
Advanced Computing Concepts for Engineering, 2012. Slide Set 0-5. More loops (c) Theodore Norvell

More examples of loops

Exponentiation

We will look at the problem of computing xy where y is

an integer and is initially nonnegative

f = 〈y ≥ 0⇒ z′ = xy〉

We need to generalize this to get a specification for a

loop.

Suppose that we have a partially computed answer

already in z.

Then the remaining problem is

g = 〈y ≥ 0⇒ z′ = z × xy〉

Now

f � z := 1; g

Note that when y = 0 the problem is easy

〈y = 0⇒ z′ = z × xy〉

= One-point〈
y = 0⇒ z′ = z × x0

〉

= Since x0 is 1 and 1 is the identity of multiplication

〈y = 0⇒ z′ = z〉

� Erasure law

skip

Typeset February 1, 2017 1



Advanced Computing Concepts for Engineering, 2012. Slide Set 0-5. More loops (c) Theodore Norvell

When y > 0 we can use the fact that xy = x× xy−1

〈y 	= 0〉 ⇒ g

= Shunting

〈y > 0⇒ z′ = z × xy〉

= Above fact about exponentiation〈
y − 1 ≥ 0⇒ z′ = z × x× xy−1

〉

= Substitution law

y, z := y − 1, z × x; g

By the alternation law we have the recursive refinement

g � if y 	= 0 then (y, z := y − 1, z × x; g) else skip

We can use y as a bound to justify that

g � while y 	= 0 do y, z := y − 1, z × x

A tremendous improvement

Let’s revisit the “then” branch.

We need to implement

〈y > 0⇒ z′ = z × xy〉

When y is even, we can apply the fact that xy =
(
x2
)y/2

〈y > 0 ∧ even(y)⇒ z′ = z × xy〉

= Above fact about exponents〈
y > 0 ∧ even(y)⇒ z′ = z ×

(
x2
)y/2〉

� Strengthening by weakening the precondition〈
y/2 ≥ 0⇒ z′ = z ×

(
x2
)y/2〉

= Substitution law

x, y := x× x, y/2; g

Typeset February 1, 2017 2



Advanced Computing Concepts for Engineering, 2012. Slide Set 0-5. More loops (c) Theodore Norvell

For the case where y is odd, we can use the same

refinement as before

This gives us an implementation the “then part” of

〈y > 0⇒ z′ = z × xy〉

� Alternation law and above derivations

if even(y)
then (x, y := x× x, y/2; g)
else (y, z := y − 1, z × x; g)

= Distributivity


if even(y)
then x, y := x× x, y/2
else y, z := y − 1, z × x



 ; g

The last step uses the following distributivity law

(if A then (f0; g) else (f1; g)) = (if A then f0 else f1 ; g)

Exercise: Prove this law from the definitions.

This gives a solution of

g � while y 	= 0
do if even(y)

then x, y := x× x, y/2
else y, z := y − 1, z × x

Exercise: How many iterations does this loop take if y is

2, 4, 8, 16, 32, etc.? How many if y is 3, 7, 15, 31, etc.? As

a function of y, how many iterations does the loop take?

[Hint, think about the binary representation of y.]

This algorithm represents a tremendous improvement

over the previous. If y is, for example 1, 000, 000 then

Typeset February 1, 2017 3



Advanced Computing Concepts for Engineering, 2012. Slide Set 0-5. More loops (c) Theodore Norvell

the first algorithm requires 1, 000, 000 multiplications,

whereas this algorithm requires roughly 30.

A search

Suppose that B is a constant1 boolean function and we

know that

∃i ∈ {0, ..N} · B(i)
The goal is to find the smallest argument for which B is

true

f = 〈k′ = min {i ∈ {0, ..N} | B(i)}〉

We need to generalize f to get a specification suitable

for a loop.

Suppose that the first k items of B have already been

searched, the remaining task is to search the remaining

items

g = 〈0 ≤ k < N ⇒ k′ = min {i ∈ {k, ..N} | B(i)}〉

So

f � k := 0; g

Exercise: Derive an implementation for g.

1 By constant, I mean that the value of B does not change when the state changes.
Typeset February 1, 2017 4


