, 2012. Slide Set 0-2 Imperative Programming (c) Theodore Norvell

Transformational Imperative Pro-

gramming

In this part of the course we will:

• Look at requirements specification for simple program-

ming problems.

• Look at programs as systems

• Look at ways of putting systems together (composing

systems)

• Use the above to develop techniques for designing

programs that meet their specification.

We look at transformational programming rather than

interactive programming. That, is we will assume no

output is required by the environment until after the

whole computation is complete.

Imperative programming means programming with

commands.

1

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-2 Imperative Programming (c) Theodore Norvell

States and Behaviours

States of the computer are modeled as mappings from

(unprimed) variable names to values.

• For example, if we have variable names x and y of

type int, then example states include

Σ = {“x” �→ Z, “y” �→ Z} :

i = {“x” �→ 10, “y” �→ 5} : Σ

o = {“x” �→ 6, “y” �→ 5} : Σ

For this section of the course we will ignore internal

states, so:

• A behaviour consists of two states, an initial state and

a final state. E.g.

i † o = {“x” �→ 10, “y” �→ 5, “x′” �→ 6, “y′” �→ 5}

is a behaviour.

Both input and output states belong to the same

signature Σ; so behaviours belong to Σ † Σ.

For the rest of the notes on programming the signature

for specifications will be Σ † Σ for some Σ.

2

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-2 Imperative Programming (c) Theodore Norvell

Some Example Specifications.

• Consider the problem of computing the minimum of

two natural numbers

Σ = {“x” �→ N, “y” �→ N}

〈x′ = min(x, y)〉

• Consider the problem of computing the greatest

common denominator of two natural numbers

Σ = {“x” �→ N, “y” �→ N}

〈x′ = gcd(x, y)〉

• Consider the problem of searching for an element x in

an array a of N integers

Σ =
{

“b” �→ B, “a” �→
(
{0, ..N}

tot
→ Z

)
, “x” �→ Z

}

and {0, ..N} = {i ∈ N | 0 ≤ i < N}.

(We model the value of array a with a total function

from {0, ..N} to Z.)

A specification is

〈b′ = (∃i ∈ {0, ..N} · a(i) = x)〉

A better specification would be

〈b′ = (∃i ∈ {0, ..N} · a(i) = x) ∧ x′ = x ∧ a′ = a〉

if we require that program variables x and a not

change.

3

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-2 Imperative Programming (c) Theodore Norvell

• Here is another array search problem. This time the

goal is to report the location of an item that may be

assumed to be in the array

Σ =
{

“k” �→ N, “a” �→ {0, ..N}
tot
→ Z, “x” �→ Z

}

Note that a specification

〈a(k′) = x〉

is unimplementable. (Remember the commandment.)

We can state assumptions about the input as the

antecedent of an implication. A reasonable (imple-

mentable) specification would be

〈(∃i ∈ {0, ..N} · a(i) = x)⇒ a(k′) = x〉

This illustrates an important pattern. Specifications

are often of the form

〈P ⇒ Q〉

where P represents an assumption about the input.

Then P is called the precondition and Q is called the

postcondition. For inputs, for which P is false, the

expression simplifies as follows

P ⇒ Q

=

false⇒ Q

=

true

For such inputs, the specification imposes no restric-

tions on the output.

4

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-2 Imperative Programming (c) Theodore Norvell

Programming Constructs

Syntax (Form)

We will consider commands of the following forms

skipΣ†Σ Skip

V :=Σ†Σ E Assignment

V0,V1, ...,Vk :=Σ†Σ E0, E1, ..., Ek Parallel asignment

fΣ†Σ; gΣ†Σ Sequential composition

if B then fΣ†Σ else gΣ†Σ Alternation

while B do fΣ†Σ Iteration

(fΣ†Σ) Grouping

where

• V and each Vi is a variable name mapped in Σ

• E is an expression of type Σ(V)

• each Ei is an expression of type Σ(Vi)

• B is an expression of type B.

• fΣ†Σ and gΣ†Σ are specifications

Note that expressions E and B should use only unprimed

variables

Precedence: “()”, then “if-then-else” and “while-do”, then

“;”

Normally the signature is clear from context, so we just

write skip or :=.

5

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-2 Imperative Programming (c) Theodore Norvell

Comparison to C and Java

The syntax above is based on the Algol and Pascal

languages.

The corresponding syntax in C/C++ and Java, which will

not be used in this course, is

The Course C/C++/Java

skip ; or {}

V := E V = E ;
f ; g f g

if B then f else g if(B) f else g

while B do f while(B) f

(f) { f }

6

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-2 Imperative Programming (c) Theodore Norvell

Semantics (Meaning)

Each command describes a set of acceptable

behaviours.

Thus each command is a specification.

Furthermore, we will define composition operators so

that they operate on arbitrary specifications, not just on

commands.

