More examples of loops

Exponentiation

We will look at the problem of computing z¥ where y is
an integer and is initially nonnegative

f=y>0=2=a"
We need to generalize this to get a specification for a
loop.
Suppose that we have a partially computed answer
already in z.
Then the remaining problem is
g={y>0=2' =2z x2Y)
Now
fEz=1yg
Note that when y = 0 the problem is easy
(y=0= 2" =2z x 1Y)
= One-point
(y=0=2'=zxza")
= Since 2" is 1 and 1 is the identity of multiplication
(y=0= 2" =2)
C Erasure law
skip



When y > 0 we can use the fact that 2¥ = z x 2¥~!
(y#0) =g
= Shunting
(y >0= 2 =2xaY)
= Above fact about exponentiation
(y—1>0= 2 =zxzxz'")
= Substitution law
Y,z =y —1,2XxXx;09
By the alternation law we have the recursive refinement
gCify#0then (y,z:=y— 1,2 x x;9) else skip
We can use y as a bound to justify that
gCwhiley #0doy,z =y—1,2 xx

A tremendous improvement

Let’s revisit the “then” branch.
We need to implement
(y>0= 2 =2xaY)
When y is even, we can apply the fact that 2¥ = (x2)y/2
(y >0 Aeven(y) = 2’ =z x )
= Above fact about exponents
<y > 0 Aeven(y) = 2’ = z x (xQ)y/2>
C Strengthening by weakening the precondition
<y/2 >0=2 =2x (QZQ)y/2>
= Substitution law
T,y = Xx,Y/2;¢



For the case where y is odd, we can use the same
refinement as before

This gives us an implementation the “then part” of
(y>0= 2" =2 xa2Y)
C Alternation law and above derivations
if even(y)
then (v,y =2z x x,y/2;9)
else (y,z:=y—1,z2 X x;9)
= Distributivity
if even(y)
then x,y =z xx,y/2 |;g
elsey,z =y—1,zxx
The last step uses the following distributivity law
(if A then (f;9) else (fi;9)) = (if A then f,else fi; g)
Exercise: Prove this law from the definitions.

This gives a solution of
g C while y # 0
do if even(y)

then z,y =2 x x,y/2

elsey,z =y—1,zxx
Exercise: How many iterations does this loop take if y is
2,4, 8,16, 32, etc.? How many if y is 3, 7, 15, 31, etc.? As
a function of y, how many iterations does the loop take?
[Hint, think about the binary representation of y.]

This algorithm represents a tremendous improvement
over the previous. If y is, for example 1,000, 000 then



the first algorithm requires 1,000,000 multiplications,
whereas this algorithm requires roughly 30.

A search

Suppose that B is a constant' boolean function and we
know that
4i € {0,..N} - B(7)
The goal is to find the smallest argument for which B is
true
f=(K=min{i € {0,..N} | B(i)})

We need to generalize f to get a specification suitable
for a loop.

Suppose that the first £ items of B have already been
searched, the remaining task is to search the remaining
items

g={0<k<N=FkK=mn{ie{k N}|B®)}
S0
fEk:=0g9
Exercise: Derive an implementation for g.

' By constant, I mean that the value of B does not change when the state changes.