Skip

skip is the do-nothing transformation. Its output must be

the same as its input

skip(i † o) = (i = o)

Suppose that Σ maps names “x”, “y”, and “z”. Then

skip = 〈x′ = x ∧ y′ = y ∧ z′ = z〉

7

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-2 Imperative Programming (c) Theodore Norvell

Assignment (‘becomes’)

Suppose that Σ maps names “x”, “y”, and “z”. Then

x := E

is defined to be

〈x′ = E ∧ y′ = y ∧ z′ = z〉

Example

• Consider Σ = {“x” �→ N, “y” �→ N} then

(x := x− y) = 〈x′ = x− y ∧ y′ = y〉

Parallel assignment

Suppose that Σ maps names “x”, “y”, and “z” Then

(x, y := E ,F) is defined to be

〈x′ = E ∧ y′ = F ∧ z′ = z〉

Example

• Consider Σ = {“x” �→ N, “y” �→ N} then x, y := y, x is

〈x′ = y ∧ y′ = x〉

8

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-2 Imperative Programming (c) Theodore Norvell

Sequential composition

The sequential composition f ; g performs the

transformation f and then the transformation g on

the result.

We call the output of f (which is the input to g) m.

If the input is i and the output is o, then we want

f(i †m) and g(m † o)

Since we are ignoring intermediate states, we don’t care

what the value of m is, only that it exists.

Thus we define

(f ; g)(i † o) = (∃m : Σ · f (i †m) ∧ g (m † o))

Suppose that Σ maps names “x”, “y”, and “z” Then

〈A〉 ; 〈B〉

is

〈∃ẋ, ẏ, ż · A[x′, y′, z′ : ẋ, ẏ, ż] ∧ B[x, y, z : ẋ, ẏ, ż]〉

9

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-2 Imperative Programming (c) Theodore Norvell

Example

• Suppose that Σ maps names “x”, “y”, and “z”.

x := x− 1; y := 2× x

= “definition of assignment”

〈x′ = x− 1 ∧ y′ = y ∧ z′ = z〉 ;

〈x′ = x ∧ y′ = 2× x ∧ z′ = z〉

= “definition of sequential composition”

〈

∃ẋ, ẏ, ż ·






(x′ = x− 1 ∧ y′ = y ∧ z′ = z)
[x′, y′, z′ : ẋ, ẏ, ż]

∧ (x′ = x ∧ y′ = 2× x ∧ z′ = z)
[x, y, z : ẋ, ẏ, ż]






〉

= “making the substitutions”〈
∃ẋ, ẏ, ż ·

(
(ẋ = x− 1 ∧ ẏ = y ∧ ż = z)

∧ (x′ = ẋ ∧ y′ = 2× ẋ ∧ z′ = ż)

)〉

= “one-point law”

〈x′ = x− 1 ∧ y′ = 2× (x− 1) ∧ z′ = z〉

10

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-2 Imperative Programming (c) Theodore Norvell

Alternation

First we define how the propositional operators to act on

boolean functions f and g

(¬f) (b) = ¬f (b)

(f ∧ g) (b) = f(b) ∧ g(b)

(f ∨ g) (b) = f(b) ∨ g(b)

(f ⇒ g) (b) = f(b)⇒ g(b)

And therefore we have the following distribution laws.

¬ 〈A〉 = 〈¬A〉

〈A〉 ∧ 〈B〉 = 〈A ∧ B〉

〈A〉 ∨ 〈B〉 = 〈A ∨ B〉

〈A〉 ⇒ 〈B〉 = 〈A ⇒ B〉

Now we can define

if A then f else g

to be

(〈A〉 ∧ f) ∨ (¬ 〈A〉 ∧ g)

Exercise. Show that

(if A then f else g) = (〈A〉 ⇒ f) ∧ (¬ 〈A〉 ⇒ g)

11

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-2 Imperative Programming (c) Theodore Norvell

Example

• Suppose that Σ maps names “x”, “y”, and “z”

if y < x then x := y else y := x

= “Definition assignment”

if y < x

then 〈x′ = y′ = y ∧ z′ = z〉
else 〈x′ = y′ = x ∧ z′ = z〉

= “Definition of alternation”
(〈y < x〉 ∧ 〈x′ = y′ = y ∧ z′ = z〉)

∨ (〈y ≥ x〉 ∧ 〈x′ = y′ = x ∧ z′ = z〉)

= “Distributing angle brackets”〈
(y < x ∧ x′ = y′ = y ∧ z′ = z)

∨ (y ≥ x ∧ x′ = y′ = x ∧ z′ = z)

〉

= “Distributivity”〈(
(y < x ∧ x′ = y′ = y)

∨ (y ≥ x ∧ x′ = y′ = x)

)
∧ z′ = z

〉

= “Definition of min ”

〈x′ = y′ = min(x, y) ∧ z′ = z〉

12

Advanced Computing Concepts for Engineering, 2012. Slide Set 0-2 Imperative Programming (c) Theodore Norvell

Iteration

Iteration (while-loop) is a bit more complicated. We will

return to it later, once the non-iterative constructs are

better understood.

13

